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Abstract: Gamma-aminobutyric acid (GABA) is a non-protein amino acid with various physiological
functions. Levilactobacillus brevis NPS-QW 145 strains active in GABA catabolism and anabolism
can be used as a microbial platform for GABA production. Soybean sprouts can be treated as a
fermentation substrate for making functional products. This study demonstrated the benefits of
using soybean sprouts as a medium to produce GABA by Levilactobacillus brevis NPS-QW 145 when
monosodium glutamate (MSG) is the substrate. Based on this method, a GABA yield of up to
2.302 g L−1 was obtained with a soybean germination time of one day and fermentation of 48 h with
bacteria using 10 g L−1 glucose according to the response surface methodology. Research revealed a
powerful technique for producing GABA by fermentation with Levilactobacillus brevis NPS-QW 145 in
foods and is expected to be widely used as a nutritional supplement for consumers.

Keywords: gamma-aminobutyric acid (GABA); fermented soybean sprout yogurt-like product;
reversed-phase high performance liquid chromatography; GABA-rich yogurt; response
surface methodology

1. Introduction

Gamma-aminobutyric acid (GABA), a four-carbon non-protein and water-soluble
amino acid, is the main inhibitory neurotransmitter of the central nervous system [1–5]. It
can have beneficial effects on human health and other animals by reducing blood pressure,
preventing chronic alcoholic diseases, inhibiting cancer cell proliferation, improving brain
function, and promoting insulin [6–8]. GABA also demonstrates the potential for lowing
blood pressure in spontaneously hypertensive rats (SHR) and hypertensive humans [9,10].
Furthermore, a previous study reported the key role of GABA production in hepatocytes in
the dysregulation of glucose regulation and eating behavior associated with obesity [11–13].
There has been an increased demand for GABA due to its widespread use in various
industries [14].

Concentration of GABA in plant tissues varies between 0.03 and 2.00 µmol g−1,
increasing with hypoxia, hydraulic pressure, salt stress, temperature shock, germination,
and other biotic stresses [4]. Several microorganisms, including lactic acid bacteria (LAB),
such as Levilactobacillus brevis, Lacticaseibacillus paracasei, and Enterococcus raffinosus, have
recently been intensively investigated and used in GABA synthesis [15], because they are
rich in glutamate decarboxylase and can synthesize GABA.

Plant seed germination is a physiological process that stimulates endogenous enzyme
activity and alters biochemical processes [8,16]. According to recent research, soybean
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sprouts can be utilized as an alternate method to strengthen the nutritional quality of phyto-
chemical content, particularly GABA [7]. Germination of soybean for human consumption
would reduce the content of anti-nutritional elements while increasing the number of
minerals and phytochemicals such as vitamin E and isoflavone aglycone derivatives [17,18].
In particular, during soybean germination, various free amino acids are produced with
protein degradation, providing a natural substrate for GABA synthesis [17].

This study aims to use response surface optimization to investigate the effect of
soybean germination treatment and lactic acid bacteria fermentation on the level of GABA
in soy milk. The study’s results will provide a favorable theoretical basis for producing
products with higher nutritional value.

2. Materials and Methods
2.1. Materials and Strain

Organic soybeans were purchased from a local supplier. Analytical grade chemical
reagents utilized in this work were purchased from Sigma-Aldrich Corp., St. Louis, Mis-
souri, USA. Levilactobacillus brevis NPS-QW 145 was obtained from BD Company (Franklin
Lakes, NJ, USA). Six carbon sources, including glucose, lactose, mannose, malactose, amy-
lopectin, and fructose, were purchased from Sigma-Aldrich Corp., St. Louis, MO, USA.
Difeo TM lactobacilli MRS broth and Monosodium glutamate (MSG) were purchased from
Difco. (Sparks, MD, USA). All other reagents were of analytical grade.

2.2. Preparation of Soybean Sprouts Milk

Germination conditions used in this study were based on Luo’s method [4]. Typically,
200 g of soybeans were selected, washed, and soaked in a 95% ethanol solution for 1 min
to remove microorganisms on the surface of soybean seeds. The beans were washed with
sterile water and placed in an incubator for germination. Subsequently, the germination
status of the beans was observed daily, with the germination length measured as well.
Consequently, the bean sprouts were taken out from the incubator on days 0, 1, 3, 4, and 5
to prepare soybean sprout milk. The sprouts were rinsed with clean water and mixed with
water in a ratio of 1:2 (soybean sprout: water) before putting the mixture into a grinder for
5 min of pulp grinding. The mixture was then allowed to be filtered, homogenized, and
sterilized at 90 ◦C in a water bath pot before 1 h of boiling. The sterilized mixture was left
at room temperature for cooling before fermentation.

