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Abstract: In a previous study, we demonstrated that the hydro extract of Mao Jian Green Tea (MJGT)
promotes gastrointestinal motility. In this study, the effect of MJGT ethanol extract (MJGT_EE) in
treating irritable bowel syndrome with constipation (IBS-C) in a rat model constructed via maternal
separation combined with an ice water stimulation was investigated. First, a successful model
construction was confirmed through the determination of the fecal water content (FWC) and the
smallest colorectal distension (CRD) volume. Then, the overall regulatory effects of MJGT_EE on
the gastrointestinal tract were preliminarily evaluated through gastric emptying and small intestinal
propulsion tests. Our findings indicated that MJGT_EE significantly increased FWC (p < 0.01) and
the smallest CRD volume (p < 0.05) and promoted gastric emptying and small intestinal propulsion
(p < 0.01). Furthermore, mechanistically, MJGT_EE reduced intestinal sensitivity by regulating
the expression of proteins related to the serotonin (5-hydroxytryptamine; 5-HT) pathway. More
specifically, it decreased tryptophan hydroxylase (TPH) expression (p < 0.05) and increased serotonin
transporter (SERT) expression (p < 0.05), thereby decreasing 5-HT secretion (p < 0.01), activating the
calmodulin (CaM)/myosin light chain kinase (MLCK) pathway, and increasing 5-HT4 receptor (5-
HT4R) expression (p < 0.05). Moreover, MJGT_EE enhanced the diversity of gut microbiota, increased
the proportion of beneficial bacteria, and regulated the number of 5-HT-related bacteria. Flavonoids
may play the role of being active ingredients in MJGT_EE. These findings suggest that MJGT_EE
could serve as a potential therapeutic pathway for IBS-C.

Keywords: Mao Jian Green Tea; ethanol extract; gastrointestinal motility; 5-hydroxytryptamine; gut
microbiota; flavonoids

1. Introduction

Irritable bowel syndrome (IBS) is a common gastrointestinal disease associated with
changes in gastrointestinal motility, secretion, and visceral sensation. It manifests clinically
mainly as abdominal pain accompanied by intermittent or persistent irregular bowel move-
ments, as well as abnormalities in stool texture and shape [1–3]. Several basic and clinical
studies have investigated the etiology of IBS from different perspectives, including the ef-
fects of genetic factors, low-grade mucosal inflammation and immune activation following
severe gastrointestinal infection, increased intestinal mucosal permeability, changes in gut
microbiota, abnormalities in bile salt metabolism, allergies to certain dietary components,
abnormalities in neurotransmitter pathways, and changes in brain function [4–8]. Although
the pathogenesis of IBS has not yet been fully elucidated, researchers speculate that hyper-
sensitivity and alteration in visceral perception as well as gastrointestinal dysmotility form
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the main pathophysiological basis of the disorder [9]. IBS can be divided into four subtypes
according to the Rome IV criteria: IBS with constipation (IBS-C), IBS with predominant
diarrhea (IBS-D), IBS with mixed bowel habits (IBS-M), and IBS unclassified (IBS-U) [10,11].
Approximately one third of all IBS cases are of the IBS-C subtype [12].

Medical treatments for IBS often yield unsatisfactory results, thereby imposing a heavy
disease burden on patients [13]. For IBS-D, most clinicians recommend the use of serotonin
type 3 receptor (5-HT3R) antagonists to block the excessive action of 5-HT on 5HT3R
and reduce intestinal motility. Common medications used for IBS-C treatment include
the serotonin type 4 receptor (5-HT4R) agonists, prucalopride and tegaserod [14], the
type 2 chloride channel activator, lubiprostone [15], and the guanylate cyclase C agonists,
linaclotide [16,17] and plecanatide [18], which can promote intestinal peristalsis. In effect,
tegaserod has already been approved for use by the U.S. Food and Drug Administration
for the treatment of IBS-C. However, there are age-related limitations and contraindications
to the use of lubiprostone and tegaserod, with the latter only being approved for use in a
limited IBS-C patient population (women aged < 65 years without cardiovascular disease
risk-related contraindications) [19]. Only a few studies have investigated the effects of
lubiprostone in Asian patients; therefore, its use in the treatment of IBS-C has not been
recommended in South Korea and Japan [20,21]. Given the scarcity of IBS-specific drugs,
the treatment of the disease often requires the introduction of other adjuvant strategies,
such as good lifestyle habits (eating regular meals and increasing dietary fiber intake),
traditional Chinese medications or acupuncture [22–24], or acupoint catgut embedding [25]
that contribute to improving the condition of the patient.

During history, herbal medicines have also been developed by several countries and
regions with specialties to deal with various diseases. Some of them can treat or relieve
gastrointestinal disorders. For example, the herbal therapy STW-5 (Iberogast®) including
angelica roots (Angelicae radix), chamomile flowers (Matricariae flos), caraway fruit (Carvi
fructus), St. Mary’s thistle fruit (Cardui mariae fructus), balsam leaves (Melissae folium),
peppermint leaves (Menthae x piperitae), greater celandine (Chelidonii herba), and licorice
root (Liquiritiae radix) has been in clinical use in German-speaking countries for decades
and is sold as an over-the-counter medicine in Europe. It acts on 5-HT4, 5-HT3, muscarinic
M3, and opioid receptors to relieve intestinal spasm and reduce gastric acid secretion [26].
There is much evidence that peppermint oil reduces visceral pain and modulates gastroin-
testinal motility via TRPM8 and/or TRPA1 receptors [27]. Curcumin, contained in turmeric
(Curcuma longa), treats abdominal pain as well as other gastrointestinal symptoms present
in IBS [28]. Atractylodes lanceolata oil was able to ameliorate the rat IBS-D by inhibiting the
SCF/c-kit pathway, thereby reducing inflammation and protecting the intestinal barrier
from damage via the MLCK/MLC2 pathway [29].

