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Abstract: The recent discovery of the same Clostridioides difficile ribotypes associated with human
infection in a broad range of environments, animals and foods, coupled with an ever-increasing rate
of community-acquired infections, suggests this pathogen may be foodborne. The objective of this
review was to examine the evidence supporting this hypothesis. A review of the literature found that
forty-three different ribotypes, including six hypervirulent strains, have been detected in meat and
vegetable food products, all of which carry the genes encoding pathogenesis. Of these, nine ribotypes
(002, 003, 012, 014, 027, 029, 070, 078 and 126) have been isolated from patients with confirmed
community-associated C. difficile infection (CDI). A meta-analysis of this data suggested there is a
higher risk of exposure to all ribotypes when consuming shellfish or pork, with the latter being the
main foodborne route for ribotypes 027 and 078, the hypervirulent strains that cause most human
illnesses. Managing the risk of foodborne CDI is difficult as there are multiple routes of transmission
from the farming and processing environment to humans. Moreover, the endospores are resistant to
most physical and chemical treatments. The most effective current strategy is, therefore, to limit the
use of broad-spectrum antibiotics while advising potentially vulnerable patients to avoid high-risk
foods such as shellfish and pork.
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1. Introduction

Clostridioides difficile is a Gram-positive, endospore-forming anaerobic bacterium often
carried asymptomatically in the human gastrointestinal tract [1–5]. However, when condi-
tions are favourable, the endospores germinate in the colon, vegetative cells multiply, and
toxins are produced [6], resulting in watery, non-bloody diarrhoea with abdominal pain,
toxic megacolon and/or pseudomembranous colitis, which may be fatal [7–9].

The most common risk factor associated with CDI is the use/misuse of broad-spectrum
antibiotics. C. difficile is often resistant to a wide range of antibiotics [10], and the adminis-
tration of antibiotics like clindamycin, cephalosporins, penicillins and fluoroquinolones
eliminate competitive bacteria in the colon and promote C. difficile outgrowth [11]. The
elderly, infants, other immune compromised, and patients on antibiotic therapies are there-
fore most at risk [1,2,4], although the incidence of CDI in pregnant women, children and
patients with inflammatory bowel disease (IBD) has also increased [12].

The generally accepted route for human CDI is transmission from the healthcare
environment [13]. However, in recent years the proportion of community-acquired CDI,
where the patient has no association with a healthcare facility, has increased [14]. At the
same time, non-human reservoirs, including the natural environment (soil, rivers and
lakes) [15] and animals, including domestic pets [16,17], food animals [18–20] and wild
fauna [21] have been reported. Moreover, food may be contaminated [22,23].

The link between C. difficile and animals has been known for at least 60 years. In 1960,
McBee [24] isolated this bacterium from the large intestine of a seal in Antarctica. By 1974 C.
difficile had also been detected in animal faeces (donkeys, horses, cows and camels) and in
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the environment (hay, soil, sand and mud) [25]. In the early 1980s, C. difficile reservoirs were
reported in healthy pigs and cattle [26,27] and in asymptomatic domestic pets, such as dogs,
cats and birds, which had a prevalence of 21%, 30% and 33%, respectively [28]. Thus it was
suggested that animals could be a vehicle of transmission to humans [29]. Interestingly, a
common human pathogenic C. difficile ribotype (ribotype 078) was also isolated from pigs,
cattle, and horses later, providing additional evidence of zoonotic transmission of C. difficile
between animals and humans [30–33]. In more recent years, several studies have reported
C. difficile in animals, on carcasses [21,34], in food processing facilities and in both raw and
cooked foods [35–41].

Despite the increase in community-acquired CDI and data on C. difficile in the food
chain, it is difficult to prove the source of infection in a given patient or outbreak as
the same ribotypes and strains are common to both healthcare and food chain sources.
Moreover, the patient may have acquired C. difficile sometime before the conditions in the
colon changed to promote outgrowth. The objective of this review was to examine the
evidence (CDI, virulence, ribotypes, environment, food animal and food sources and the
current epidemiology of CDI in humans) supporting the hypothesis that C. difficile may
be foodborne.