2.3. Preparation of Fermented Yogurt-like Product

The fermentation method was conducted following the instructions of Xiao and
Shah [19] with slight modifications. Firstly, the soybean sprout yogurt-like product made
with sprouts of different germination times was autoclaved and then inoculated with 3%
Lb. brevis 145 (v/v), 5 g L−1 MSG, and six different monosaccharides (glucose, lactose,
mannose, galactose, amylopectin, and fructose) at different concentrations (0, 5, 10, 15, and
20 g L−1) and mixed well. Subsequently, the mixture was fermented in the incubator at
37 ◦C to observe the coagulation state and compare the GABA concentration in it.

Soybean without germination treatment was used as the blank test. Yogurt prepared
from the same quality of milk powder was also fermented with 3% Lb. brevis 145 (v/v),
5 g L−1 MSG, and 10 g L−1 glucose, and then fermented at 37 ◦C for 48 h. Moreover, the
GABA content in the soybean with germination treatment was compared to explore the
effect of germination treatment on the GABA content in the soybean.

2.4. Optimization of Fermentation Conditions for the Production of GABA by Lb. brevis 145 in
Soybean Sprout Yogurt-like Product
2.4.1. Single-Factor Experiments

Levilactobacillus brevis NPS-QW 145 was used as the fermentation strain in a single-
factor experiment. The following factors were examined for their influence on the GABA
content of fermented soybean sprouts: types of carbon sources (glucose, lactose, mannose,
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galactose, amylopectin, and fructose), germination time (0, 1, 3, 4, and 5 d), glucose
concentration (0, 5, 10, 15, and 20 g L−1), and fermentation time (12, 24, 48, 72, and 96 h).
The GABA concentration was determined using RP-HPLC (Shimadzu model LC-2010A,
Shimadzu Corp., Kyoto, Japan).

2.4.2. Response Surface Methodology (RSM)

RSM is typically used to investigate optimal experimental conditions since it is a
reliable and useful statistical methodology. This experimental method was partially modi-
fied according to the method of Zhang et al. [14]. Based on the results of the single-factor
experiments, glucose concentration, fermentation time, and germination days were selected
for the RSM experiment based on a Box-Behnken center combination design (DTD), and
the GABA level was treated as the response values. Table 1 shows the three factors and the
three levels of the research design.

Table 1. Factors and levels of response surface analysis.

Encoding A: Germination Day (d) B: Fermentation Time (h) C: Sugar Concentration
(g L−1)

−1 0 24 5
0 1 48 10
1 3 72 15

2.5. Determination of GABA Production by RP-HPLC
2.5.1. Protein and Peptide Removal from Soybean Sprout Yogurt-like Product

GABA levels were determined according to the Wu and Shah’s method [2]. Reversed-
Phase HPLC (RP-HPLC, Shimadzu model LC-2010A, Shimadzu Corp., Kyoto, Japan) was
employed to detect the GABA concentration in the fermented soybean sprout yogurt-like
product. First, to remove the protein of the soybean sprout milk, a 1 mL aliquot of fermented
soymilk samples was diluted five times with sterile H2O, and 250 µL of zinc acetate and
ferrous cyanide were added and mixed thoroughly. After standing for 1 h, samples were
centrifuged by 5000 g at 25 ◦C to completely precipitate proteins and peptides. A GABA
analysis was performed after samples were stored at 4 ◦C.

2.5.2. Amino acid Derivatization

The obtained supernatant containing GABA was derived. 200 µL of supernatant was
mixed with 200 µL of acetonitrile, 200 µL of NaHCO3 (pH 9.8), 200 µL of H2O, and 100 µL
40 g L−1 of Dansyl chloride was added at 60 ◦C in the dark for 1 h. After derivation, 100 µL
of 20 µL mL−1 acetic acids was added to stop the reaction. Subsequently, the sample was
centrifuged at 12,000× g at 25 ◦C for 5 min. Moreover, the supernatant passed through a
0.22 µM filter with a membrane and was stored in a brown vial.