Dracocephalum rupestre Hance, called Mao Jian Cao (MJC) in Chinese, is a perennial
herb of the Dracocephalum genus and the Lamiaceae family that is native to the Northern
Shanxi Province of China. MJC is a traditional Chinese medicine, with the effect of relieving
headaches, soothing sore throats, subsiding coughs and preventing icterohepatitis [30].
MJC is rich in flavonoids, among which dihydroflavonoids and their corresponding gly-
cosides such as luteolin, luteolin-7-O-β-D glucoside, eriodictyol, and eriodictyol-7-O-β-D
glucoside, and terpenoids such as β-sitosterol, betulinol, and betulinic acid, are repre-
sentative components [31]. Interestingly, the herbal tea made from its leaves as a daily
drink to aid digestion is a more popular way. This is because people in these regions
often consume the slower-digesting coarse grains. From June ending to September each
year, fresh MJC leaves are harvested by locals for making Mao Jian tea (MJT), including
MJGT (green tee) or MJBT (black tea). The making method could lead to the production
of different metabolites [32]. For example, 130, 136, and 95 compounds were detected in
the MJC, MJGT, and MJBT, respectively. There were 28 differential metabolites in MJGT
compared to MJC; MJBT had 29. The MJGT-making method led to the significant intensity
of some flavonoids such as apigenin, eriodictyol, luteolin, and naringenin, whereas the
corresponding glycosides of eriodictyol and luteolin decreased. Interestingly, a similar
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trend was observed in MJBT, except that the content of some flavonoid glycosides decreased
sharply, including the 7-O-glucoside of the four flavonoids mentioned above. Common
green tea is made from the steamed and dried leaves of the Camella sinesis plant. The main
active ingredients include tea polyphenols and tea polysaccharides, which have anticancer,
antioxidant, neuroprotective, and hypoglycemic pharmacological activities [33]. Green tea
contains caffeine (~3%) [34], which enhances the autonomic activity of the vagus nerve,
releases acetylcholine, and promotes gastrointestinal motility [35], but such ingredients can
also cause euphoria and insomnia after consumption. The caffeine content of MJC is very
low at 0.495%, so it does not affect sleep after consumption [36]. In addition, caffeine is
one of the main components that form the bitter taste of the tea [37]; therefore, MJC has a
lighter taste compared to other common green teas.

Flavonoids have multiple effects on the gastrointestinal tract, including (1) protecting
the intestinal epithelium from drug damage and food toxins; (2) regulating the activity of
enzymes involved in lipid and carbohydrate absorption; (3) maintaining the intestines of
the intestinal barrier; (4) regulating the secretion of intestinal hormones; (5) modulating
the gastrointestinal immune system; (6) exerting potential anti-colorectal cancer activity;
and (7) shaping the composition of the bacterial flora [38]. For example, quercetin inhibits
gastrointestinal toxicity induced by diclofenac and aggravated by ranitidine, improves
gastrointestinal bleeding, intestinal permeability, and restores intraluminal pH in rats [39].
The ability of polyphenols in oranges and apples to alter the microbiota of systemic lupus
erythematosus (SLE) patients, with their flavonoids increasing the levels of lactobacilli
and dihydroflavonols increasing the levels of bifidobacteria, suggests the possibility of
correcting the ecological dysbiosis associated with SLE by altering the flavonoid diet [40].
Apigenin showed a dose-dependent relaxation effect on acetylcholine (ACh)-induced
muscle strips in the concentration range of 0.1 to 100 µmol/L. Luteolin and quercetin
showed a similar performance to apigenin with the exception that, at low doses (0.001–
0.1 µmol/L), they were able to further increase the induction effect of ACh [41]. Previously,
we demonstrated that MJGT promotes small intestinal propulsion and gastric emptying in
normal rats and improves gastrointestinal motility by increasing the abundance of beneficial
bacteria [42]. Flavonoids constituted the main active ingredients in MJGT. Considering
the easier concentration and higher efficiency for the extraction of flavonoids without the
concerns of impacts on toxicity and biodegradability [43], we chose ethanol as the extraction
solvent in the present study. A rat model of IBS-C was treated with the ethanolic extract
of MJGT (MJGT_EE), and the response of the key enzymes and downstream targets of
the serotonin (5-hydroxytryptamine; 5-HT) biosynthesis pathway, which is an essential
signaling pathway in the gastrointestinal tract, was investigated.

2. Materials and Methods
2.1. Sample Collection

MJGT was purchased from Jiufeng Cooperative (Ningwu County, Shanxi Province,
China) in December 2018, and samples were conserved at the Chinese Medicine Resources
and Sciences Laboratory of Shanxi Agricultural University (JF18001-2).

2.2. Preparation of MJGT_EE

MJGT (200 g) was subjected to heat reflux extraction in 4 L of 70% ethanol for 60 min
at 70 ◦C followed by vacuum concentration for ethanol recovery; then, the ethanol extract
obtained was dried and stored at 4 ◦C until use.

2.3. Animal Grouping, Construction of the IBS-C Model, and Sample Collection

Six pregnant specific-pathogen-free (SPF) rats were purchased from Si Pei Fu Biotech-
nology Co., Ltd. (Beijing, China). The rats were provided clean water, fed daily, and
reared under a 12-h light–dark cycle. At 7 days of age, 24 offspring rats were randomly
selected and subjected to 3 h of maternal separation from 9 am to 12 noon daily for 14 days.
Subsequently, the rats were assigned to three groups: the model (MG), positive drug (MSP)
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(1 mg/kg of mosapride), and 70% MJGT ethanol extract (MJGT_EE) (17 mg/mL, deter-
mined based on the daily dose for humans, with 0.1% dimethyl sulfoxide added in each
group for solubilization) groups. Eight rats that were not subjected to maternal separation
were assigned to the negative control (NC) group (saline). With the exception of animals
in the NC group, animals in all the other groups were administered ice water at 0–4 ◦C
(1.5 mL/rat) via gavage for 14 days. A fecal water content (FWC) measurement and intesti-
nal sensitivity testing were performed to confirm successful IBS-C modeling. Subsequently,
drug administration was performed in the different groups for 30 days via gavage.

Next, rats were selected from each group and sacrificed. Then, two 5× 5-mm proximal
colonic tissue specimens were collected from each sacrificed rat and washed thrice with
saline for intestinal content removal. One specimen was fixed in 4% paraformaldehyde
for immunohistochemical analysis, and the other was stored at −80 ◦C for western blot
analysis. In addition, the cecal contents of the sacrificed rats were collected in 1 mL sterile
centrifuge tubes and immediately stored at −80 ◦C. All specimens were transported on dry
ice prior to testing.

