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Abstract: The contamination of agricultural products, such as vegetables, by pesticide residues has
received considerable attention worldwide. Pesticide residue on vegetables constitutes a potential
risk to human health. In this study, we combined near infrared (NIR) spectroscopy with machine
learning algorithms, including partial least-squares discrimination analysis (PLS-DA), support vector
machine (SVM), artificial neural network (ANN), and principal component artificial neural network
(PC-ANN), to identify pesticide residue (chlorpyrifos) on bok choi. The experimental set comprised
120 bok choi samples obtained from two small greenhouses that were cultivated separately. We
performed pesticide and pesticide-free treatments with 60 samples in each group. The vegetables
for pesticide treatment were fortified with 2 mL/L of chlorpyrifos 40% EC residue. We connected a
commercial portable NIR spectrometer with a wavelength range of 908–1676 nm to a small single-
board computer. We analyzed the pesticide residue on bok choi using UV spectrophotometry. The
most accurate model correctly classified 100% of the samples used in the calibration set in terms of the
content of chlorpyrifos residue on samples using SVM and PC-ANN with raw data spectra. Thus, we
tested the model using an unknown dataset of 40 samples to verify the robustness of the model, which
produced a satisfactory F1-score (100%). We concluded that the proposed portable NIR spectrometer
coupled with machine learning approaches (PLS-DA, SVM, and PC-ANN) is appropriate for the
detection of chlorpyrifos residue on bok choi.

Keywords: NIR spectroscopy; machine learning; bok choi; pesticide

1. Introduction

Bok choi (Brassica rapa subsp. Chinensis) is a horticultural product; both its stems and
leaves are consumed, with or without cooking. Pesticides are often used to control insect
attacks during cultivation, as well as to maintain productivity. However, the pesticides
used to protect plants during cultivation cannot be removed and thus become residuals.
Therefore, the detection of pesticide residue on agricultural products is important as a
modern food safety issue to prevent such residue from entering the body [1]. In addition,
pesticide residue can cause serious environmental pollution and pose risks to human health
if consumed. The Ministry of Public Health of Thailand reported that the most commonly
detected pesticide residue in bok choi is chlorpyrifos [2] and that bok choi had the high-
est prevalence of pesticide residues in products on the market. Many researchers have
also discovered chlorpyrifos residues in vegetable and fruit samples from local markets
and supermarkets in Thailand [3–6]. According to the National Food Safety Standard
(GB 2763-2016), the maximum residue limit (MRL) for chlorpyrifos in vegetables is set to
0.1 mg/kg [7]. The Ministry of Public Health of Thailand published the Notification on
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Food Containing Pesticide Residues in the Royal Gazette to ban chlorpyrifos residues in
food products, stating that the MRL of chlorpyrifos should be zero for all products [8].
Sankorn et al. [1] reported that the Thai Department of Agriculture discovered excessive use
of pesticides during agricultural cultivation and tried to reduce their use through various
mitigation campaigns. A warning should be placed on the consumption of bok choi due to
safety concerns. Although policies have been implemented with support from regulations,
infrastructure, such as the technology needed to rapidly detect and simultaneously screen
for residue on agricultural products, must be applied.

Generally, pesticide residue is detected on agricultural products through a variety of
complex methods and instruments. The methods involved in measuring the concentration
of pesticide residue include gas chromatography (GC), which was used to detect pesticide
residue in green tea leaves [9]; high-performance liquid chromatography (HPLC), which
was used to detect insecticides in cucumber and eggplant [10]; and GC-LC mass spec-
trometry (GC-LC-MS), which was used for several agricultural products [11]. However,
these techniques are destructive, involve complicated sample preparation, and must be
performed in an advanced laboratory. As such, these techniques cannot be used for the
rapid and real-time screening of agricultural production. Therefore, a detection approach
that is nondestructive, simple to prepare, and reliable for detecting pesticide residue on
agricultural products needs to be developed to independently monitor products.

Currently, one of the most popular nondestructive measurement technologies used
to monitor agricultural products is near infrared (NIR) spectroscopy (NIRS) [12,13]. This
method works based on the absorption or reflectance of radiation in the near-infrared region
of the electromagnetic spectrum in the range of 780–2500 nm toward organic functional
groups, including single bonds of CH, OH, and NH, and the double bond of CO [14]. This
method has been successfully applied for qualitative and quantitative analyses, especially
to detect pesticide residue in agricultural products, including vegetables and fruits. Several
studies on the feasibility of NIRS in detecting pesticide residue on fruit and vegetable
products are listed in Table 1.

