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Abstract: Mepiquat (Mep) is a contaminant produced by Maillard reaction with reducing sugar,
free lysine and an alkylating agent under typical roasting conditions, particularly in the range of
200–240 ◦C. It has been reported that exposure to Mep is harmful to rats. However, its metabolic
mechanism is still not clear. In this study, untargeted metabolomics was used to reveal the effect
of Mep on the metabolic profile of adipose tissue in Sprague-Dawley rats. Twenty-six differential
metabolites were screened out. Eight major perturbed metabolic pathways were found, which
were linoleic acid metabolism, Phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine
metabolism, arachidonic acid metabolism, Glycine, serine, and threonine metabolism, glycerolipid
metabolism, Alanine, aspartate, and glutamate metabolism, and glyoxylate and dicarboxylic acid
metabolism. This study lays a solid foundation for clarifying the toxic mechanism of Mep.
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1. Introduction

Mepiquat (N,N-dimethylpiperidinium, C7H16N, Mep) is a plant growth regulator
usually used in agriculture with high efficiency. Maximum residue limits (MRLs) for
mepiquat in foods have been established in many countries or regions [1]. It is also a
contaminant produced by the Maillard reaction with reducing sugar, free lysine and an
alkylating agent under typical roasting conditions, particularly in the range of 200–240 ◦C.
The highest levels of Mep were found in roasted barley and soluble coffee, 640 µg/kg
and 1400 µg/kg, respectively [2]. Levels of Mep were 1064 µg/kg and 293 µg/kg in
potatoes and broccoli after roasting at 240 ◦C and 260 ◦C respectively for 20 min in the
oven [3]. Mep levels in oven-cooked beef were up to 82.5 µg/kg after 10 min at 250 ◦C [4].
Therefore, Mep has become a potential factor affecting food safety. Mep formed in thermally
processed foods may raise human exposure. The European Food Safety Authority (EFSA)
has reported that exposure to Mep is harmful to rats. It was found that Mep can cause
kidney vacuolization and liver and spleen damage [5], but its metabolic mechanism is still
not clear.

Metabolomics can evaluate the global metabolic profiling of molecular responses
in organisms that are disturbed by the outside world, and generate a large amount of
metabolic pathway information for deciphering the metabolic networks altered by various
stimuli [6]. Techniques such as nuclear magnetic resonance [7] and mass spectrometry [8,9]
are used in metabolomic analysis. Nuclear magnetic resonance-based metabolomic analysis
can achieve unbiased and high-throughput analysis of biological samples, but it has limited
dynamic range, low sensitivity, and small metabolite detection coverage. As a result,
its application is limited. Mass spectrometry has advantages of strong specificity, high
resolution, and high sensitivity. For the analysis of biological samples, it can simultaneously
detect hundreds of small molecule metabolites [10]. White adipose tissue is an important
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participant in energy regulation of body. It stores excess ingested fatty acids in the form
of triglycerides and meets the energy needs of other organs by releasing fatty acids. In
addition, it is an endocrine organ affecting essential metabolic processes, including the
dynamic balance of lipid and glucose [11].

To date, there is no metabolomics study of adipose tissue of mepiquat-exposed rats. In
this study, gas chromatography-mass spectrometry (GC-MS) was used to detect changes of
metabolites in adipose samples. In addition, we examined histopathological changes of
adipose tissues in rats. The method was established to find more differential metabolites to
comprehensively reveal the mechanism of Mep toxicity.

2. Materials and Methods
2.1. Chemicals and Reagents

Mepiquat (purity > 98%) was purchased from Sigma-Aldrich (Buchs, Switzerland).
Methanol was HPLC grade and obtained from Fisher (Fair Lawn, NJ, USA). All standard
compounds and 4-chloro-DL-phenylalanine were gained from Sigma or Sigma-Aldrich
(St. Louis, MO, USA), Sigma-Aldrich also provided the derivatization reagent (99% MSTFA
+ 1% TMCS, pyridine, and methoxyamine). All other chemicals were analytical grade.