2. C. difficile Infection (CDI) in Humans

Elderly people are especially vulnerable to CDI, and cases are more likely to result in
severe outcomes [42], possibly due to a decreased immune response or changes in the intesti-
nal microbiota with age [43,44]. An underlying condition, chemotherapy or gastrointestinal
surgery can increase susceptibility to CDI [45], which may become recurrent, leading to
increased morbidity and mortality [46,47]. Broad-spectrum antibiotics significantly reduce
the gut microflora diversity and alter the bile composition in the colon, facilitating CDI and
recurrent infection in humans [48]. Treatment with acid suppression medication to prevent
ulcers or treat acid-related diseases is also a risk factor for recurrence [49–51].

Metronidazole is used to treat mild to moderate CDI, while vancomycin is used in
more severe cases, although the combination of both may be used when there are complica-
tions [52]. When these are ineffective, fidaxomicin has been proposed as an alternative to
vancomycin [53,54] and has proven effective in preventing recurrent infection [55].

3. Virulence

Within the host, C. difficile endospores germinate into vegetative cells, colonise the
intestinal tract and produce toxins resulting in disease [56,57], which causes intestinal in-
flammation, perforation, toxic megacolon and pseudomembranous colitis [58,59]. Mortality
rates range from less than 2% to 17% [60,61]. The main virulence factors in C. difficile are
toxin A and toxin B, encoded by the tcdA (308 kDa) and tcdB (270 kDa) genes located on a
pathogenicity locus (PaLoc) (Figure 1 and Table 1). Both are large clostridial glycosylation
toxins and are activated in response to environmental signals during the late log and
stationary phases. In addition to the toxins, two regulatory proteins (TcdR and TcdC) and
a protein whose function remains unclear (TcdE) complete the PaLoc [62,63]. TcdR (also
referred to as TcdD) is a positive regulator activated in stationary phase growth, while
TcdC is a negative regulator produced during the exponential phase. Mutations, such as
deletions in the tcdC gene, may cause increased production of toxins A and B [62,64].
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TcdA and TcdB possess the same biological activities, among which is the disruption
of the cytoskeleton that leads to cytopathic effects in cultured cells. They also possess
proinflammatory activity and can stimulate intestinal epithelial cells and immune cells
to produce cytokines and chemokines [66,67]. Even low doses of toxins A and B damage
the tight junctions of the gut epithelial barrier, facilitating the translocation of commensal
bacteria, inflammation and cell apotheosis [66–68]. Sequence variations, deletions, and
duplications within the pathogenicity locus account for different toxinotypes of C. difficile,
with 27 currently identified. Certain strains can present only one of the toxins genes (A−B+

or A+B−), however, they reportedly still cause severe disease in humans [62]. In addition,
the cytotoxicitybetween toxins that belong to different toxinotypes may vary, making the
relation between strain type and CDI severity even more complex [59]. Strains lacking
toxin A are more frequently reported due to deletions in the receptor-binding repetitive
regions of TcdA caused by the recombination between short repetitive sequences highly
conserved in this toxin gene [63]. Donta et al. [66] reported TcdB to be 4 to 200-fold more
cytotoxic than TcdA in a mouse model. Therefore, strains producing toxin B have a higher
severity in humans.

Up to a third of C. difficile isolates also produce the transferase C. difficile binary toxin
(CDT) [69,70]. CDT, composed of CDTa (biological activity) and CDTb (binding), inhibits
the protein actin, damaging the cytoskeleton of the gastrointestinal tract (GIT) cells [71].
The presence of the full-length CDT locus implies the potential expression of the binary
toxin, and although some strains contain portions of the CDT locus, these are predicted as
non-binary toxin-producing strains [68,70]. CDT-producing strains have been previously
associated with a higher production of toxins A and B, leading to an increased disease
severity [71,72]. However, CDT is not always present in severe cases [73,74]. In addition,
CDT can also be produced by only B+ and non-toxigenic strains (A−B−) [72]. Although
CDT production is commonly associated with higher severity of C. difficile infection, the role
of this toxin during infection and its mechanism of secretion is still not well understood.