Table 1. Summary of studies employing Vis and NIR spectroscopy to detect pesticide residue on
horticultural products.

Agro-Products (Source) Residue Wavelength (nm) Pesticide Residue Range (mg/kg)

Lettuce, Oriental mustard,
Bok choy [15]

Indoxacarb,
chlorantraniliprole,
emamectin benzoate

340–840 <0.01–0.56

Chinese kale, cabbage, green
chili spur pepper [1] Profenofos 800–2500 0.53–106.28

Cabbage [7] Chlorpyrifos, carbendazim 350–2500 0.1–100
Tomato [16,17] Profenofos 350–1100 0.0–42.9

Melon [18] Chlorothalonil, imidacloprid,
pyraclostrobin 348–1141 1.0

Lettuce leaves [19] Fenvalerate, chlorpyrifos 950–1650 1.0–10
Cucumber [20,21] Diazinon 450–1000 0.0–32
Oranges [22] Dichlorvos 350–1800 1.0–1.25
Peppers [23] Mixed pesticides 400–1700 0.01–1.05

Although pesticide residue (chlorpyrifos) has been reported in agricultural products
in several studies [24–26], to the best of our knowledge, the nondestructive detection of
chlorpyrifos residue in leafy vegetables that are consumed fresh has not been reported.
Only research by Ngo et al. [15], investigated the application of a handheld spectrometer to
estimate pesticide residues on leafy vegetables, including lettuce, Oriental mustard, and
bok choi. Hence, in this study, we aimed to classify the absence or presence of chlorpyrifos
on bok choi (Brassica rapa subsp. Chinensis) using a portable NIR spectrometer combined
with a machine learning approach.
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2. Materials and Methods
2.1. Sample Preparation

A total of 120 bok choi (Brassica rapa subsp. Chinensis) samples were cultivated
separately in 2 small greenhouses. In the first greenhouse, we planted 60 samples, which
were not sprayed with any pesticide from the beginning of cultivation to the harvest stage.
These samples were used as the chlorpyrifos-free group (CF). In the second greenhouse,
samples were inoculated with commercial liquid chlorpyrifos 40% EC (C9H11Cl3NO3PS).
The pesticide was diluted with distilled water, for a final chlorpyrifos concentration in the
spray of 2 mL/L. Every 7 days during cultivation, we sprayed the plants with dosage rates
of approximately 300 mL/m2 using a backpack pressure sprayer (OLD-8L-04, FONTE,
Bangkok, Thailand). The concentration and rate of spraying were in accordance with the
instructions of the pesticide manufacturer, which were specified on the product label. The
spraying was stopped 3 days before harvesting. We called this group the chlorpyrifos
residue (CR) group. All samples were harvested 45 days after cultivation. Prior to each
NIR spectrum collection, samples were left to reach an equilibrium temperature of 25 ◦C in
a laboratory environment.

2.2. NIR Spectra Data Collection

In this study, we connected a commercial portable NIR spectrometer (MicroNIRTM

spectrometer) (Viavi Solutions Inc., Santa Rosa, CA, USA) to a small single-board computer
(DFR0419, LattePanda, Shanghai, China). The dispersing element used by this portable NIR
was a linear variable filter (LVF). A multitouch screen monitor was used as the assembly of
both the input (touch panel) and output (display) device. The internal heat of the portable
meter was ventilated with a small fan that was controlled. Figure 1 shows a schematic
of the portable NIR spectrometer. Each sample was placed between the window of the
MicroNIRTM spectrometer and the aluminum plate lid. The reason for using an aluminum
plate lid behind each sample was to return the signal to the spectrometer, specifically
to improve the signal-to-noise ratio [27]. The NIR spectra of the bok choi samples were
acquired in a wavelength range of 908–1676 nm in diffuse reflection mode with an interval
of 6.2 nm. Data acquisition was performed using MicroNIRTM Pro v2.2 software (Viavi
Solutions Inc., Santa Rosa, CA, USA). NIR spectral data were collected from 3 positions: the
head, middle, and tail on the leaves of each vegetable sample. The scanning was performed
in triplicate at each position, and we averaged the results. Therefore, we obtained data on
the NIR spectrum from both the CF and CR groups, totaling 360 (i.e., 180 spectra of CF and
180 spectra of CR) for training the models.
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2.3. Determination of the Real Value of Pesticide Residue