2.2. Animals and Treatments

This experiment was carried out in the SPF (Specific Pathogen Free) animal laboratory
of animal center of Peking University Health Science Center (Beijing, China). Conditions of
the breeding environment were controlled as follows: 12 h dark/light cycle, temperature
22 ◦C ± 1 ◦C, and relative humidity 60 ± 5%. All experimental treatments were carried out
according to the European Community guidelines for experimental animal use. The study
plan was agreed by the Experimental Animal Protection and Use Committee of Peking
University (Approval No. LA2019032). Thirty male Sprague-Dawley rats aged 5–6 weeks
were randomly divided into normal diet group (Normal Diet, ND, n = 10), low-dose group
(Low-dose Diet, LD, n = 10) and high-dose group (High-dose Diet, HD, n = 10). Rats were
fed with standard laboratory feed and with ad libitum access to diet and water. One week
later, the weight of rats was 200 ± 15 g. LD50 of mepiquat is 464 mg/kg bw [5]. Rats in
LD group and HD group were given 15 mg/kg and 150 mg/kg Mep dissolved in distilled
water by oral gavages once every morning [12]. Rats in ND group was given 10 mL/kg
distilled water by the same way. Body weight were recorded daily. Rats were sacrificed by
decapitation, adipose tissues were collected quickly, and some of the adipose tissues were
frozen at −80 ◦C, while the rest were fixed in 10% neutral buffered formalin solution for
histological analysis.

2.3. Sample Preparation

Fifty milligram white adipose tissue was homogenized in 2.0 mL of chloroform/methanol
(v/v, 2:1). After centrifugation at 10,000 r/min for 5 min at 4 ◦C, supernatant was collected
and the same procedure was used twice to extract the residue. The obtained complete
supernatant was dried with nitrogen after being centrifuged for 5 min at 12,000 r/min.
In total, 10 µL of 4-chloro-DL-phenylalanine (1.05 mg/mL in water) was added to each
sample. Every sample was lyophilized and derivatized by adding 80 µL of MSTFA at 70 ◦C
for 3 h. Every sample was mixed with 165 µL chloroform, vortexed, and centrifuged at
15,000 r/min for 15 min at 4 ◦C. Supernatant was transferred to GC-MS vials for analysis.
Quality control (QC) samples were made by mixing the same volume (10 µL) of each
sample. QC sample was run once every six samples during the assay [13].

2.4. GC-MS Analysis

Agilent 7890A/5975C gas chromatography mass spectrometer was used with an HP-5
MS capillary column (30 m × 250 µm i.d., 0.25 µm). The carrier gas was chromatographic
grade helium, and the constant flow rate was 1.0 mL/min. The temperature program was
set as follows: the initial temperature was 60 ◦C, held for 2 min, increased to 240 ◦C at a rate
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of 5 ◦C/min, then held for 3 min, and raised to 290 ◦C at a rate of 12 ◦C/min, maintained for
2 min. Injector temperature was set at 280 ◦C. Solvent delay was 5 min. Splitless injection
mode was used. Injection volume was 1 µL. The mass spectrometry data were obtained in
full scan mode (m/z 50 to 650). Electron energy was 70 eV. Identification of compounds
was carried out by authentic standards and the NIST library (2014) (Gaithersburg, MD,
USA) [14].

2.5. Data Processing and Multivariate Analysis

Data analysis was performed based on a previous research [14]. The normalized data
were imported into SIMCA-P14.1 software (Umetrics, Umeå, Sweden). Data were analyzed
with PCA model and PLS-DA model. Differential metabolites were determined based on
variable importance in the projection (VIP > 1.0) and p-value (p < 0.05) gained from the
Mann–Whitney U test in SPSS22.0 software (SPSS Inc., Chicago, IL, USA). Metaboanalyst 5.0
(https://www.metaboanalyst.ca/ (accessed on 26 February 2022)) and cytoscape software
was utilized for metabolic pathway analysis.

2.6. Receiver Operator Characteristic (ROC) Analysis

The ROC analysis was used for assessing the diagnostic ability of the differential
metabolites to classify rats into a low or high Mep exposure. The area under ROC curve
(AUC) from 0.5 to 1.0 showed diagnostic accuracy from no discrimination to good classifi-
cation. The ROC analysis was completed by SPSS 22.0 software.