All animal experiments were approved by the laboratory animal ethics committee of
Shanxi Agricultural University (Taigu, China) (Approval No.: SXAU-EAW-2018R.0406001)
and performed in accordance with the regulations and guidance of this committee.

2.4. Measurement of FWC

On days 14 and 28 of the IBS-C model construction and drug administration periods,
respectively, the rats were separated with each rat reared individually, and the amount of
feces passed out within 24 h by the rats in each group was recorded for FWC calculation.
Then, the wet weight of the feces was measured using an electronic balance; next, the feces
was dried at 105 ◦C to a constant weight and the dry weight of the feces was recorded.
FWC was calculated using Equation (1).

water content% = [wet weight of feces (g) − dried weight of feces (g)]/wet weight of feces (g) × 100% (1)

2.5. Measurement of Intestinal Sensitivity

The smallest threshold colorectal distention (CRD) volume was also measured on days
14 and 28 of the IBS-C model construction and drug administration periods, respectively.
Each rat was anesthetized using a small amount of diethyl ether and placed in a rat holder.
Then, a glycerol-lubricated urinary catheter with an attached balloon was inserted into
the colorectum of each rat and taped to the base of the tail, with the end of the balloon
positioned approximately 1 cm away from the anus. When the rats regained consciousness
and were fully acclimatized to the environment for 30 min, normal saline at 26–28 ◦C
was injected into the balloon, and the smallest injection volume that induced CRD in the
rats was recorded. This process was repeated thrice at 15-min intervals, and the smallest
threshold volume was calculated by taking the average of the three volumes.

2.6. Effects of MJGT_EE on Gastric Emptying and Small Intestinal Propulsion

After continuous gavage for 29 days, the rats were starved for 24 h but allowed access
to water. A semi-solid paste was prepared following a slightly modified version of the
method described by [44]; first, 10 g of sodium carboxymethyl cellulose was dissolved in
250 mL of distilled water. Then, 16 g of milk powder, 8 g of glucose, 8 g of starch, and 2 g
of activated charcoal powder were added to this solution, and the resulting mixture was
uniformly mixed to obtain 300 mL of a black semi-solid paste. This paste was stored in
a refrigerator and warmed to a temperature of 20 ◦C before use. At the end of the drug
administration period (day 30), 2 mL of the semi-solid paste was measured (Mp: mass of
paste) and administered to each rat by gavage. Forty minutes following administration, the
animals were anesthetized using pentobarbital sodium (40 mg/kg) and sacrificed. Then,
the total mass of the stomach (Mfs), the net mass of the stomach (Mns), the total distance
from the pylorus to the ileocecal junction (Lt), and the distance from the pylorus to the
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front edge of the black semi-solid paste (Lc) were measured. The gastric emptying and
small intestinal propulsion rates were calculated using Equations (2) and (3), respectively,
as represented below:

Gastric emptying rate (%) = [1 − (Mfs −Mns)/Mp] × 100% (2)

Small intestinal propulsion rate (%) = (Lc/Lt) × 100% (3)

2.7. Hematoxylin and Eosin (H&E) Staining and Immunohistochemistry

For H&E staining, colonic tissues were fixed in 10% neutral buffered formalin solution,
sectioned, deparaffinized at 65 ◦C, rehydrated, and stained using an H&E staining kit
(Solarbio, G1121).

For immunohistochemical analyses, colonic tissue specimens were sectioned, deparaf-
finized, and rehydrated. High-temperature antigen retrieval was performed on the tissue
specimens using trisodium citrate, and endogenous peroxidase activity and non-specific
binding sites in the specimens were blocked with H2O2 and goat serum, respectively
(Zhongshan Jinqiao ZLI-9022). Anti-5-HT antibodies (primary antibodies; 1:1000) were
added to the tissue sections and incubated at 4 ◦C for 12 h. Next, goat anti-rabbit IgGs
(secondary antibodies; 1:100) and the peroxidase-antiperoxidase complex (PAP; 1:100) were
successively added to the samples and incubated for 1 h at 37 ◦C each time; staining was
performed using diaminobenzidine (DAB)/H2O2. The sections were adequately rinsed
with 0.01 mol/L PBS (Na2HPO4 8 mM, NaCl 136 mM, KH2PO4 2 mM, KCL 2.6 mM, pH:
7.4) in between the steps described above. After staining, the sections were mounted
onto gel-coated slides, dehydrated using graded alcohol, cleared in xylene, mounted, and
observed under an optical microscope (Olympus BX-51 biological microscope, white light,
Japan, Olympus). Five high-power (200×) fields of view were randomly selected for the
calculation of the average optical density (AOD, IOD/Area) using Image-Pro Plus 6.0
(Media Cybernetics, Silver Spring, MD, USA).

2.8. Western Blot Analysis

For each rat, 50 mg of colonic tissue was precisely weighed and placed in an Eppen-
dorf tube. First, an appropriate amount of protease inhibitor-containing cell lysis buffer
was added to the tissue and the mixture was homogenized using an electric homoge-
nizer. Next, the sample loading buffer was added to the homogenate, and the mixture
was boiled for 5 min; then, the resulting mixture was subjected to sodium dodecyl sul-
fate polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins were transferred
onto a polyvinylidene fluoride (PVDF) membrane and blocked with 5% skimmed milk
powder. Second, primary antibodies against 5-hydroxytryptamine receptor 3 (5-HT3R;
bs-2126R), 5-hydroxytryptamine 4 receptor (5-HT4R; bs-12054R), the serotonin transporter
(SERT, bs-1893R), tryptophan hydroxylase 1 (TPH1; bs-1215R), tryptophan hydroxylase
2 (TPH2; bs-8729R), calmodulin (CaM; bs-3666R), or myosin light chain kinase (MLCK)
(Bioss Biotechnology Co., Ltd., Beijing, China) were added (1:1000) to the membrane and
incubated at 4 ◦C for 12 h. Next, the membrane was washed thrice with TBST buffer
(T1081, Solarbio Science & Technology Co., Ltd., Beijing, China); then, secondary antibodies
(HRP-conjugated Affinipure Goat Anti-Mouse IgG (H+L) or HRP-conjugated Affinipure
Goat Anti-Rabbit IgGs (H+L); 1:5000) were added to the membrane and incubated at room
temperature for 1 h. Finally, at the end of the incubation, the membrane was again washed
thrice with the TBST buffer, developed, exposed in a dark room, and imaged using a
ChemiDoc MP Imaging System (Bio-Rad Laboratories Inc., Hercules, CA, USA). GAPDH
or α-tubulin was used as the housekeeping protein.