For the determination of pesticide residue in the bok choi, all samples were analyzed
for chlorpyrifos using the UV spectrophotometric method, following Harshit et al. [28],
with the required modifications. The purified chlorpyrifos (98.5% purity and 10 mg) was
weighed with an electrical balance and then transferred to a 100 mL volumetric flask. We
poured ethyl acetate (99.8% purity) into a 100 mL volumetric flask to create a 0.1 mg/mL
solvent for the stock solution of chlorpyrifos. Working standard solutions of different
concentrations were prepared (i.e., 0.2–3.0 µg/mL) by diluting the stock solution with
ethyl acetate. A UV spectrophotometer (GENESYS 10S UV-VIS, Thermo Fisher Scientific,
Waltham, MA, USA) and quartz cuvettes were used for absorbance measurements at 277 nm.
Each experiment was performed in three replicates. A calibration curve was created by
plotting the absorbance versus the concentration of the working standard solutions.

To extract the chlorpyrifos from the vegetables, we finely cut and chopped the leaves
of each vegetable from the NIR spectrum collection. Twenty grams of bok choi and 50 mL
of ethyl acetate were transferred to a conical flask and then blended by shaking. Sodium
bicarbonate (5 g) was placed in a conical flask, and the mixture was shaken for 5 min. After
that, we added magnesium sulfate (15 g) and shook the mixture on a mechanical flask
shaker for 1 h. The mixture was filtered with Whatman paper (No. 40), and the filtrate
was centrifuged at 1500 rpm for 5 min. The sample was evaporated at 80 ◦C up to 2 mL
with a rotary evaporator. Ethyl acetate and cyclohexane were mixed with a ratio of 1:1 to
obtain 20 mL of mixture. Finally, the solution was poured into a 10 mL volumetric flask,
and ethyl acetate was used for dilution up to the mark. The absorbance value of the sample
was measured with 5 replications following the same procedure described in the section
above. Chlorpyrifos residue was determined using a calibration curve and a regression
equation of the linearity graph.

2.4. Machine Learning Process
2.4.1. Data Preprocessing

Normally, NIR spectra are influenced by weather, environment, humidity, tempera-
ture, instrument, and human factors [29,30]. Many types of external interference and noise
might be reflected in the NIR spectra, which consist of 125 waveband points. Therefore,
the NIR spectra were preprocessed to solve these issues and improve the performance of
the predictive model before modeling [31–33]. NIR spectral data were preprocessed via
7 techniques: Savitzky–Golay smoothing (SGS), mean normalization (MN), standard nor-
mal variate and detrending (SNV&D), baseline collection (BC), multiplicative scatter correc-
tion (MSC), and Savitzky–Golay first (D1) and second (D2) derivatives [30,34,35]. We used
the un-preprocessed spectra (RS) and each preprocessed spectrum via the above techniques
to train the calibration models.

Principal component analysis (PCA) is a classical unsupervised learning algorithm
used for dimensionality reduction [36]. The original spectrum is transformed into a smaller
number of uncorrelated variables or principal components (PCs). In our study, PCA was
performed to reduce the dimensionality of the NIR spectral data, and new variables (i.e.,
the first 20 PCs) were applied to the input layer of the neural network for the hybrid prin-
cipal component–artificial neural network (PC-ANN). Software for multivariate analysis
(Unscrambler X Version 10.5.1, Camo, Norway) was used for spectral preprocessing and
the PCA procedure.