Table 1. The virulence factors in C. difficile and their function.

Virulence
Factor

Encoding
Genes Role in CDI References

Toxin A tcdA Multiple cytopathic and cytotoxic effects on the
targeted cells include disruption of Rho, Rac and

Cdc42-dependent signalling, the actin cytoskeleton
and the tight adherence junctions, increasing
epithelial permeability, allowing commensal

bacterial translocation, inflammation, diarrhoea
and sometimes death.

[66–68,75]Toxin B tcdB

TcdR tcdR

TcdR is a positive regulator (produced in response
environmental conditions) that triggers the
induction of transcription of the toxin genes

(tcdA and tcdB).

[76,77]

TcdC tcdC
TcdC is a negative regulator that inhibits the

expression of tcdA and tcdB. Mutations may cause
increased production of toxins A and B.

[62,64]

TcdE tcdE

TcdE may function as a lytic protein to facilitate the
release of toxins A and B to the extracellular

environment by a phage-like system, as these toxins
lack signal peptides.

[78,79]

CDT cdtA &
cdtB

C. difficile binary toxin (CDT) is a transferase that
disrupts the normal cytoskeletal function of cells by

inhibiting the protein actin. The altered actin
cytoskeleton causes an imbalance between actin

and microtubules.

[69–71]
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4. Ribotypes

There are in excess of 800 C. difficile ribotypes (RT), some of which are associated with
increased virulence [6,80,81], including RT027 and RT078 [82,83]. These ribotypes are also
more prevalent in human cases. RT027 (toxinotype III) has a mutation in tcdC, resulting
in significantly increased production of toxins A and B while also carrying the genes
encoding CDT production and fluoroquinolone resistance [84,85]. Although prevalence
has decreased in Europe in recent years, RT027 is associated with a higher mortality and
morbidity rate than other ribotypes [86]. The fluoroquinolone resistance, which emerged in
two genetically distinct epidemiological lineages (FQR1 and FQR2), was a key driver in
the rapid emergence of RT027 [57]. Moreover, this is essential to the increased severity of
this ribotype, as this strain typically infects elderly hospital patients on fluoroquinolone
treatment [5].

RT078 carries a 39 bp deletion in the tcdC gene and therefore overproduces toxins A
and B in addition to the binary toxin CDT. In contrast to RT027, which is mostly hospital-
acquired, RT078 is more prevalent in younger people and is generally associated with
the community [87]. RT078 strains are resistant to fluoroquinolones and erythromycin,
which has contributed to their higher prevalence in CDI [88]. Ribotype 126 has the same
mutation in its tcdC gene found in RT078, is resistant to moxifloxacin and tetracycline
and is also considered hypervirulent [89–91]. Other significant ribotypes from a public
health perspective include RT017 and RT018. Although the former only produces toxin B,
it is resistant to fluoroquinolones and rifampicin and has been associated with numerous
outbreaks [92–94]. RT018 has high toxin production capacity, increased cell adhesion,
is multidrug-resistant (erythromycin, clindamycin and moxifloxacin) and has become
endemic in several countries, including Italy, Spain, Austria and Slovenia [95–97].

5. C. difficile in the Environment, Farm Animals and Food
5.1. Water

Toxigenic C. difficile has been isolated from a variety of aquatic environments, including
drinking water, rivers, sewage effluent and swimming pools [98,99]. Coastal beaches and
river sediments are also contaminated [98,99], in some cases by runoff from fields or
effluents from wastewater treatment plants [100]. Indeed, C. difficile is often detected in
water from treatment plants [101], and contamination of drinking water was the source
of at least one C. difficile outbreak in Finland [102]. Thus, C. difficile survives in water and
through the effluent treatment process [100].