2.9. 16S rDNA Sequencing

DNA extraction: Total microbiota DNA was extracted from rat fecal samples using the
E.Z.N.A.® soil DNA kit (Omega Bio-Tek, Norcross, GA, USA) following the instructions of
the manufacturer. The quality of the extracted DNA was evaluated via 1% agarose gel elec-
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trophoresis, and DNA concentration and purity were measured using the NanoDrop2000
(Thermo Fisher Scientific, Waltham, MA, USA) device.

16S rRNA gene amplification and sequencing through the polymerase chain reaction
(PCR): The V3–V4 variable regions of the 16S rRNA gene were subjected to PCR (ABI
GeneAmp® 9700, ABI, Los Angeles, CA, USA) using the 338F (5′-ACTCCTACGGGAGGCA
GCAG-3′) and 806R (5′GGACTACHVGGGTWTCTAAT-3′) primer sequences under the fol-
lowing cycling conditions: initial denaturation at 95 ◦C for 3 min, 27 cycles of denaturation
at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s, extension at 72 ◦C for 30 s, stable extension
at 72 ◦C for 10 min, and storage at 4 ◦C. The PCR reaction system was constituted of 4 µL
of 5×TransStart FastPfu buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of forward primer (5 µM),
0.8 µL of reverse primer (5 µM), 0.4 µL of TransStart FastPfu DNA polymerase, 10 ng of
template DNA, and ddH2O to make up a final volume of 20 µL. PCR was performed in
triplicate for each sample.

Illumina Miseq sequencing: DNA fragments were recovered from a 2% agarose gel
after mixing, purified using the AxyPrep DNA Gel Extraction Kit (Axygen, San Francisco,
CA, USA), detected using 2% agarose gel electrophoresis, and quantified using a Quan-
tus™ Fluorometer (Promega, Madison, WI, USA). Sequencing libraries were constructed
using the NEXTFLEX Rapid DNA-Seq Kit (Bioo Scientific, Austin, TX, USA) according to
the following steps: (1) adaptor ligation; (2) magnetic bead screening for the removal of
self-ligated adaptors; (3) library template enrichment via PCR amplification; (4) magnetic
bead recovery of PCR products to obtain the final sequencing libraries. Sequencing was
ultimately performed on the Illumina MiSeq PE300 platform (Majorbio Bio-Pharm Tech-
nology Co., Ltd., Shanghai, China), and raw sequencing data were uploaded to the NCBI
Sequence Read Archive (SRA) (Accession No.: PRJNA906308).

Data processing: Reads were filtered by removing bases with tail quality values of
less than 20 using a 50-bp window. If the average quality value within the window was
less than 20, bases were trimmed from the back end starting from the window. Reads
with lengths < 50 bp after quality control were filtered and those containing N bases were
removed. Based on the extent of overlap between the paired-end reads, read pairs were
merged into a sequence with a minimum overlap length of 10 bp. Sequences that exceeded
the maximum overlap region mismatch ratio allowed (0.2) were removed. Samples were
distinguished based on the barcodes at the head and tail ends of sequences and primers,
and sequence directions were adjusted based on the number of permitted mismatches
(allowable barcode mismatches: 0; maximum allowable primer mismatches: 2). Using
the UPARSE software (http://drive5.com/uparse/, version 7.1, accessed on 20 June 2021)
package, operational taxonomic unit (OTU) clustering was performed based on a 97%
similarity threshold, and chimeric sequences were removed. Each sequence was subjected
to species classification and annotation using the RDP classifier and compared against the
SILVA 16S rRNA database (version 138), with the confidence threshold set at 70%.

2.10. Identification of the Four Chemical Component Types in MJGT_EE with HPLC

Chromatographic conditions: Chromatographic system: Agilent Technologies; chro-
matographic column: Agilent 5 TC-C18(2), 250 mm × 4.6 mm, 5 µm; flow rate: 1 mL/min;
column temperature: 25 ◦C; injection volume: 10 µL; mobile phase: 0.3% acetic acid (A)-
methanol (B) (0–22 min: 32% B, 22–23 min: 32–37% B, 23–36 min: 37% B, 36–37 min: 37–45%
B, 37–46 min: 45% B, 46–47 min: 45–60% B, 47–60 min: 60–80% B); UV absorption of
eriodictyol and eriodicty-7-O-glucoside was monitored at 284 nm, while monitoring of
luteolin and luteolin-7-O-glucoside was at 350 nm..

Preparation of mixed control solution (S1): A mixed solution containing eriodictyol-
7-O-glucoside (0.348 mg/mL), eriodictyol (0.200 mg/mL), luteolin-7-O glucoside
(0.270 mg/mL), and luteolin (0.156 mg/mL) in methanol was prepared as the control.

Preparation of test solution (S2): Dried MJGT was pulverized and passed through a
40-mesh sieve. A total of 1.7 g of MJGT was precisely weighed and placed in a 250-mL
distillation flask. Then, 70% ethanol was added to the flask, which was securely stoppered

http://drive5.com/uparse/
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and weighed. The contents of the flask were subjected to heat reflux extraction for 60 min
and cooled to room temperature. Then, 70% ethanol was added to the flask to make up
for the lost weight, and the contents of the flask were filtered through a 0.22-µm organic
filtration membrane to obtain the test solution.

2.11. Statistical Analysis

All data are expressed as the mean ± standard error of the mean (SEM). SPSS version
26.0 (SPSS, Inc., Chicago, IL, USA) was used for statistical comparison of data via one-way
analysis of variance (ANOVA). Differences were considered statistically significant when
p was less than 0.05. Lowercase and uppercase letters were used to denote the results of
comparisons at significance levels of 0.05 and 0.01, respectively. All graphs were plotted
using GraphPad Prism version 7.0 (GraphPad software, Inc., La Jolla, CA, USA).