Subsequently, the GABA concentration of the derived sample was analyzed using
RP-HPLC, as previously used [2]. The retention time for GABA is shown below at 20 min.
Moreover, the standard curve of GABA present in Figure 1 was prepared with 0.01, 0.05,
0.07, 0.1, 0.25, 0.5, 0.7, and 1.75 g L−1 concentrations of GABA standard solution. It can be
seen that the peak area was highly correlated with the GABA concentration, R2 = 0.9992,
and the relationship between them satisfied the regression equation y = 4 × 106 x + 70,120.

According to different experiments, the different integral areas obtained by the samples
could be substituted into the formula GABA concentration. RP-HPLC was used to separate
and quantify dansyl GABA and dansyl glutamic acid using a Kromasil 5-µm 100A C18
column (250 mm × 4.6 mm; Phenomenex, Torrance, CA, USA).
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2.6. Determination of pH and Viable Cell Counts in Fermented Soybean Sprout Yogurt-like Product

This method was a combination of Chan and Wu’s research respectively [20,21]. The
pH values of the fermented soybean sprout yogurt were measured using a pH meter (250 A
Orion Portable pH Meter, US). To measure the viable cell number, 1 mL of the fermented
soybean sprout yogurt-like product was dissolved in 9 mL of sterilized normal saline.
Subsequently, 1 mL of the uniform solution was taken into Difeo TM lactobacilli MRS broth
and incubated at 37 ◦C for 48 h. The average number of colonies in the Petri dish was
multiplied and calculated by the dilution multiple. Generally, 30–300 CFU were chosen to
count. The unit of colony numbers was CFU mL−1.

2.7. Protein Content of Fermented Soybean Sprout Yogurt-like Product

The fermented soybean sprout yogurt-like product was compared to those made from
commercial soybean powder and milk powder. The protein content was determined using
the MicroKjeldahl method. A sample of 0.3 g was accurately weighed and then placed in a
Kjeldahl tube with a catalyst tablet and 10 mL of concentrated sulfuric acid.

The weighed sample was nitrified in a nitrification furnace at 370 ◦C for 50 min until
the solution turned light green. Next, 40 mL of distilled water was added to the nitrated
sample for cooling and then put into the MicroKjeldahl nitrogen determinator for automatic
titration. Finally, manual titration was conducted using a 250 mL conical flask with 40 mL of
4% boric acid solution and five drops of the indicator. Three parallel tests were performed
for each group of samples. The sample nitrogen content was calculated using the following
formula and then converted to crude protein content:

%N = ((1.4 × V)÷ 1000)/g )× 100 (1)

V = volume (mL) of 0.1 N HCl used in the titration. The value of 1.4 is derived from the
fact that 1.0 mL of 0.1 M NH4OH contains 1.4 mg nitrogen.

2.8. Texture Analysis

To compare the effects of different soybean germination days, fermentation time and
carbon source additions on the texture of the yogurt-like products, a texture analysis was
performed on samples with different preparation conditions. The method for textural
characterization of the fermented bean sprout yogurt-like product was modified according
to Giri’s method [22]. Before measurement, products with different preparation processes
were stored at 4 ◦C for 12 h, restored to room temperature, and about 9 g of samples were
weighed. The texture analysis was performed using a Texture Analyzer TAXT2i (Stable
Micro Systems, Godalming, Surrey, UK) equipped with a 25 kg load cell and calibrated
with a standard dead weight of 5 kg before use. A HDP/SR-TTC probe was unitized for
determination. A Texture Expert version 1.20 (Stable Micro Systems) software application
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measured firmness, stickiness, work of shear, and work of adhesion. The same sample was
weighed three times, and the mean value was obtained and recorded.

The specific measurement parameters were test speed: 3.0 mm s−1, measured speed:
10 mm s−1, test distance: 23 mm, trigger force: g, and data acquisition rate: 200 PPS.

2.9. Sensory Analysis

This method was slightly modified from Meilgaard’s approach [23]. Briefly, 50 trained
panelists were invited to evaluate the appearance, odor, acidity, thickness, fluidity, taste,
and overall acceptance of the fermented yogurt-like product using 9-point scores (from 1 to
9). The ratings were presented on a 9-point hedonic scale ranging from 9 (“extremely like”)
to 1 (“extremely dislike”).