5.2. Soil, Manure and Silage

C. difficile is commonly found in soil on farms as well as in forests, recreational parks,
residential gardens, etc. [103–107]. These authors reported the highest prevalence in urban
settings (57%), followed by farms (31%) and forests (28%). Shivaperumal et al. [108] found
prevalence rates of 62%, 13% and 15% in garden soil, manure and compost, respectively,
while Fröschle et al. [109] reported C. difficile to be the most prevalent Clostridium spp. in
grass silage and cattle manure.

5.3. Farm Environment and Animals

Marcos et al. [110] reported that C. difficile were widespread in soil, water and faeces
on beef, sheep and broiler farms, with the prevalence ranging from 7% to 83% and counts
from 2.9 to 8.4 log10 cfu/g or /mL, depending on the animal species and sample type being
tested. Other studies also found C. difficile in the faeces of a range of farm animals, including
cattle, sheep, poultry and pigs [111–116]. Of these, pigs are the most important source of
C. difficile [113,116], with the relative prevalence by age being 45%, 3% and 1% in suckling
piglets, post-weaning piglets and finishing pigs, respectively [114]. Although these animals
may show symptoms (diarrhoea), most are asymptomatic [114]. Other similar studies have
reported a prevalence of 37% [115] and 78% [111] in piglets and 4% [115], 62% [117] and
9% [16] in mature pigs.
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C. difficile are also found in cattle, especially younger animals. Rodriguez et al. [113]
reported a prevalence of 11% in calves and 6% in adult cattle. Other studies have found
these bacteria in 11% [118], 14% [117] and 22% of calves [111] and 7% of mature animals [16].
Sheep, including lambs, are also potential carriers, with 0.6 to 2% in the former and 7%
reported in the latter [16,119].

Toxigenic C. difficile strains have also been reported in poultry faeces in several coun-
tries, including the USA (2.3%) [120], the Netherlands (5.8%) [107], Egypt (11.5%) [121],
India (14%) [122], Zimbabwe (29%) [123] and Slovenia (62.3%) [124].

5.4. C. difficile at the Animal Slaughter Stage

Pathogenic bacteria in faeces on the hide/fleece or in the gastrointestinal tract are
readily transferred to the carcass during slaughter and dressing [125]. C. difficile was found
in 1%, 3% and 28% of porcine gut contents at slaughter in Belgium [126], Austria [18]
and the Netherlands [127], respectively. Reported carcass contamination rates include
7% in Belgium [126], 15% in Canada [128] and 23% in Taiwan [129]. The prevalence of
bovine carcass contamination ranges from 7–8% [111,126] but may be as high as 34% [130].
Ovine carcass contamination rates of 15% and 25% have been reported in Iran and Turkey,
respectively [130,131]. While poultry carcass data is lacking, Candel-Pérez et al. [132] found
C. difficile in 28% of gizzard and 6% of liver samples collected in a poultry processing plant
in Spain. In Ireland, beef, sheep and broiler carcass contamination rates ranged from 40% to
100%, 40% to 60% and 10% to 40%, respectively, depending on the sampling stage during
carcass processing [16].

Ribotypes 002, 005, 013, 014, 015, 019, 035, 062, 081, 087 and 126 have been identified
in porcine faeces and rectal swabs at slaughter plants in Europe [18,111,126,127,133]. The
C. difficile ribotypes isolated from other animal carcasses include 027 from cattle and IR46
from ovine carcasses [131]. Poultry slaughter data is lacking, although Koene et al. [16]
found toxigenic ribotypes 056, 014 and 003 in faecal samples from poultry in Dutch slaugh-
ter plants.

5.5. C. difficile in Retail Foods

C. difficile has been reported in a range of foods at the retail stage. Thus, the consump-
tion of contaminated retail foods, especially ready-to-eat (RTE) foods, is a risk factor for
human infection [134]. Marcos et al. tested meat, dairy and vegetable retail foods and
detected C. difficile in 9 out of the 240 samples tested [110]. These include corned beef (1),
spinach leaves (2), iceberg and little gem lettuce (1 sample each), wild rocket, coleslaw,
whole milk yoghurt and cottage cheese (also 1 sample each). Of these samples, direct
counts were obtained for the spinach leaves (5.8 log10 cfu/g), coleslaw (4.3 log10 cfu/g)
and cottage cheese (6.8 log10 cfu/g).