3. Results and Discussion
3.1. Weight Change

In this study, weight gained in Mep exposure groups were slower than that in the
normal diet group. It indicated that Mep significantly inhibited the weight gain of rats
(p < 0.05), as shown in Figure S1.

3.2. Histopathological Analysis

As shown in Figure 1, adipose tissue cells in ND group were closely arranged, and
were similar in size with clear outlines. It showed disordered cell arrangement, different
sizes, and irregular changes in cell shape in LD group. The number of cells increased in the
same field of view. In HD group, it was observed that cells size and shape changed greatly.
Some cells in HD group increased in size by a factor of two or more compared to those
in ND group. In HD group, and the outline of cells was deformed and blurred, and the
arrangement was disordered, accompanied by inflammatory cell infiltration.

3.3. GC-MS Analysis of Adipose Tissue

Differential metabolites were screened based on the remarkable differences (VIP > 1.0
and p < 0.05) of HD/ND in abundance. A total of twenty-six differential metabolites in
adipose were quantified by normalization to 4-chloro-DL-phenylalanine (internal standard).
The relative levels of metabolites were shown as fold changes (Table 1).

Twenty-six metabolites in Table 1 were regarded as differential metabolites. Elevated
concentrations of many metabolites were found in rats. Compared with ND group, the
levels of amino acids, such as glycine, valine, leucine, isoleucine, serine, proline, phenylala-
nine, and alanine, were higher in HD group. By contrast, fatty acids including propanoic
acid, hexadecanoic acid, octadecanoic acid, arachidonic acid, and oleic acid decreased in
rats exposed to Mep. In comparison with ND group, contents of propionate, phosphoric
acid, acetamide, creatinine, D-mannitol, pentanedioic acid, and acetic acid increased, while
levels of lactic acid, urea, cholesterol, and glycerol decreased in HD group.

https://www.metaboanalyst.ca/
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Figure 1. HE staining of adipose tissues from different groups (original magnification: 400×) (ND
group: Normal Diet group, n = 10; LD group: Low-dose Diet group, n = 10; HD group: High-dose
Diet group, n = 10).

3.4. Adipose Tissue Metabolomics Analysis

Data of adipose samples from three groups were visualized. In the PCA model, it was
found that the ND, LD, and HD groups was clearly separated. The PLS-DA model showed
that scattered points of three groups were clearly distinguished too. Mep-exposed groups
were significantly shifted from the ND group, and the HD group was more significantly
shifted than the LD group. This showed that with the increase of administration doses,
significant changes were found in adipose tissue. The validity of the model was confirmed
by a permutation test and the cross-validation parameter Q2.

Analytical testing for stability and reproducibility was performed with quality con-
trol (QC) samples. In Figure 2, the QC samples have little change and the distribution
was relatively concentrated. Its reproducibility was good, indicating that the system was
stable and reliable. In Figure 2A, R2X (cum) = 77.7%, Q2 (cum) = 56.6%. In Figure 2B,
R2X (cum) = 76.7%, R2Y (cum) = 84%, Q2 (cum) = 73.3%. It showed that the two models
have good quality and predictive ability. By performing a permutation test, it was veri-
fied whether the PLS-DA model was overfitting to evaluate the reliability of the model.
The permutation experiment (number of permutations n = 999), R2 = (0.0, 0.175) and
Q2 = (0.0, −0.403), proved that the model was not over fitted.
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Table 1. Differential metabolites detected in adipose tissue of rats in the high-dose group by
metabolomic analysis based on GC-MS.

Metabolite RT
(min) p-Value VIP Fold Change

(HD-ND) FDR Trend Metabolic Pathways

Lactic acid 5.30 1.90 × 10−5 2.13 0.25 3.53 × 10−5 ↓ Glycolysis/Gluconeogenesis
Propanoic acid 8.94 7.00 × 10−3 3.31 0.69 7.28 × 10−3 ↓ Propionic acid metabolism

Alanine 10.03 1.30 × 10−5 1.11 1.72 2.60 × 10−5 ↑ Alanine, aspartate, and
glutamate metabolism

Glycine 10.51 9.80 × 10−9 1.07 3.28 3.64 × 10−8 ↑ Glycine, serine, and
threonine metabolism