2.10. Statistical Analysis

The data figure was created using the program, Microsoft Excel 2010, and IBM SPSS 25
Statistic was used to analyze the significant differences (p < 0.05 showed that the difference
in the analysis results was significant, and p < 0.01 indicated that the difference in the
analysis results was very significant). The response surface was designed, optimized, and
analyzed using Design Export 10.0.7.

3. Results and Discussion
3.1. The Effect of Various Conditions on GABA Production by Lb. brevis 145 in Soybean Sprout
Yogurt-like Product

Legumes primarily metabolize GABA through a short pathway known as a GABA
shunt, converting glutamate into succinic acid. This pathway synthesizes GABA from
glutamate-by-glutamate decarboxylase (GAD, EC 4.1.1.15). GABA is converted to succinic
semialdehyde (SSA) using GABA aminotransferase (GABA-T, EC 2.6.1.19). Then the last
step of the shunt pathway is to convert SSA to succinic acid using succinic semialdehyde
dehydrogenase (SSADH, EC 1.2.2.16) [24,25]. In the present study, after soybean seed
germination, protein was transformed into glutamate and polyamine, which provided a
sufficient precursor substance for GABA enrichment. During soybean germination, the
content of soluble sugar decreased, and the content of dry matter decreased with the
extension of germination time. However, the content of reduced sugar, soluble protein, free
amino acid, and GABA increased.

Figure 2A shows that a significant increase (p < 0.05) in GABA content was detected
during soybean germination. GABA content in soybeans initially increased and then
decreased with increasing germination time. When the germination time was one day, the
GABA content was the most extensive (0.025 g L−1). Compared to raw soybeans, the GABA
content increased continuously and significantly by 1.61-fold by the end of germination
at one day. This outcome is consistent with the findings of Vann’s study [8], which found
that soybean germination significantly increased the GABA content in soybean sprouts.
Meanwhile, a previous study [4] reported that the GABA content in germinated soybeans
peaked on day 5, which conflicted with the present study. As mentioned above, increased
GAD activity could be responsible for higher GABA content. The most suitable explanation
for this differential phenomenon is that the GAD activity during germination was also
influenced by germination temperature and germination approaches [26,27].

Conversely, Figure 2B shows that GABA-producing bacteria show different prefer-
ences for sugars, affecting their growth and GABA production. Compared to lactose,
mannose, galactose, amylopectin, and fructose, glucose were significantly different in terms
of improving GABA levels (p < 0.05). This result is consistent with the findings of a previous
report by Xiao and Shah [19], which suggested that after fermentation for 24 h, glucose was
the main carbon source consumed by Lb. brevis 145.
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Figure 2. Effect of different conditions on the production of GABA by Lb. brevis 145 in soybean
sprout yogurt. (A) represents germination day; (B) represents carbon source types; (C) represents
fermentation time; (D) represents glucose concentration. Means and standard deviations of triplicate
experimental data were represented by the values and error bars. a, b, c, d, and e in the figure
represent different product were significant difference in various conditions.

Furthermore, with increasing fermentation time, the GABA content in the fermentation
broth increased initially and then decreased (Figure 2C). The content increased sharply
in the first 48 h. After 48 h of continuous culture, the GABA content in the fermentation
broth decreased significantly. At 48 h of fermentation, the content of GABA reached its
maximum, which was 1.867 g L−1. A possible reason for this was the consumption of MSG
and nutrients in the fermentation broth with the extension of fermentation time, and the
subsequent cell senescence with decreased GABA content.

An investigation of the effect of different glucose concentrations on GABA production
in the soybean sprout yogurt-like product was also performed. Glucose, as the main carbon
source of microorganisms, has the energy required for the life activities of bacteria, and
constitutes the material basis of bacterial cells and their metabolites [28]. Figure 2D shows
that with increasing glucose addition, the GABA content in the fermented bean sprout
yogurt-like product also increased initially and then decreased. Briefly, when the glucose
addition was 10 g L−1, the maximum GABA content was 2.21 g L−1. However, when the
glucose addition continued to increase, the GABA content in the bean sprout yogurt-like
product demonstrated an obvious decreasing trend. It could be that when the sugar content
in the fermentation medium was too high, the cell metabolic activity produced organic
acids, resulting in decreased pH and cell aging. Moreover, when the sugar content in the
fermentation medium was in a low range, the bacteria were less affected by changes in
sugar metabolites [28].
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3.2. Optimizing the Fermentation Process to Produce GABA by Lb. brevis 145 in Soybean Sprout
Yogurt-like Product
3.2.1. RSM Results