5.6. C. difficile in Meat and Seafood

Both raw and RTE meat and seafood are frequently contaminated with C. difficile [35,118],
and the prevalence, including toxin gene profiles and ribotypes, is summarised in Table 2.
The reported contamination rates include 41% [35] and 20% [135] for raw pork meat, 12%
for ground pork meat [36] and up to 29% for pork sausages and RTE pork products [135].
A beef contamination rate of 42% was reported by Rodriguez-Palacios et al. [118], while
ground beef rates include 2% [37], 12% [36], 20% [118] and 50% [35]. In one study, de Boer
et al. [38] detected C. difficile in 6% of raw lamb samples. Reported poultry contamination
rates include 1% [38], 3% [39], 8% [136,137], 13% [36,120] and 44% [35]. C. difficile has also
been detected in shellfish and fish in several countries, with prevalence ranging from 4% to
49% [138–141].



Foods 2023, 12, 1094 6 of 19

Table 2. Meat and seafood retail foods contaminated with C. difficile, including toxin gene profiles
(toxins A, B and CDT) and ribotypes.

Product Raw or RTE Total No. (%) Positive Toxin Gene Profile Ribotype(s) Reference

Ground pork Raw 3/7 (41.3%) A+ B+ CDT+ 027
078 [35]

Ground pork Raw 14/115 (12%) A+ B+ CDT+ 027
078 [36]

Ground pork Raw 2/66 (3.0%) A+ B+ CDT− 029 [39]

Pork meat Raw 35/303 (11.5%) A+ B+ CDT+ 078 [136]

Pork sausages RTE 10/16 (62.5%) A+ B+ CDT+ 027
078 [35]

Ground beef Raw 13/26 (42.4%) A+ B+ CDT+ 027
078 [35]

Ground beef Raw 11/53 (20.8%)

A+ B+ CDT+ M31

[118]
A+ B+ CDT− 014

077

Ground beef Raw 14/115 (12%) A+ B+ CDT+ 027
078 [36]

Ground beef Raw 2/105 (1.9%) A+ B+ CDTND 012 [37]

Ground beef Raw 21/303 (6.9%) A+ B+ CDT+ PA22 [136]

Beef Raw 1/67 (1.5%) A+ B+ CDT− 029 [39]

Beef sausages RTE 1/7 (14.3%) A+ B+ CDT+ 027 [35]

Corned beef RTE 1/10 (10%) AND B+ CDTND ND 1 [110]

Ground veal Raw 1/7 (14.3%) A+ B+ CDT+ M31 [118]

Turkey Raw 44/303 (14.5%) A+ B+ CDT+
PA01
PA05
PA16

[136]

Ground turkey Raw 4/9 (44.4%) A+ B+ CDT+ 078 [35]

Lamb Raw 1/16 (6.3%) A+ B+ CDT+ 045 [38]

Chicken Raw 7/257 (2.7%) A+ B+ CDT−

001
003
071
087

[38]

Chicken Raw 1/67 (1.5%) A+ B+ CDT− 029 [39]

Chicken Raw 25/310 (8.0%) A+ B+ CDT− ND 1 [137]

Chicken Raw 26/203 (12.8%) A+ B+ CDT+ 078 [23]

Chicken Raw 24/303 (7.8%) A+ B+ CDT+ PA05
PA16 [136]

Chicken Raw 4/32 (12.5%) A+ B+ CDT+ 078 [110]

Chicken RTE 1/130 (0.8%) A+ B+ CDT− 014
020 [41]

Shellfish Raw 118/702 (16.8%) A+ B+ CDT+ 126
475 [141]
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Table 2. Cont.