2.4.2. Modeling and Evaluation of Model Performance

After data preprocessing, we applied four machine learning (ML) algorithms for clas-
sification: partial least-squares discrimination analysis (PLS-DA), support vector machine
(SVM), artificial neural network (ANN), and PC-ANN to develop the calibration models.
Modeling was performed using the Python programming language with the Scikit-learn
(Version 1.0.2) packages [37]. For PC-ANN, the first 20 principal component scores (PCs)
were used as the input layer of the neural network instead of the original NIR spectra.
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The optimal number of PCs was determined with a 5-fold cross-validation of PC-ANN
in which the error of classification did not increase after adding one more PCs. Using
PCs as the input nodes for the ANN reduced both training time and redundancy in the
original NIR spectra. In recent years, PC-ANN has been successful in modeling NIR
spectroscopy [38–42]. The samples were split into 288 for training (80%) and 72 for testing
(20%). The hyperparameters of each ML method were defined to train the calibration
models. We found the optimal hyperparameters by performing 5-fold cross-validation
experiments on the training dataset. The effective models were selected when the appro-
priate model provided the best maximized accuracy for the classification of CF and CR.
Optimization of the hyperparameters was performed using the GridSearchCV command of
the Scikit-learn module [37]. Table 2 presents the predefined parameters for performing the
GridSearchCV of PLS-DA, SVM, ANN, and PC-ANN. The performance of the classification
models was evaluated by assessing the accuracy, precision, recall, and F1-score, which we
calculated using Equations (1)–(4).

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 − score = 2 × precision × recall
precision + recall

(4)

Table 2. Predefined parameters for performing GridSearchCV command on 5-fold cross validation.

Model Hyperparameter Tuning Range

PLS-DA n_components 1–20

SVM
kernel
degree
gamma

linear, poly, rbf, sigmoid
2–7
0.001–0.09

ANN

activation
hidden layer sizes
learning rate
learning rate initial

identity, logistic, tanh, relu
100, 110, 120, (100, 100), (110, 110), (120, 120), (100, 110, 100), (110, 120, 110)
constant, invscaling, adaptive
0.001, 0.01, 0.1

PC-ANN
(PCs = 20)

activation
hidden layer sizes
learning rate
learning rate initial

identity, logistic, tanh, relu
10, 11, 12, (10, 10), (11, 11), (12, 12), (10, 11, 10), (11, 12, 11)
constant, invscaling, adaptive
0.001, 0.01, 0.1

Here, TP and TN represent the numbers of true positives and negatives, respectively;
FP and FN are the numbers of false positives and negatives, respectively. In machine
learning, accuracy, precision, recall, and F1-score are the common metrics used to evaluate
the performance of classification models, especially for binary problems [43,44]. These
parameters have long been used in the evaluation of scientific models and engineering
applications [45] and in the evaluation of the performance of NIR spectroscopy combined
with machine learning [46–49]. Accuracy is the ratio between the correctly classified
samples and the total number of samples in the evaluated dataset [50]. Precision is the
probability of the correct detection of positive values, and recall indicates the ability to
discriminate between classes [44]. The F1-score is the harmonic mean of precision and
recall; thus, the F1-score maintains a balance between precision and recall for classifiers [44].
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2.4.3. Validation of Model with Unknown Sample

To evaluate the performance of the model in the real world and in an overfitting test, we
used the calibrated models to classify unknown samples of bok choi. A total of 40 unknown
samples were purchased from local markets in Bangkok province (Thailand), and the NIR
spectra of these samples were collected using the portable NIR spectrometer. Then, the
pesticide residue levels on the vegetables were analyzed using the UV spectrophotometric
method. The candidate models from the four algorithms were applied to predict the
pesticide residue on the unknown samples, and the prediction performance was evaluated
in terms of accuracy, precision, recall, and F1-score.

3. Results and Discussion
3.1. Spectra of Samples

The average NIR spectra from the CF and CR groups are shown in Figure 2a. The
spectra of both sample groups had a similar shape but differed in absorbance intensity
across the spectral region. A total of 125 waveband points were acquired in one wavelength
from 908 to 1676 nm. The wavebands at 970 and 1450 nm are the second and first overtones
of O-H stretching of water, respectively; the absorption observed at 1152 nm is the C-H
stretching of the second overtone of CH3 [51,52]. Figure 2b shows the spectra processed
by the Savitzky–Golay second derivative, with a five-point window and second-order
polynomial. New absorbance peaks were revealed at 1410 nm in the second-derivative
spectra, which were hidden in the raw spectra. The apparent peak at 1410 nm corresponded
to the combination of the C-H stretching of methylene [53,54].
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3.2. Results of Real Chlorpyrifos Residue Value

The statistical results for chlorpyrifos residue on samples from analysis with the UV
spectrometric method are shown in Table 3. For the calibration stages, chlorpyrifos residues
were not detected on the CF group samples. For the CR group, the concentration of chlor-
pyrifos was between 0.011 and 2.184 mg/kg, and the mean was 1.120 ± 0.532 mg/kg. We
applied the developed model to 40 unknown samples from local markets and supermarkets
and detected the absence (CF group) and presence (CR group) of chlorpyrifos residues on
15 and 25 samples, respectively. For the CR group, the concentration of chlorpyrifos was
between 0.022 and 1.596 mg/kg, and the mean was 1.25 ± 0.37 mg/kg. The chlorpyrifos
residues on some of the samples from the local markets and supermarkets were above the
MRL of the National Food Safety Standard (GB 2763-2016) (0.1 mg/kg) [7].
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Table 3. Concentration of chlorpyrifos residues on samples for calibration and prediction stages.