3. Results
3.1. Evaluation of the IBS-C Model

Figure 1A shows the process flow diagram for model construction and administration.
There was a significant decrease in FWC in the MG group (before administration; p < 0.01;
Figure 1B). However, rats administered MJGT_EE or MSP exhibited a significant recovery
in FWC, with the recovered FWC in the MSP group being similar to that in the NC group
(after administration).
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Figure 1. The timeline from rat model establishment, administration to sampling (A). Comparison of
fecal water content (B) and pressure threshold (C) in rats of different groups. Capital and lowercase
letters above the bar indicate the difference significance at the 0.01 or 0.05 levels, respectively. (n = 8
for each group). NC: negative control group; MG: model group, MSP: mosapride group, MJGT_EE:
Mao Jian Green Tea ethanol extract group.

Visceral sensitivity changes constitute some of the most important pathophysiological
characteristics of IBS patients. In this study, the smallest threshold CRD volume was
adopted as a measure of visceral sensitivity in the different groups. A significant decrease in
the smallest threshold CRD volume in the MG group was observed (before administration;
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p < 0.05; Figure 1C), indicating a significant increase in rat visceral sensitivity. After drug
administration, the smallest threshold CRD volume was restored to normal levels in the
MJGT_EE and MSP groups as compared to the MG group (after administration; Figure 1C).

3.2. Effects of MJGT_EE on Gastric Emptying and Small Intestinal Propulsion in IBS-C Rats

Previous studies have demonstrated that IBS-C patients exhibit delayed gastric emp-
tying and small intestinal transit [45,46]. Therefore, these two indicators were selected
and evaluated in our in vivo experiments. As compared to rats in the NC group, those
in the MG group exhibited a significant decrease in gastric emptying and small intestinal
propulsion rates (p < 0.01). MJGT_EE administration restored both gastric emptying and
small intestinal propulsion rates to levels similar to those in the NC group (p < 0.01); the
treatment effects of MJGT_EE were in line with those of MSP (Figure 2A,B).
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3.3. Effect of MJGT_EE on the Colonic Tissue Morphology

Rat colonic tissues were subjected to H&E staining for morphological evaluation.
Clear structures were observed in the various colonic tissue layers. Mucosal epithelial
cells exhibited a simple columnar structure, with cells and glands arranged in an orderly
manner; in addition, normal colonic crypts were present. No significant inflammatory
cell infiltration or pathological damage, interstitial hyperemia or edema, ulcerations, or
organic lesions were observed. These findings indicated that the method used for model
construction did not induce organic lesion development (Figure 3A,B), and that both
the MJGT_EE (Figure 3C) and MSP (Figure 3D) treatments had no effects on rat tissue
morphology.
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Figure 3. H&E staining to observe the effect of MJGT_EE on the colonic tissues of IBS-C rats (200×).
(A) The colonic tissues from normal rats; (B) the colonic tissues from rats with IBS-C; (C) the colonic
tissues of IBS-C rats after 30 days of MJGT_EE treatment; (D) the colonic tissues of IBS-C rats after 30
days of MSP treatment. (n = 8 for each group). NC: negative control group; MG: model group, MSP:
mosapride group, MJGT_EE: Mao Jian Green Tea ethanol extract group.

3.4. Evaluation of the Accumulation of 5-HT in the Colonic Tissue Impacted by MJGT_EE

To determine whether MJGT_EE affects 5-HT expression, 5-HT accumulation in
rat colonic tissues was evaluated with the immunohistochemical method. As shown
in Figure 4, 5-HT was mainly distributed in the submucosal and muscular layers of the
colon. Calculated AOD values indicated that colonic 5-HT secretion significantly increased
in the MG group as compared to the NC group (p < 0.01; Figure 4A,B), suggesting that the
model construction method induced an increase in colonic 5-HT levels. After MJGT_EE
or MSP intervention, colonic 5-HT secretion significantly decreased in these groups as
compared to the MG group (p < 0.01, Figure 4C,D). Therefore, MJGT_EE and MSP exhibited
similar regulatory effects on 5-HT, and this is consistent with the results described above
(Figure 4E).
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Figure 4. Immunohistochemical staining analysis to observe the effect of MJGT_EE on the colonic
tissues of IBS-C rats. (A) The colonic tissues from normal rats; (B) the colonic tissues from rats with
IBS-C; (C) the colonic tissues of IBS-C rats after 30 days of MJGT_EE treatment; (D) the colonic tissues
of IBS-C rats after 30 days of MSP treatment; (E) the relative expression of 5-HT. Capital letters above
the bar indicate the difference significance at the 0.01 level. (n = 8 for each group). NC: negative
control group; MG: model group, MSP: mosapride group, MJGT_EE: Mao Jian Green Tea ethanol
extract group; 5-HT: 5-hydroxytryptamine.

3.5. Evaluation of the Expression of TPH1 and TPH2 in the Colonic Tissue Impacted by MJGT_EE

To further evaluate the cause of the decrease in 5-HT synthesis observed, western
blotting was performed to quantitatively determine changes in the levels of tryptophan
hydroxylases (TPHs), which are key enzymes of the 5-HT metabolic pathway. A significant
increase in the expression levels of TPH1 and TPH2 in the colons of IBS-C rats was identified
(MG group) (p < 0.01), suggesting that changes in 5-HT expression levels in the model
were significantly associated with TPH synthesis (Figure 5A,B). Following treatment with
MJGT_EE, the expression levels of both TPH1 and TPH2 decreased (p < 0.05, Figure 5A,B),
and its effects were similar to those of the positive drug, MSP. Treatment with both MSP and
MJGT_EE restored TPH expression to levels similar to those of the NC group (Figure 5A,B).