Product Raw or RTE Total No. (%) Positive Toxin Gene Profile Ribotype(s) Reference

Bivalve molluscs Raw 26/53 (49%)

A+ B+ CDT+ 078

[139]
A+ B+ CDT−

002
012

014/020
018
001

Bivalve molluscs Raw 36/925 (3.9%)
A+ B+ CDT+

078
126
010 [140]

A− B+ CDT− 017
001

+: Positive; −: Negative; 1 ND: Not determined.

5.7. C. difficile in Vegetables

The information on C. difficile isolated from vegetables is summarised in Table 3, with
overall prevalence rates of 2% to 5% [22,103,142]. Lim et al. detected C. difficile in 56% of
organic and 50% of non-organic potatoes, 22% of organic beetroots, 56% of organic onions
and 53% of organic carrots [143]. Tkalec et al. found this pathogen in 9% of leaf vegetables,
7% of ginger, 26% and 60% of potatoes, and 14.3% of homegrown leaf vegetables [144]. RTE
salads contamination rates included 2% [41], 3% [142], 3.3% [145] and 8% (153].

Table 3. Vegetable retail foods contaminated with C. difficile, including toxin gene profiles (toxins A,
B and CDT) and ribotypes.

Product Raw or RTE Total No. (%) Positive Toxin Gene Profile Ribotype(s) Reference

Root vegetables
(potatoes, beetroots, onions

and carrots)
Raw 30/100 (30%)

A+ B+ CDT+ QX 274

[143]
A+ B+ CDT−

002
137

QX519
QX049

101

A− B+ CDT+
070
237
584

A− B− CDT+ 033

Root vegetables (potatoes,
ginger) and leaf vegetables Raw and RTE 28/154 (18.2%)

A+ B+ CDT−

001/072
011/049
014/020

012
070
150
394

SLO129
SLO187
SLO279

[144]

A+B+CDT+

027
244
126
023

Lettuce RTE 1/54 (1.9%) A+ B+ CDT+ 126 [41]
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Table 3. Cont.

Product Raw or RTE Total No. (%) Positive Toxin Gene Profile Ribotype(s) Reference

Vegetables
(potato, onion,

mushroom, carrot, radish
and cucumber)

Raw 7/300 (2.4%) A+ BND CDT ND ND 1 [103]

Salad
(lettuce, lamb’s lettuce) and

vegetable (pea sprouts)
RTE 3/104 (2.8%) A+ B+ CDT−

014/020
001
015

[142]

Vegetables
(carrots, potatoes, garlic,

ginger, beets, mushrooms,
lettuce, green onions,

radishes, etc.)

Raw and RTE 5/111 (4.5%)
A+ B+ CDT+ 078

[22]

A+ B+ CDT− ND 1

Salad
(baby leaf spinach) RTE 2/60

(3.3%) A+ B+ CDT+ 078
126 [145]

Salad
(baby leaf spinach,

organic mixed leaf salad,
organic lettuce)

RTE 3/40 (7.5%)

A+ B+ CDT ND 001

[146]A− B+ CDT ND 017

Spinach leaves RTE 2/10 (20%) A−B+ CDT− ND 1 [110]

Iceberg lettuce leaves RTE 1/10 (10%) A−B+ CDT− ND 1 [110]

Little Gem lettuce leaves RTE 1/10 (10%) A−B+ CDT− ND 1 [110]

Wild rocket leaves RTE 1/10 (10%) A−B+ CDT+ ND 1 [110]

Coleslaw RTE 1/10 (10%) A−B+ CDT− ND 1 [110]

+: Positive; −: Negative; 1 ND: Not determined.

All of these ribotypes have toxin genes associated with illness in humans. Many have
been isolated directly from patients with CDI (Table 4), including 001, 002, 003, 010, 011,
012, 014, 015, 017, 018, 020, 023, 027, 029, 070, 071, 072, 077, 078, 087, 101, 126, 137 and 150.
Of these, 002, 003, 012, 014, 027, 029, 070, 078 and 126 have been reported in confirmed
community-acquired CDI, while 001, 017, 027, 072, 078 and 126 are hypervirulent.