Sample Sample Group Max (mg/kg) Min (mg/kg) Mean (mg/kg) SD (mg/kg)

Calibration
Chlorpyrifos-free (CF) (n = 60) n.d. * n.d. n.d. n.d.

Chlorpyrifos residues (CR) (n = 60) 2.184 0.011 1.120 0.532

Unknown
Chlorpyrifos-free (CF) (n = 15) n.d. n.d. n.d. n.d.

Chlorpyrifos residues (CR) (n = 25) 1.596 0.022 1.385 0.410

* Not detected.

3.3. Principal Componant Analysis

We employed PCA to extract the hidden information inside the NIR spectrum and
reduce the dimensionality of the spectral data from 125 to 20. The first 20 PCs accounted for
99.99% of the total variance in the NIR spectra. Figure 3 shows the PCA results for the CF
and CR groups. Figure 3a shows plots of the first two PCs, where PC-1 and PC-2 explain
98.4% and 1.5% of the total variance in the NIR spectra, respectively. The distribution of
the CF group significantly overlapped that of the CR group, which created difficulties in
distinguishing the CR and CF groups with PCA. This phenomenon has occurred in many
previous studies, although high-performance NIR models with machine learning algorithms
have been developed to address this issue [55,56]. Therefore, more PCs were necessary for
training the PC-ANN [55]. Figure 3b displays a line plot of the explained variance rates
and the cumulative explained variance rates of the first 20 PCs. The explained variance of
the 20 PCs was approximately 0.00004%, and the cumulative explained variance rate was
99.99931%. This indicated that these 20 PCs covered all the NIR spectral information, and
the PC-ANN model could be developed with the first 20 PCs.
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3.4. Classification of Vegetables with Machine Learning

Table 4 shows the results of the CF and CR classification from the calibration stage of
the samples using several machine learning algorithms. The F1-score of the classification
of the presence or absence of pesticides in the samples using the PLS-DA algorithm was
between 0.94 and 0.99. The most accurate identification using the PLS-DA algorithm
with various preprocessing methods achieved an F1-score of 0.99 in the training and
testing stages. We obtained a similar value by applying raw data and baseline correction
preprocessing with the PLS-DA algorithm. The results of this study are in line with those
of Jamshidi, Mohajerani, and Jamshidi [21], who reported that the PLS-DA algorithm
performed well in measuring and detecting diazinon residues in cucumbers using Vis/NIR
in the range of 450–1000 nm. Employing the SVM algorithm, the best F1-score was obtained
when using raw spectral data rather than preprocessing (1.0 at the training and testing
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stages). The SVM algorithm also correctly predicted three classes of chlorpyrifos residue
contents on filter paper (<100, 100–300, and >300 mg/kg) with 89.29% accuracy [57].
The ANN algorithm with the full wavelength (125 nm) produced the best F1-score by
preprocessing the first derivative: 0.83 for the training stage and 0.92 for the testing stage.
Finally, the application of the ANN algorithm that used 20 PC inputs produced the best
F1-score (100%) without preprocessing in the training and testing stages. The optimal
hyperparameters used for machine learning are presented in Table 5.

Table 4. Comparison of results among classification models at the calibration stage.