Valine 13.16 4.00 × 10−9 1.03 3.48 1.73 × 10−8 ↑ Valine, leucine and
isoleucine biosynthesis

Urea 14.19 1.20 × 10−8 1.99 0.50 3.90 × 10−8 ↓ Urea cycle

Leucine 14.71 1.50 × 10−4 1.90 2.05 2.17 × 10−4 ↑ Valine, leucine and
isoleucine biosynthesis

Glycerol 14.9 3.00 × 10−3 2.29 0.67 3.39 × 10−3 ↓ Glycerolipid metabolism

Isoleucine 15.28 3.50 × 10−9 1.19 2.15 1.82 × 10−8 ↑ Valine, leucine and
isoleucine biosynthesis

Serine 17.16 5.40 × 10−5 1.12 1.52 8.78 × 10−5 ↑ Glycine, serine, and
threonine metabolism

Propionate 18.88 1.70 × 10−9 1.05 1.69 1.11 × 10−8 ↑ Pantothenate and CoA
biosynthesis

Acetic acid 20.70 1.70 × 10−9 1.04 1.58 2.74 × 10−4 ↑ TCA cycle

Proline 21.07 1.40 × 10−4 1.70 1.52 2.14 × 10−4 ↑ Arginine and proline
metabolism

Pentanedioic acid 21.30 3.60 × 10−10 1.67 3.64 4.68 × 10−9 ↑ Pentose and glucuronate
interconversions

Creatinine 22.87 3.70 × 10−8 1.11 3.15 9.62 × 10−8 ↑ Arginine and proline
metabolism

Phenylalanine 23.49 1.10 × 10−9 1.16 2.44 9.53 × 10−9 ↑
Phenylalanine, tyrosine,

and tryptophan
biosynthesis

Acetamide 26.14 2.30 × 10−10 1.82 8.90 5.98 × 10−9 ↑ Phenylalanine metabolism
Phosphoric acid 26.82 3.30 × 10−6 3.27 3.29 7.15 × 10−6 ↑ Propionic acid metabolism

Glutamine 27.14 2.30 × 10−8 1.01 0.30 6.64 × 10−8 ↓ Alanine, aspartate, and
glutamate metabolism

D-Mannitol 30.44 2.70 × 10−4 1.16 1.84 3.51 × 10−4 ↑ Fructose and mannose
metabolism

Hexadecanoic acid 32.01 7.40 × 10−4 4.06 0.61 8.75 × 10−4 ↓ Fatty acid biosynthesis

9,12-Octadecadienoic
acid 35.16 9.70 × 10−8 3.28 2.20 2.29 × 10−7 ↑ Fatty acid biosynthesis

Octadecanoic acid 35.48 3.30 × 10−4 1.79 0.62 4.09 × 10−4 ↓ Fatty acid biosynthesis

Arachidonic acid 39.52 1.20 × 10−2 1.31 0.77 1.20 × 10−2 ↓ Arachidonic acid
metabolism

Oleic acid 41.94 2.80 × 10−5 1.93 0.46 4.85 × 10−5 ↓ Fatty acid biosynthesis

Cholesterol 44.48 5.00 × 10−3 1.12 0.71 5.42 × 10−3 ↓ Steroid hormone
biosynthesis

“↑” represents an increase in content of high-dose group compared to normal group; “↓” represents a decrease in
high dose group compared to normal group.

Boxplots were used for comparing changes in relative levels of metabolites in adipose
tissue. In comparison with the ND group, contents of glycine (VIP = 1.07, p < 0.001) and
isoleucine (VIP = 1.19, p < 0.001) increased in Mep-exposed groups; however, levels of
octadecanoic acid (VIP = 1.79, p < 0.001) and glutamine (VIP = 1.01, p < 0.001) decreased in
Mep-exposed groups (Figure 3). This indicated a dose-dependent relationship in groups
with Mep exposure.
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Figure 2. PCA and PLS-DA score plot derived from the GC-MS analysis of adipose tissue from the
ND, LD, and HD groups (A) PCA score map (R2X = 77.7%, Q2 = 56.6%); (B) PLS-DA score map
(R2X = 76.7%, R2Y = 84 %, Q2 = 73.3%); (C) Permutation experiment of PLS-DA model (n = 999)
R2 = (0.0, 0.175), Q2 = (0.0, −0.403) (PCA: Principal Component Analysis; PLS-DA: Partial Least
Squares Discrimination Analysis; ND group: Normal Diet group, n = 10; LD group: Low-dose Diet
group, n = 10; HD group: High-dose Diet group, n = 10).