3.6. Effect of MJGT_EE on SERT Expression in the Colon

5-HT synthesized in the intestines can be transported by the SERT from the interstitial
spaces of the lamina propria to the mucosal epithelial cells and presynaptic neurons. This
process is known as 5-HT reuptake [47]. Thus, the SERT content is also a major factor that
affects 5-HT expression. IBS-C negatively affected colonic SERT expression in rats in the
MG group as compared to rats in the NC group (p < 0.01). Following drug administration
(MJGT_EE and MSP), SERT expression levels were restored to levels similar to those
observed in rats in the NC group at the 0.01 level (Figure 5C).
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Figure 5. Western blotting analysis of TPH1 (A), TPH2 (B), SERT (C), 5-HT3 receptors (D), 5-HT4

receptors (E), CaM (F), and MLCK (G) in colonic tissues of each group. Capital and lowercase letters
above the bar indicate the difference significance at the 0.01 or 0.05 levels, respectively. (n = 8 for
each group). NC: negative control group; MG: model group, MSP: mosapride group, MJGT_EE: Mao
Jian Green Tea ethanol extract group; 5-HT: 5-hydroxytryptamine; TPH1: tryptophan hydroxylase 1;
TPH2: tryptophan hydroxylase 2; SERT: serotonin transporter; CAM: calmodulin; MLCK: myosin
light chain kinase; 5-HT3R: 5-HT3 receptor; 5-HT4R: 5-HT4 receptor.

3.7. Effect of MJGT_EE on the Expression of 5-HT3R and 5-HT4R in the Colon

Among the seven confirmed 5-HT receptor subtypes, 5-HT3R and 5-HT4R are sig-
nificantly related to gastrointestinal motility and pain sensitivity. Therefore, these two
indicators were evaluated to determine the effects of the drug. As compared to rats in the
NC group, those in the MG group exhibited a significant decrease in 5-HT3R and 5-HT4R
expression (p < 0.01). Both MSP and MJGT_EE restored 5-HT4R expression levels (p < 0.05,
Figure 5D,E), with the expression levels in rats in the MSP group being higher than those
in rats in the NC group (p < 0.01). However, a similar trend was not observed with 5-HT3R
expression.

3.8. Effect of MJGT_EE on CaM-MLCK Signaling Pathway

The CaM-MLCK pathway is a classical downstream pathway of 5-HT4R that regulates
smooth muscle contraction. As compared to rats in the NC group, those in the MG
group exhibited significantly lower CaM (p < 0.05) and MLCK (p < 0.01) expression levels.
Following treatment with MJGT_EE and MSP, both CaM and MLCK expression levels were
restored to levels similar to those in rats in the NC group (Figure 5F,G).

3.9. Effects of MJGT_EE on IBS-C Rat Gut Microbiota

IBS-related pathophysiological changes involve alterations in gut microbiota composi-
tion or microbiota dysbiosis [48–50]. Therefore, 16S rDNAs of the gut microbiota in rats in
the different treatment groups were analyzed. β diversity analysis revealed the existence of
significant differences in the microbiota between rats in the MG and NC groups (Figure 6A).
The number of OTUs decreased from 882 (NC) to 834 (MG) following model construction
but increased following drug administration (MJGT_EE and MSP). Notably, the number of
OTUs was highest following treatment with MJGT_EE (926) (Figure 6B). The ACE, Chao,
Sobs, and Shannon α diversity indices also showed that the diversity of the gut microbiota
in rats with IBS-C was lower than that in rats in the NC group; however, this diversity was
restored following treatment with MJGT_EE or MSP (p > 0.05) (Figure S1).
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At the phylum level, bacteria of the phyla Firmicutes and Bacteroidota accounted for
the greatest proportion of microbes, with their proportions in the NC, MG, MJGT_EE, and
MSP groups being 68.95% and 13.49%, 78.57% and 7.94%, 76.59% and 11.00%, and 74.27%
and 15.00%, respectively (Figure 7A). The Bacteroidetes/Firmicutes ratio in the MG group
(0.10) decreased onefold as compared to that in the NC group (0.20). This is consistent with
the previously reported significant increase in Firmicutes bacterial strain counts [51] and
the decrease in the Bacteroidetes/Firmicutes ratio in IBS-C patients [52]. Following drug
administration, the Bacteroidetes/Firmicutes ratio increased in the MJGT_EE group (0.14)
but was still lower than that in the MSP group (0.20).
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Figure 7. The variations in intestinal flora composition are displayed the phylum (A) and family (B)
and genus level (C), respectively. (n = 4 for each group). NC: negative control group; MG: model
group, MSP: mosapride group, MJGT_EE: Mao Jian Green Tea ethanol extract group.
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At the family level, changes in the abundance of bacteria of the Prevotellaceae family
in the different groups (0.80% and 0.43% in the NG and MG groups, respectively) followed a
similar trend to those of bacteria of the Bacteroidota phylum, i.e., the restoration of bacterial
abundance was more significant in the MSP group (1.75%) than in the MJGT_EE group
(0.69%). The proportion of Clostridia_UCG-014 strains in the MG group (1.59%) decreased
by 58.6% as compared to that in the NC group (3.75%); following drug administration,
in the MJGT_EE group, this proportion (7.08%) was 4.45 and 2.79 times that in the MG
and MSP groups, respectively. Linear discriminant effect size analysis (LFEse) revealed
Clostridia_UCG-014 to be the only characteristic bacterium enriched in the MJGT_EE group
(LDA > 4, Figure S2). There was an increase in the abundance of some bacterial families in
IBS-C rats. For instance, the abundance of bacteria of the Lachnospiraceae family in the MG
group (28.94%) was 1.64 times that in the NC group (17.61%); however, this increase was
reversed following treatment with MJGT_EE (14.94%) and MSP (14.37%). The abundance
of bacteria of the Corynebacteriaceae family ranged from 1.68% in the NC group to 2.16% in
the MG group, but decreased to 0.92% following treatment with MJGT_EE. The proportions
of some bacteria remained unchanged before and after model construction, but changed
following drug treatment. For instance, bacteria of the Ruminococcaceae family accounted
for 4.54% and 4.68% of the microbiota in rats in the NC and MG groups, respectively. Their
abundance increased to 6.67% following treatment with MJGT_EE but decreased to 3.86%
following treatment with MSP (Figure 7B).

At the genus level, the proportion of Lactobacillus sp. decreased by approximately
76.08% in the MG group (1.11%) as compared to the NC group (4.64%). Their abundance
was restored following the administration of MJGT_EE (6.19%) and MSP (4.04%), with
MJGT_EE inducing a 0.33-fold increase in their abundance as compared to that in the NC
group (Figure 7C).