Model Preprocessing
Training Testing

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

PLS-DA

RS 0.99 0.98 1.00 0.99 0.99 1.00 0.97 0.99
SGS 0.97 0.97 0.97 0.97 0.97 1.00 0.95 0.97
MN 1.00 0.99 1.00 1.00 0.97 1.00 0.95 0.97

SNV&D 0.99 0.99 1.00 0.99 0.97 1.00 0.95 0.97
BC 0.99 0.98 1.00 0.99 0.99 1.00 0.97 0.99

MSC 0.99 0.99 1.00 0.99 0.97 1.00 0.95 0.97
D1 0.99 0.99 0.99 0.99 0.96 0.97 0.95 0.96
D2 0.99 0.99 0.99 0.99 0.93 0.90 0.97 0.94

SVM

RS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SGS 0.99 1.00 0.99 0.99 0.99 1.00 0.97 0.99
MN 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.97

SNV&D 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.97
BC 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00

MSC 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.97
D1 0.51 0.00 0.00 0.00 0.47 0.00 0.00 0.00
D2 0.51 0.00 0.00 0.00 0.47 0.00 0.00 0.00

ANN

RS 0.73 0.88 0.52 0.65 0.81 1.00 0.63 0.77
SGS 0.61 0.63 0.50 0.56 0.61 0.71 0.45 0.55
MN 0.54 1.00 0.07 0.13 0.50 1.00 0.05 0.10

SNV&D 0.67 1.00 0.33 0.50 0.64 1.00 0.32 0.48
BC 0.61 0.60 0.65 0.62 0.71 0.73 0.71 0.72

MSC 0.69 1.00 0.30 0.46 0.66 1.00 0.24 0.46
D1 0.84 0.90 0.77 0.83 0.92 0.97 0.87 0.92
D2 0.87 0.81 0.96 0.88 0.88 0.85 0.96 0.88

PC-ANN
(PCs = 20)

RS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SGS 0.98 0.98 0.97 0.98 0.96 0.97 0.97 0.96
MN 0.99 0.99 0.99 0.99 0.97 0.94 1.00 0.97

SNV&D 0.97 0.95 0.99 0.97 0.94 0.89 1.00 0.94
BC 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.97

MSC 0.99 0.99 0.99 0.99 0.97 0.94 1.00 0.97
D1 0.51 0.51 1.00 0.67 0.47 0.47 1.00 0.64
D2 0.49 0.00 0.00 0.00 0.53 0.00 0.00 0.00

RS: raw spectral, SGS: Savitzky–Golay smoothing, MN: mean normalized, SNV&D: standard normal variate + 1st
derivative, BC: baseline correction, MSC: multiplicative scattering correction, D1: 1st derivative, D2: 2nd deriva-
tive, PLS-DA: partial least-squares discriminant analysis, SVM: support vector machine, ANN: artificial neural
network, PC: principal component.

The results showed that the most accurate machine learning algorithms were SVM
and PC-ANN using raw spectral data to identify pesticide residues on bok choi. The
classification of the presence or absence of pesticides on samples using the SVM and PC-
ANN algorithms achieved 100% accuracy, precision, and recall in the training and testing
stages. Thus, the integration of a portable NIR spectrometer with a machine learning
approach (SVM or PC-ANN) could be effectively used to classify the absence or presence
of pesticide residues on bok choi. In this study, the SVM algorithms and the PC-ANN
classifier could accurately discriminate pesticide residue down to a minimum concentration
of 0.01 mg/L.
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Table 5. Optimal hyperparameters used for machine learning.

Model Preprocessing Hyperparameter

PLS-DA RS n_components = 11

SVM RS kernel = poly, degree = 6, gamma = 1

ANN D1 activation = identity, hidden layer sizes = 100, learning rate = invscaling, learning rate initial = 0.001

PC-ANN
(PCs = 20) RS activation = relu, hidden layer sizes = (11, 11), learning rate = adaptive, learning rate initial = 0.1

3.5. X-Loading and Regression Coefficient

Figure 4 shows the X-loading plot of the first three PCs from PCA and the regression
coefficient plot from the best PLS-DA model. The peaks and valleys with high absolute
values of the X-loading weights and regression coefficients represent the vibration of the
band at a particular wavelength that influenced the classification of the presence or absence
of pesticides in bok choi. High X-loading peaks were obtained at 1152, 1360, 1410, 1450,
1471, and 1481 nm (Figure 4a). Table 6 shows the corresponding absorption bands from the
X-loading and regression coefficients. These peaks also occurred in the regression coeffi-
cient plot (Figure 4b). We observed high regression coefficient peaks at 970, 1152, 1360, 1410,
1450, 1471, 1481, 1540, and 1570 nm, which corresponded to the vibration bands of H2O
(970 and 1450 nm), CH3 (1152, 1360, and 1410 nm), CONHR (1471 nm), CONH2 (1481 nm),
C=H (1533 nm), and -CONH- (1570 nm) [51]. The wavelength of 1410 nm correlates with
the combination of a single bond of the CH stretching of methylene [53,54]. In addition,
1360 and 1471 nm are associated with methyl and NH primary amides, respectively. Ac-
cording to Rodriguez et al. (2020), these wavelengths (1360, 1410, 1450, 1471, 1540, and
1570 nm) contribute to the detection of chlorpyrifos-methyl [54]. In addition, Sánchez et al.
(2010) suggested that absorption in the 1360 and 1480 nm wavelength regions correlates
with CH and NH absorption, both of which can indicate the presence or absence of pesti-
cide residues of organophosphates, organochlorides, carbamates, pyrethroids, pyrimidine
compounds, dicarboximides, thiazoles, and natural residues on peppers [23].
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Table 6. Corresponding absorption bands from X-loading and regression coefficients.