Table 4. Further characterisation (pathogenicity, hypervirulence and association with community-
acquired CDI) of the ribotypes isolated from foods (Tables 2 and 3).

Ribotype Pathogenic Hypervirulent CA CDI 1 Reference(s)

yes no unk 2 yes no unk

001 X X [81,99,147–150]

002 X X X [81,99,148,149,151,152]

003 X X X [81,99]

010 X X [150]

011 X X [148]

012 X X X [81,148–150,153]

014 X X X [81,99,148,151,153]

015 X X [148,149,151]

017 X X [145,148,149,154]

018 X X [148,149]

020 X X [148,149,151]
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Table 4. Cont.

Ribotype Pathogenic Hypervirulent CA CDI 1 Reference(s)

023 X X [148,149,151]

027 X X X [72,73,147–149,153,155]

029 X X X [99,153]

070 X X X [81,149]

071 X X [149]

072 X X [99,148,149,156]

077 X X [149]

078 X X X [72,73,148,149,153–155]

087 X X [148,149]

101 X X [149]

126 X X X [6,80,81,99,149,153]

137 X X [149]

150 X X [149]

033, 045, 049, 237, 244, 394, 475, 584, M31, PA01, PA05, PA16, PA22, QX049,
QX274, QX519, SLO129, SLO187, SLO279 No information

1 CA CDI = community acquired C. difficile infection; 2 unk = unknown.

5.8. Meta-Analysis

The data presented in Tables 2 and 3 were analysed using Graphpad Prism version
9.3.1. The odds ratios (OR) (the odds of consuming a contaminated product) were calculated
for each food type. Briefly, the OR was calculated as the number of positive over negative
samples reported for each study. Turkey (with only two studies) was combined with the
chicken data (poultry category), while the single lamb study was omitted. The medians
and 95% confidence intervals were obtained and were then used to prepare the forest
plots. In these Figures, the vertical line is set at an OR = 1 (50:50 chance of the food being
contaminated). When all ribotypes are considered, shellfish and pork present a higher risk
to the consumer (Figure 2). However, when the analysis is repeated, focusing exclusively on
ribotypes 027 and 078 (the 2 hypervirulent strains most commonly associated with human
infection), the increased risk is only associated with the consumption of pork (Figure 3).
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6. The Epidemiology of Foodborne Infection

In 1978, C. difficile was recognised as the causative agent of pseudomembranous colitis
and diarrhoea in patients on antimicrobial therapy and it was a hospital-associated dis-
ease [157]. In the 1980s and 1990s, the incidence of CDI increased significantly, driven by the
use of broad-spectrum third-generation cephalosporins (to which C. difficile is intrinsically
resistant), but the disease was rarely fatal [158,159]. There was a further increase in CDI
in the first 10 years of this century driven by the emergence and epidemic spread of the
hypervirulent strain, ribotype 027 [160]. The epidemiology of CDI also changed in terms of
clinical presentation, response to treatment, and disease outcome. Community-acquired
CDI, defined as cases with symptom onset in the community with no history of hospitalisa-
tion in the previous 12 weeks or symptom onset within 48 h of hospital admission [161],
also emerged. Since then, the incidence of CDI has remained high in developed coun-
tries [159,162], and rates of community acquired CDI have increased, accounting for 41%,
30% and 14% of total CDI in the USA, Australia and the EU, respectively [96,159,163]. Fur-
thermore, community acquired CDI patients are generally younger, healthy, often female
and lack the traditional risk factors of CDI, including a history of antimicrobial usage [164].

The natural habitat of C. difficile is the mammalian gastrointestinal tract (GIT). These
bacteria colonise the neonatal GIT, proliferate and are excreted in the faeces to which
other newborn animals are exposed, and the cycle recommences. As mammals develop,
other bacterial species colonise the GIT, and the prevalence of C. difficile decreases [165].
The GIT microbiota inhibit germination, vegetative growth and toxin production, thus
protecting against C. difficile [48]. However, in the 1990s, this protection was removed
when cephalosporins were used in animal husbandry, and food animals became a major
reservoir and amplification host for C. difficile [119,166], resulting in the contamination of
the environment and a range of foods [100,119,166].