3.10. Identification of the Four Chemical Component Types in MJGT_EE

MJGT_EE was analyzed using high-performance liquid chromatography (HPLC).
Mixed control (S1) and test (S2) solutions were prepared as described in Section 2.10 and
analyzed under appropriate chromatographic conditions. Through a comparative analysis
of retention time and ultraviolet (UV) spectra, four main chromatographic peaks, which
represented luteolin-7-O-glucoside (Figure S3(1)), luteolin (Figure S3(2)), eriodictyol-7-O-
glucoside (Figure S3(3)), and eriodictyol (Figure S3(4)), were identified in MJGT_EE.

4. Discussion

In IBS patients, gastrointestinal motility disorders are often accompanied by visceral
hypersensitivity responses, which are exaggerated sensational responses to environmental
stimuli, possibly induced by alterations in the processing of afferent signals from visceral
neurons [53]. The IBS-C rat model can be constructed via water limitation, ice water
stimulation, and the maternal separation plus ice water stimulation. The first two methods
ignore the psychological factors in the pathogenesis of IBS-C, so the last one that is more
closely related to the patient’s pathogenesis was chosen in the study. The chronic stress
in newborn rats was applicated using maternal separation to induce stable changes in the
central nervous system through the hypothalamic–pituitary–adrenal axis (HPA), as well
as cognitive and emotional functions. This led to the gradual development of a disease
state characterized by increased visceral sensitivity at the level of the large intestines after
the maturation of the animals. Subsequently, to establish the IBS-C model, ice water at
4 ◦C was administered daily via gavage to the rats to induce symptoms of constipation.
A comparison of the FWC and smallest threshold CRD volume between the MG and drug
administration groups showed that drug administration not only reversed the significant
decrease in FWC, but also decreased intestinal sensitivity in rats in the MG group. Therefore,
MJGT_EE is able to reverse the decrease in FWC, as well as the increase in intestinal
sensitivity, exhibited by IBS-C rats. Another characteristic symptom of IBS is the chronic
disruption of normal gastrointestinal peristaltic activity [54], which mainly manifests as
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delayed gastric emptying and small intestinal transport [55]. Our experimental results
showed that rats in the MG group exhibited delayed gastric emptying and decreased small
intestinal propulsion functions, and these were significantly improved via treatment with
MJGT_EE. This provides preliminary evidence of the effects of MJGT_EE in promoting
gastrointestinal motility in IBS-C patients. Notably, this method used to construct IBS-C in
the present study can only represent one of the psychological factors that cause the onset
of IBS.

Studies on the gastrointestinal motility-promoting mechanism of MJGT_EE have
shown that it elicits this effect by inhibiting the secretion of 5-HT, which is a typical in-
dicator of alterations in IBS patients. In addition, 5-HT plays a key role in the regulation
of gastrointestinal motility, secretion, and sensation [56,57]. In this study, colonic tissue
H&E staining revealed no inflammatory exudates nor pathomorphological changes. This
is consistent with the findings of previous studies, which reported that IBS patients typ-
ically do not manifest organic lesions [58] and that IBS-C rarely induces inflammatory
responses. To further evaluate the causes of alterations in the 5-HT signaling system, we
investigated rate-limiting enzymes that directly affect 5-HT synthesis, i.e., TPH (TPH1
and TPH2) [59,60], as tryptophan (Trp) is a precursor of 5-HT [61] that is first converted
to 5-hydroxytryptophan (5-HTP) under the action of TPH and is subsequently converted
to 5-HT under the action of 5-HTP decarboxylase (5-HTPDC). TPH plays a vital role in
the conversion of Trp to 5-HTP [62,63] and directly affects 5-HT secretion. Synthesized
5-HT, which is stored in enterochromaffin (EC) cells, is released into the lamina propria in
response to luminal pressure, as well as chemical or mechanical stimuli, where it interacts
with nerve endings and immune cells [64]. As with 5-HT release, its deactivation is of equal
importance in maintaining dynamic equilibrium. The SERT plays an indispensable role in
5-HT deactivation as it transports 5-HT from the interstitial spaces of the lamina propria to
the intestinal mucosal cells and presynaptic neurons and is subsequently involved in 5-HT
degradation. Insufficient SERT synthesis leads to 5-HT accumulation [65]. This induces
high contractility in the digestive tract smooth muscles, as well as high gland sensitivity
and increased endocrine secretion, which result in diarrhea and pain. A significant increase
in 5-HT levels in the MG group was observed as compared to the NC groups, and this
was the possible cause of the abnormalities in gastrointestinal motility; however, treatment
with MJGT_EE exerted a significant downregulatory effect on 5-HT levels. These findings
are consistent with the trend observed in the changes in TPH expression in the different
groups, demonstrating that MJGT_EE reduced 5-HT secretion by decreasing TPH synthesis.
The decrease in SERT expression was identified in the MG group; however, this expression
was upregulated following treatment with MJGT_EE, indicating that drug administration
inhibited excessive 5-HT accumulation. Therefore, MJGT_EE evidently restores abnormally
increased 5-HT levels by regulating TPH and SERT expression.

MJGT_EE regulates gastrointestinal responses by regulating 5HT4R. 5-HT released
from EC cells can regulate gastrointestinal motility by effectively activating 5-HT3R and
5-HT4R at the vagal afferent nerve endings of the intestinal mucosa. Consequently, the acti-
vation of these receptors enhances gastrointestinal transport [66,67]. Our findings indicated
that the expression levels of both 5-HT3R and 5-HT4R were downregulated in IBS-C rats,
and that their expression levels were negatively correlated with visceral sensitivity, and this
is consistent with findings reported in the literature [68,69]. Interestingly, in a similar way
as MSP, a selective 5-HT4R agonist, MJGT_EE only exerted restorative effects on 5-HT4R
expression but did not affect 5-HT3R expression. This phenomenon could be explained by
the fact that 5-HT released by EC cells can mediate digestive functions through the activa-
tion of endogenous or exogenous sensory nerve endings at high concentrations [70,71] and
activate 5-HT4 or 5-HT1P receptors at a low concentrations, thereby regulating gastroin-
testinal motility [72,73]. MJGT_EE reduced 5-HT synthesis, inducing lower 5-HT luminal
concentrations in the colon; this may explain the lack of effect of MJGT_EE on 5-HT3R
secretion. The CaM-MLCK pathway is a core pathway through which 5-HT4R regulates
downstream smooth muscle contraction. Following the activation of Ca2+ ion channels, free
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Ca2+ concentrations within cells rapidly increase, leading to the formation of Ca2+–CaM
complexes. Consequently, MLCK is activated and induces the phosphorylation of the 19th
serine residue on myosin light chain 20 (MLc20). This in turn activates myosin ATPase,
which hydrolyzes ATP and coverts the chemical energy it contains to mechanical energy
that enables myosin to slide past actin filaments and achieve smooth muscle contraction,
ultimately resulting in the acceleration of intestinal peristalsis [74]. The findings of our
study also indicate that changes in CaM and MLCK expression in the MG group before
and after drug administration were positively correlated with 5-HT4R expression, further
corroborating the effects of MJGT_EE.