3.5. ROC Curve

Differential metabolites were subjected to ROC analysis. ROC analysis results with the
MS quantitative data of twenty-six metabolites are shown in Table S1, of which metabolites
exhibited a good diagnostic (AUC > 0.8). These differential metabolites can distinguish
between normal diet rats and relatively high exposure rats with Mep exposure.

3.6. Metabolic Pathway Analysis

Twenty-six differential metabolites are imported into MetaboAnalyst 5.0 for visual-
ization. Pathway analysis was performed by the Rattus norvegicus (rat, 81 pathways)
pathway library and the compound name of differential metabolites. The impact-value
threshold obtained from pathway topology analysis was 0.10. Metabolic pathways with
an impact value greater than 0.10 are linoleic acid metabolism, Phenylalanine, tyrosine,
and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism,
Glycine, serine, and threonine metabolism, glycerolipid metabolism, Alanine, aspartate,
and glutamate metabolism, and glyoxylate and dicarboxylate metabolism. A summary of
the pathway analysis was shown in Figure 4 and Table 2. Linoleic acid metabolism is an
important metabolic pathway with the highest impact value (Figure S2).
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Table 2. Pathway analysis result with MetaboAnalyst 5.0.

Total Expected Hits Raw p −log(p) Holm p FDR

Glyoxylate and dicarboxylate metabolism 32 0.51613 3 0.013508 1.8694 1 0.28367
Phenylalanine, tyrosine, and

tryptophan biosynthesis 4 0.064516 1 0.063032 1.2004 1 0.59703

Alanine, aspartate, and
glutamate metabolism 28 0.45161 2 0.073113 1.136 1 0.59703

Linoleic acid metabolism 5 0.080645 1 0.078183 1.1069 1 0.59703
Phenylalanine metabolism 10 0.16129 1 0.15048 0.82252 1 0.90288
Glycerolipid metabolism 16 0.25806 1 0.23006 0.63815 1 1

Glycine, serine, and threonine metabolism 33 0.53226 1 0.41857 0.37823 1 1
Arachidonic acid metabolism 36 0.58065 1 0.44686 0.34983 1 1
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Figure 4. Disturbed metabolic pathways in adipose tissue of rats from three groups. (1) Linoleic acid
metabolism; (2) Phenylalanine, tyrosine, and tryptophan biosynthesis; (3) Phenylalanine metabolism;
(4) Arachidonic acid metabolism; (5) Glycine, serine, and threonine metabolism; (6) Glycerolipid
metabolism; (7) Alanine, aspartate, and glutamate metabolism; (8) Glyoxylate and dicarboxylate
metabolism.