The carbon concentration, fermentation times, and germination days were chosen as
the key variables and the focal points for the response surface analysis in order to simulate
the fermentation process based on the single-variable optimization (Table 2). Based on
the Box-Behnken experimental design results, a quadratic multiple regression fitting was
conducted, and a multiple quadratic response surface regression model was established.
The obtained quadratic regression equation was as follows:

Y = 2.35 + 5.9375 × 10−3 × A + 4.1875 × 10−3 × B + 5.125 × 10−3 × C−1.75 × 10−3 × AB + 3.75 × 10−4 ×
AC + 3.75 × 10−4 × BC−0.060135 × A2−0.046135 × B2−0.04801 × C2 (2)

where Y represents the GABA concentration, A represents the germination days, B repre-
sents the fermentation time, and C represents the glucose concentration.

Table 2. Experimental design of Box-Behnken and corresponding results.

No. A B C GABA Conc (g L−1)

1 −1 −1 0 2.228
2 1 −1 0 2.252
3 −1 1 0 2.240
4 1 1 0 2.256
5 −1 0 −1 2.229
6 1 0 −1 2.232
7 −1 0 1 2.252
8 1 0 1 2.256
9 0 −1 −1 2.254

10 0 1 −1 2.262
11 0 −1 1 2.250
12 0 1 1 2.259
13 0 0 0 2.319
14 0 0 0 2.356
15 0 0 0 2.360
16 0 0 0 2.358
17 0 0 0 2.358

Table 3 illustrates the results of ANOVA. The regression model F test presented high
significance (p < 0.01), and the R-squared was 95.75%, indicating that the model could
explain the change in the 95.75% response value. The lack of fit was 0.676 (more than 0.05),
which was non-significant. The model had a high degree of fit with the data and a small
experimental error. This model and equation could be employed to analyze and predict the
amount of GABA extraction.

Table 3. GABA production regression analysis using the Box-Behnken DTD experimental design.

Source of
Mean Square

Sum of
Squares

Degree of
Freedom Mean Square F Pr > F Significance

Model 0.038444824 9 0.004271647 17.50715543 0.000525758 Significant
A 0.000282031 1 0.000282031 1.15589251 0.317973848 ns
B 0.000140281 1 0.000140281 0.574936452 0.47305463 ns
C 0.000210125 1 0.000210125 0.861187949 0.384288761 ns

AB 1.225 × 10−5 1 1.225 × 10−5 0.050206079 0.829104465 ns
AC 5.625 × 10−7 1 5.625 × 10−7 0.002305381 0.963045971 ns
BC 5.625 × 10−7 1 5.625 × 10−7 0.002305381 0.963045971 ns
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Table 3. Cont.

Source of
Mean Square

Sum of
Squares

Degree of
Freedom Mean Square F Pr > F Significance

A2 0.015226182 1 0.015226182 62.40382843 9.87946E−05 **
B2 0.008961845 1 0.008961845 36.72972303 0.000510618 *
C2 0.009705095 1 0.009705095 39.77590003 0.000401524 *

Residual 0.001707961 7 0.000243994
Lack of Fit 0.000496813 3 0.000165604 0.546932882 0.67624669 ns
Pure Error 0.001211148 4 0.000302787
Cor Total 0.040152785 16

R-squared = 95.75%. ns represent there was no significant difference in the statistical result; * represent there was
significant difference in the statistical result (p < 0.05); ** represent there was significant difference in the statistical
result (p < 0.01)

3.2.2. RSM Analysis of the Best-Fermented Parameters

Following the linear regression equation fitted by the RSM, the response surface graph
and contour of the model were drawn. The response surface contour map directly reflected
the influence of various factors on the response value to find out the best process parameters
and the interaction between various parameters. The center point of the smallest ellipse
in the contour was the highest point of response surface; the contour map shape reflected
the intensity and significance of interaction between the two factors. The contour lines in
Figure 3 were oval, corroborating the finding the interaction between fermentation time
and the addition of sugar concentration to germination time was significant.