Once the environment is contaminated, there are multiple direct and indirect routes to
humans, including via food (as illustrated in Figure 4). It is all but impossible to provide
incontrovertible proof of foodborne transmission because of the ubiquitous nature of C.
difficile, delayed onset of symptoms, ability to persist for extended periods as an endospore,
etc. However, it has been shown that C. difficile endospores in animal waste, wastewater
treatment sludge, soil, manure and compost may survive for extended periods of time,
facilitating direct contamination of vegetables and fruit or meat via cross-contamination
of carcasses during slaughter and processing [108,147]. Water also frequently contains C.
difficile endospores [99,100,148], and food production may also be contaminated via water
used for irrigation or food processing [100,144]. Moreover, the presence of endospores in
rivers may contaminate fish and seafood [100,138,139,141]. Transfer from food and wild
animals and from domestic pets has also been described [116,149].
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Of particular interest, from the public health perspective, is the detection of similar C.
difficile isolates in farm animals and in humans suffering from CDI, suggesting this pathogen
may be zoonotic [150]. Whole genome sequencing (WGS) analysis has shown that ribotypes
078, 126 and 066, commonly found in pigs and/or cattle, are genetically identical to those
in humans [151–155]. Although ribotype data for sheep is limited, ribotypes 014, 010 and
045 are common to both humans and ovine sources [119,156,167], while human-related
ribotypes 001, 014 and 039 are also found in broilers [120–122,168].

7. Control Strategies

CDI can be controlled in hospitals using deep environmental cleaning, appropriate
hand hygiene, stringent infection control and antimicrobial stewardship [169]. However,
the same strategies cannot be used in agriculture and food processing [15]. Reduced
usage of antibiotics in food animal production would reduce C. difficile amplification but
is unlikely as increasing global food demand is driving increased antimicrobial usage in
animal husbandry, which is projected to rise by 67% by 2030 [15,140]. In 2006 the EU
banned the use of antibiotics as growth promoters, followed by the USA in 2017, but other
major food-producing countries still allow this practice [170].

Preventing the recycling and dissemination of C. difficile endospores in animal slur-
ries applied to land as organic fertilisers would also facilitate reduced environmental
contamination and animal carriage. However, research is required to develop effective
treatments [171]. Vaccination of food-producing animals is another possible control strategy,
but an effective vaccine has not been developed yet [15]. Controlling C. difficile in food is
dependent on reducing or eliminating the endospores, which are resistant to chilled (4 ◦C)
and freezing (−18 ◦C and −80 ◦C) temperatures [172,173]. Although the endospores are
resistant at 80 ◦C [172–174] and will survive the recommended cooking time temperature
combinations recommended for meat [174], they are eliminated at 98 ◦C for 2 min [175].
The same authors suggested microwave irradiation (800 W/60 s) also achieved complete
inactivation by denaturing the outer coat.

C. difficile endospores are also resistant to desiccation, hydrostatic pressure [37,176–179]
and a range of food preservatives, including sodium nitrite, sodium nitrate and sodium
metabisulfite, at permitted concentrations [180]. In contrast, nisin [181], black seed oil,
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myrrh water [182], garlic juice, peppermint oil, trans-cinnamaldehyde, allicin, menthol and
zingerone [183] have a potential application, but validation studies are required before they
can be used in controlling C. difficile in food.

8. Conclusions

Based on the information provided, it was concluded that C. difficile is widespread in
the environment and along the food chain. Many food isolates carry the virulence factors
required for human infection, and there is no conceivable reason why food is not a source
of these pathogens. This conclusion is further supported by the presence of the same
ribotypes in food and humans suffering from community-acquired CDI. Based on our
analysis, potentially vulnerable consumers should be advised not to handle or consume
shellfish or pork.
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