KEGG database were used for analyzing metabolic networks related to differential
metabolites. Metabolic network was formed in MetaMapp with integrating biochemical
networks and chemical relationships. Metabolomics datasets were efficiently visualized as
network graphs in Cytoscape using MetaMapp. In Figure 5, levels of all carbohydrates and
amino acids are upregulated. Among all the differential metabolites, acetamide has the
largest change. The blue-, green-, and pink-dotted boxes represent fatty acid metabolism,
amino acid metabolism, and carbohydrate metabolism, respectively. In Figure 6, there are
more upregulated metabolic pathways in the Mep-exposed groups, especially carbohydrate
metabolism and amino acid metabolism. For example, propionate metabolism, pyruvate
metabolism, and valine, leucine, and isoleucine biosynthesis are enriched in various up-
regulated metabolites. In Mep-exposed groups, there are 16 upregulated and 10 down-
regulated differential metabolites. The key upregulated metabolite alanine participated
in 16 metabolic pathways, which are mainly involved in alanine metabolism, aminoacyl-
tRNA biosynthesis, and glutathione metabolism. The key downregulated metabolite is
glutamine, which is mainly assigned to D-glutamine and D-glutamate metabolism, purine
metabolism, and pyrimidine metabolism. Results showed that Mep-induced metabolic
pathways of energy, lipids, and amino acids in adipose tissue were disturbed (Figure 7).
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Figure 5. Metabolic pathways associated with Mep exposure when comparing with ND group. The
depicted networks revealed red nodes represent significantly upregulated metabolites, blue nodes
represent significantly downregulated metabolites that were involved in the affected metabolites,
and gray nodes represent no significant changes in metabolites. The size of the node was positively
correlated with the fold change between the HD group and ND group (Mep: Mepiquat; ND group:
Normal Diet group, n = 10; LD group: Low-dose Diet group, n = 10; HD group: High-dose Diet
group, n = 10).
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Figure 6. Network analysis of differential metabolites and metabolic pathways at Mep-exposed groups
shows that there are twenty-six differential metabolites. “*” means p < 0.05, “**” means p < 0.001,
“***” means p < 0.0001. The red circles and black circles show upregulation and downregulation
of metabolites, respectively. Intensity of the color displays the metabolite fold change. A total of
thirty-four metabolic pathways (squares) were classified as six metabolic pathways (Table S2), with
different metabolites connected by the red line (upregulation) and black line (downregulation).
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3.7. Analysis of the Metabolic Function of Adipose Tissue in Rats of ND, LD, and HD Groups

Leucine, isoleucine, and valine are three common branched-chain amino acids (BCAAs)
in proteins. Elevated levels of BCAAs in adipose tissue may be due to decreased expres-
sion of BCAAs catabolic enzymes [15,16]. In addition, BCAAs help to activate NADPH
oxidase and produce mitochondrial reactive oxygen species (ROS), which in turn assists
cellular inflammation and oxidative stress [17]. Therefore, elevated content of BCAAs
may be related to the oxidative stress response induced by Mep in rats. Glutamine is
helpful to tricarboxylic acid (TCA) anaplerosis, glutathione biosynthesis, and amino acid
biosynthesis [18]. Decreased glutamine indicates abnormalities in the glutamate and glu-
tamine cycle [19]. It has been shown that glutamine is involved in signal transduction,
apoptosis, and autophagy of tumor cells [20]. Serine is a main methyl donor, which is
necessary for the growth of cells and tissues. It has a strong effect on the catalytic activity of
many enzymes [21–23]. Glycine is an intermediate in metabolism of serine and threonine,
which is also involved in immune functions, anti-inflammatory processes, and antioxidant
responses [24]. Glycine can decrease protein carbonylation and lipid peroxidation by low-
ering the release of superoxide radicals [25]. The glycine, serine, and threonine pathway
plays a vital role in metabolic changes. It may also provide a valuable precursor for energy
metabolism in TCA cycle [26]. Compared with the ND group, an increase of glycine and
serine in the HD group may cause TCA cycle disorders. Proline is one of the most important
amino acids for protein synthesis in the human body. Proline metabolism plays a main
role in tumor development [27]. Arginine underwent hydrolysis, the formed ornithine can
be changed into polyamines and proline, and the urea from its metabolism is drained by
kidneys [28]. Proline was disturbed in Mep-exposed groups, and its upregulation may
be related to the decrease of metabolic level [29]. Hepatocytes deal with toxic ammonia
by some biochemical reactions to produce urea. The urea cycle is closely related to other
metabolic pathways, indicating that abnormal expression of almost all enzymes may alter
urea cycle metabolites to help tumor growth [30]. Under normal conditions, almost all urea
is filtered by the kidneys. The levels of urea in adipose tissues were significantly increased
in Mep-exposed groups. The reason may be that Mep provides more raw materials for
the synthesis of urea, so that urea cannot be excreted in time. It may also be because Mep
induced kidney damage. Creatinine is one metabolite of glycine in the body [31]. The level
of creatinine is a significant indicator for studying renal function [32]. Creatinine levels
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were elevated in the study, indicating insufficiency of kidney function because of exposure
to Mep [33].