Wavelength (nm) Bond Vibration/Functional Group (Structure) Reference

970 O-H str. second overtone (H2O) [51,52]
1152 C-H str. second overtone (CH3) [51,52]
1360 2 × C-H str. + C-H def. (CH3) [51]
1410 2 × C-H str. + C-H def. (CH3) [51,53,54]
1450 O-H str. first overtone (H2O) [51,52]
1471 N-H str. first overtone (CONHR) [51]
1481 N-H str. first overtone (CONH2) [51]
1533 C-H str. first overtone (C=H) [51]
1570 N-H str. first overtone (-CONH-) [51]

3.6. Validation of Model with Unknown Samples

Table 7 presents the results of the validation of the model on unknown samples. The
PLS-DA, SVM, and PC-ANN models performed better than the ANN model in detecting the
presence or absence of pesticides in bok choi. The PLS-DA, SVM, and PC-ANN algorithms
showed satisfactory performance, with an accuracy rate of 100%. In addition, the F1-score,
representing the average harmonic of precision and recall for the three models (PLS-DA,
SVM, and PC-ANN), was superior (100%). The qualitative results of the independent
validation testing obtained in this study showed the ability of this method to differentiate
samples with different levels of pesticide residue, from 0.02 to 1.44 mg/L. Accordingly,
these results prove that this model has robustness that has been scientifically shown to be
directly applicable at the industrial level because of the satisfactory results.

Table 7. Results of model validation on unknown sample.

Model Processing Spectra
Independent Validation

Accuracy Precision Recall F1-Score

PLS-DA RS 1.0 1.0 1.0 1.0
SVM RS 1.0 1.0 1.0 1.0
ANN D1 0.38 0.38 1.0 0.5

PC-ANN
(PCs = 20) RS 1.0 1.0 1.0 1.0

In contrast, the performance of the ANN algorithm generated from the full spectrum
was inferior. When using an independent dataset, it could only detect the presence or
absence of pesticide residue in 38% of the sample. The performance of this ANN model
in distinguishing positive samples was poor, but its sensitivity was high (100%), so the
F1-score was 50%. This showed that the ANN model with a full spectrum was unable
to satisfactorily distinguish false positives and false negatives in the sample data. This
may have been due to overfitting in the model calibration stage, which caused inconsistent
model performance when testing on an independent dataset. Janik et al. [58] reported
a similar finding when using full-spectrum Vis/NIR to predict the total anthocyanin
concentration in red grape homogenates. The ANN algorithm that uses the full spectrum
tends to experience overfitting because it uses excessive input scores as inputs.

4. Conclusions

We investigated the detection of a residual pesticide (chlorpyrifos) on bok choi (Brassica
rapa subsp. Chinensis) using a portable NIR spectrometer with a machine learning approach.
The results showed that the combination of NIR spectroscopy and machine learning is
useful for effectively classifying the absence or presence of pesticide residues. All machine
learning algorithms (i.e., PLS-DA, SVM, ANN, and PC-ANN) achieved an accuracy of
between 0.92 and 1.00 in the calibration stage. For the in-field operation of the model,
we evaluated the performance of the calibration models of the PLS-DA, SVM, and PC-
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ANN algorithms on an unknown dataset using accuracy, precision, recall, and F1-scores,
with each reaching 100%. Finally, we recommend using the PLS-DA, SVM, and PC-ANN
classification algorithms with the full spectrum and raw data to detect the presence or
absence of chlorpyrifos residues on bok choi before consumption.
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