Figure 3 presents the three-dimensional spatial surface diagram of the interaction
of two factor independent variables on GABA concentration created by Design Expert
10.0.7 software. The 3D response surface diagrams show that germination days, glucose
concentration, and fermentation time had a good interaction, and that their effects were
all statistically significant. By analyzing the linear regression equation, it was found that
there was a maximum point in the experiment, which was also the maximum point in this
study. Technological conditions producing this maximum point could be found through
response surface analysis. Thus, the optimal technological conditions for the enrichment of
GABA from fermented soybean sprout yogurt-like product were: soybean germination for
0.798 days, fermentation time for 45.490 h, and glucose concentration of 9.691 g L−1. Under
these conditions, the predicted value of the GABA mass concentration was 2.287 g L−1. In
order to verify the reliability of the regression equation, under the optimized conditions,
soybeans germinated for 24 h, fermented for 48 h, and 10 g L−1 of glucose concentration
was adopted; the GABA level obtained from the verification test was 2.302 g L−1, and the
relative deviation was 0.67% compared to the theoretical prediction value. Therefore, the
optimal process conditions of the fermentation system obtained by the response surface
optimization method were reliable. Furthermore, the fermented soybean sprout yogurt-
like product obtained in the validation test had a uniform solidification state, a strong
fermentation flavor, a pure flavor, and no peculiar smell.
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3.3. Finished Product Quality Analysis
3.3.1. GABA Concentration in GABA-Rich Yogurt

Figure 4 shows that the soybeans were treated with Lb. brevis 145 after 48 h of fermen-
tation after one day of germination. The GABA content reached a maximum of 2.302 g L−1,
which was 1.56 and 3.5 times the GABA content in yogurt-like product fermented with
soybean powder and milk powder respectively, implying that soybean germination and
fermentation of lactic acid bacteria could significantly increase the GABA content in yogurt,
thus producing a functional yogurt-like product rich in GABA.
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3.3.2. pH and Cell Viability in Fermented Soybean Sprout Yogurt-like Product

According to the Chinese national standard, GB 4789.35, for lactic acid bacteria content
in viable products, the lactic acid bacteria content must be higher than 1 × 106 CFU mL−1.
Figure 5 illustrates that the number of bacteria after 72 h of fermentation, still up to
8 × 106 CFU mL−1, already met the standard requirement for live bacteria plant yogurt.
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Moreover, as the fermentation time increases, acidity elevates due to the production of
organic acids in the medium, resulting in a decrease in pH. After fermentation, the pH of
the soybean sprout yogurt-like product also showed a downward trend, as illustrated in
Figure 5. Finally, the pH of the fermented bean sprout yogurt-like product was maintained
at about 4.4, which meets the Chinese national standard requirement (GB 5009.237) for the
pH of fermented yogurt products (pH ≤ 4.5).

3.3.3. Texture Characteristic and Protein Content in GABA-Rich Yogurt-like Product

Table 4 illustrates the texture characteristics and protein content of fermented yogurt-
like product from soybean sprouts, fermented yogurt-like product from soy flour, and
fermented yogurt from milk. The texture samples were obtained from samples with intact
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gel structures after 48 h of fermentation; their work of shear, stickiness, work of adhesion,
and firmness was evaluated.

Table 4. Texture characteristics and protein content of fermented bean sprout yogurt-like product. a,
b, and c in the table represent three products were significant difference in various textural analysis.

Item
Texture Analysis

Protein (%)
Firmness Work of Shear Stickiness Work of Adhesion

Fermented bean sprout
yogurt-like product 8.81 ± 0.31 a 4.4 ± 0.21 a −7.85 ± 0.07 b −11.55 ± 0.13 b 4.41 ± 0.05 a

Fermented soybean flour
yogurt-like product 4.55 ± 0.29 b 4.22 ± 0.19 a −7.97 ± 0.11 b −11.26 ± 0.31 b 2.93 ± 0.31 c

Fermented milk yogurt 5.78 ± 0.42 c 1.93 ± 0.07 b −1.53 ± 0.27 a −1.05 ± 0.31 a 3.22 ± 0.17 b

Firmness, or the force required to achieve a certain deformation, is a regularly exam-
ined criterion when defining the texture of set-type cultured dairy products. It is the peak
force height on the first compression cycle [29,30]. The firmness of fermented soybean
sprout yogurt-like product was significantly (p < 0.05) higher than the other two samples.
The increased firmness could be due to the high water binding capacity [31,32].