Intestinal microbes would also be involved in the gastrointestinal motility impacted
by MJGT_EE. Several clinical studies indicated the variation of gut microbiota composition
in IBS patients [75–77], and this might be a possible etiology for the disorder. In this study,
we found that treatment with MJGT_EE led to the following.

(1) Increase in gut microbiota diversity. The gut microbiota in IBS patients is signif-
icantly different from that in healthy individuals and is characterized by lower bacterial
diversity [75,78]. We found that the number of OTUs in rats with IBS-C was 5.4% lower than
that in normal rats (NC group), however, increased by 11% and 4.8% following treatment
with MJGT_EE and MSP, respectively. This indicates that not only was MJGT_EE beneficial
in increasing microbiota diversity, but it also elicited effects superior to those of MSP.

(2) Increase in the number of bacteria with known benefit. MJGT_EE increased the
counts of some beneficial bacteria such as those belonging to the Lactobacillus genus and the
Prevotellaceae and Ruminococcaceae families. Lactobacillus sp. strains alleviate gastroin-
testinal diseases [79,80], reduce allergic symptoms [81], and are considered as potential
antimicrobial probiotic strains against human pathogens [3,82] through various mech-
anisms. Bacteria of the Ruminococcaceae family can generate short-chain fatty acids
(SCFA) [83], which are generally believed to elicit beneficial effects in the human body,
such as improving intestinal health and protecting the intestinal mucosal barrier [84]. This
increase in beneficial bacterial counts may be related to the MJGT_EE-induced decrease in
5-HT secretion, as 5-HT directly inhibits the growth of beneficial bacteria [52].

(3) Regulation of gut microbes involved in 5-HT synthesis. Studies have shown
that Corynebacterium sp. strains promote 5-HT synthesis in tissues [85,86]; we observed
an increase in the proportion of Corynebacterium sp. strains in rats in the MG group
as compared with that in the rats in the NC group; in the MG group, this proportion
decreased to approximately half the initial level following treatment with MJGT_EE. The
proportions of bacteria of the Lachnospiraceae family, which induce 5-HT biosynthesis
and release by EC cells [87], were also restored to levels similar to those in rats in the NC
group following treatment with MJGT_EE and MSP. Notably, Clostridia_UCG-014 strains,
which are beneficial bacteria associated with tryptophan metabolism and that regulate
intestinal homeostasis, were only enriched in rats in the MJGT_EE treatment group [88].
Similar effects were observed for MSP, persuading us to speculate that Clostridia_UCG-014
strains may be key bacterial species that affected gastrointestinal motility in rats in the
MJGT_EE group.

Generally, an organism has a core native microbiota that remains relatively stable
during adulthood. However, each individual has a unique gut flora profile due to a variety
of factors such as gut type, body mass index (BMI) level, frequency of exercise, lifestyle,
culture, and diet. Therefore, there is no one best gut microbiota composition [89]. For
example, gut microbiota are not only able to respond to the various physiological activities
of flavonoids, but also to metabolize them and produce new active products [90]. Through
an HPLC analysis, four major MJBT_EE components were identified: eriodictyol-7-O-
glucoside, luteolin-7-O-glucoside, eriodictyol, and luteolin. In the previous trial, we found
that these four components are the active ingredients in hydro extracts of MJGT that affect
gastrointestinal motility [42]. The regulation effect of luteolin and other flavonoids, such
as apigenin and quercetin, on muscle tissue contraction in cows were also identified [41].
Thus, we believe that they should also be important components of MJBT_EE to alleviate
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the symptoms of IBS-C. Notably, whether there are other active ingredients needs to be
further investigated.

5. Conclusions

MJGT_EE promoted gastrointestinal motility and reduced intestinal sensitivity in
IBS-C model rats established via maternal separation. These effects were mainly related to a
decrease in 5-HT secretion and an upregulation in 5-HT4R expression and were not related
to 5-HT3R expression. The possible mechanism underlying the effects of MJGT_EE on 5-HT
secretion may involve the decrease and increase in TPH and SERT secretion, respectively,
while underlying that its effects on 5-HT4R expression involve the upregulation of the
CaM-MLCK pathway. MJGT_EE also increased microbiota diversity and beneficial bacterial
counts, while restoring gut microbiota composition disturbed by IBS-C. Since the flavonoids
are important active ingredients in MJGT_EE, the final observations would result from
the complicated interactions among flavonoids and gut microbiota bioactivity and a wide
range of their metabolites, which are worthy of further investigation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12051101/s1, Figure S1: Changes of intestinal flora diversity
in rats of MJGT_EE group. (n = 4 for each group). Figure S2: Linear discriminant effect size (LEfSe)
analyses comparing differentially abundant taxa in each group (A); the LDA effect size taxonomic
cladogram comparing four groups. Different colors indicate species with significant differences
between groups, and the logarithmic LDA score is set to 4 (B). (n = 4 for each group). Figure S3
The chromatogram of the MJGT_EE. (A) The mixed control solution of luteolin-7-O-glucoside (1)
and luteolin (2) detected at 350 nm; (B) The test solution detected at 350 nm; (C) The mixed control
solution of eriodictyol-7-O-glucoside (3) and eriodictyol (4) detected at 284 nm; (D) The test solution
detected at 284 nm.
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