The quantity of energy required to perform the shear operation is known as the work
of shear. It therefore evaluates the sample resistance throughout the penetration of the
probe. In the current investigation, the work of shear of the fermented soybean sprout
yogurt-like product and the fermented soybean flour yogurt-like product was significantly
(p < 0.05) higher than that of the fermented milk yogurt. However, no significant (p > 0.05)
difference was observed between the fermented soybean sprout yogurt-like product and
the fermented soybean flour yogurt-like product.

Stickiness is an essential sensory quality of semisolid food ingredients, defined as a
sensation sensed by the tongue and palate [33,34]. Negative stickiness values represent
stickiness, while positive values represent the product’s hardness. In the present investiga-
tion, no significant (p > 0.05) difference in stickiness was detected between the fermented
soybean sprout yogurt-like product and the fermented soybean flour yogurt-like product,
both of which were higher levels of stickiness than the fermented milk yogurt.

To characterize the work of adhesion, the area under the negative peak in penetration
was measured. It can also be defined as the work required to overcome the attraction force
between the product surface and the probe surface [22]. During the current investigation,
as Table 4 illustrates, there was no significant difference in the work of adhesion between
the fermented soybean sprout yogurt-like product and the fermented soy flour yogurt-
like product (p > 0.05), both of which were marginally lower compared to the fermented
milk yogurt.

Furthermore, according to the Chinese national standard requirement (GB 5009.5), the
protein content in soybean products is not allowed to be less than 2.5%. Table 4 shows
that the protein content of the three products reached the national standard. These results
were consistent with the result of Niamah’s study [35]. Notably, the protein level of the
fermented soybean sprout yogurt-like product exceeded the national standard by 1.7 times.

3.3.4. Sensory Evaluation of Yogurt-like Product Rich in GABA

Table 5 shows the scores for the sensory characteristics of the fermented samples.
GABA-rich fermented sprout yogurt-like product had a milky and full-bodied aroma.
There were no significant differences (p > 0.05) in appearance, acidity, fluidity, thickness,
or overall acceptance between the bean sprout yogurt-like product and the commercially
available yogurt, validating the finding that fermented bean sprout yogurt-like product has
prospective market acceptance and consumer acceptance. However, there was a significant
difference (p < 0.05) in odor and taste between the bean sprout yogurt-like product and the
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commercially available yogurt. Future process optimization will focus on improving these
two indicators.

Table 5. Sensory characteristics of fermented yogurts (means ± SD for n = 3). a and b in the table
represent two product were significant difference in various sensory evaluation indice.

Item Soybean Sprout Yogurt-Like
Product

Commercially Available
Yogurt

Appearance 7.75 ± 0.56 a 7.88 ± 0.48 a

Odor 5.63 ± 0.41 b 7.75 ± 0.29 a

Acidity 7.25 ± 0.25 a 7.25 ± 0.29 a

Thickness 7.63 ± 0.22 a 7.75 ± 0.41 a

Fluidness 7.15 ± 0.25 a 7.25 ± 0.41 a

Taste 6.75 ± 0.35 b 7.13 ± 0.48 a

Overall acceptance 7.75 ± 0.41 a 7.75 ± 0.29 a

4. Conclusions

This study investigated the effect of lactic acid bacteria fermentation of germinated
soybeans on the GABA content of yogurt. In soybeans, GABA content increases significantly
during the germination and reaches its peak after one day of germination. The highest level
of GABA production (2.302 g L−1) of the fermented soybean sprout yogurt-like product
was obtained when Lb. brevis 145 was fermented with glucose 10 g L−1 as the sole carbon
source for 48 h. The use of germinated soybeans had a significantly positive effect on GABA
enrichment. Simultaneously, the fermented soybean sprout yogurt-like product with high
GABA content met the requirements of Chinese national standards for yogurt in terms of
acidity, protein content, and the number of live bacteria, and it had a better texture than
the commercially available yogurt. This provides a prerequisite for producing innovative
GABA-enriched yogurt.
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