Fatty acids affect the physiology of cells and tissues [34]. Compared with ND group,
contents of glycerol, hexadecanoic acid, octadecanoic acid, arachidonic acid, and oleic acid
in HD group decreased, and the level of 9, 12-octadecadienoic acid increased. Most fatty
acid metabolites were significantly reduced, suggesting an increased metabolic rate of fatty
acids broken down by β-oxidation. The result may be related to the enhancement of fatty
acid metabolism caused by insufficient glucose metabolic energy. Stearoyl-CoA desaturase
1(SCD1) is one rate-limiting enzyme that promotes the formation of monounsaturated fatty
acids [35]. We believed that the increase in 9, 12-octadecadienoic acid and the decrease in
most fatty acids in Mep-exposed groups were closely related to SCD1 enzymatic activity.
Excessive consumption of fat results in increased production of ROS [36]. ROS can lead
to expression and secretion of inflammatory adipokines, inducing oxidative stress [37].
Arachidonic acid (AA) is the precursor of inflammatory response factors and an important
second messenger in various cell signal transduction pathways [38]. When inflammatory
substances invade the organism, AA is broken down into free forms and enters the cell
fluid. Therefore, it is speculated that the decrease of AA content may be due to the
production of inflammatory factors after Mep exposure. Changes in hexadecanoic acid
contents may be related to lipid homeostasis regulation. Hexadecanoic acid has been shown
to be related to insulin response [39]. In addition, hexadecanoic acid also contributes to
lipoapoptosis by producing the hazardous metabolite lysophospholipid-choline [40]. In
comparison with other saturated fatty acids, octadecanoic acid lowers LDL cholesterol.
Octadecanoic acid inhibits growth below a specific concentration, and higher concentrations
may cause cytotoxicity. Oleic acid inhibits the increase of octadecanoic acid in expression
of the intercellular adhesion molecule (ICAM-1) [41]. Cholesterol is mainly formed in the
liver, which is the precursor of some steroid hormones and vitamin D3. Cholesterol is
indispensable for keeping life activities of cell membranes [42]. Mep-exposed groups may
have lower cholesterol levels as a result of abnormal hepatic metabolism.

Pyruvate can produce lactic acid by pyruvate dehydrogenase complex [43]. The
lactic acid level of adipose tissue was trending downward, which is an indication that
Mep can inhibit anaerobic glycolysis. The level of D-mannitol in HD group increased
significantly. D-mannitol can alter the osmotic pressure in body, but it is not utilized
by the body; it is all filtered out by the glomerulus [44]. Propionic acid has function of
immunosuppressive, decreasing fatty acids level and increasing insulin sensitivity [45].
Acetic acid is a vital product of fatty acid β-oxidation, which was significantly elevated
in HD group rats. It increased fatty acid β-oxidation [46]. Moreover, propionate may
play important physiological functions in adipogenesis by influencing G protein-coupled
receptor activity [47]. Phosphoric acid is essential for bones and kidneys [48]. Imbalances
in phosphate levels can bring about bone and kidney damage.

Pentanedioic acid and acetamide showed good sensitivity and specificity. In the
metabolism of amino acids, pentanedioic acid is naturally generated in the body. Defects
in metabolic network of pentanedioic acid result in pentanedioic aciduria, along with
accumulation of toxic by-products. It may induce severe encephalopathy [49]. The massive
accumulation of pentanedioic acid in Mep-exposed groups may be due to the obstacle of
amino acid metabolism. Acetic acid is the source of acetamide, which primarily influences
glutamate and glutamine metabolism. The acetamide content has increased in Mep-exposed
groups, which is consistent with abovementioned results. In addition, acetamide can also
lead to hepatoma [50].

4. Conclusions

To our knowledge, this is the first time that untargeted metabolomics study has been
performed to investigate differential metabolites and possible toxic mechanism of Mep on
adipose tissue. Twenty-six differential metabolites were screened. Levels of amino acids,
such as glycine, valine, leucine, isoleucine, serine, proline, phenylalanine and alanine were
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higher in HD group than those in ND group. By contrast, contents of fatty acids including
propanoic acid, hexadecanoic acid, octadecanoic acid, arachidonic acid, and oleic acid
decreased in rats exposed to Mep. In comparison with ND group, levels of propionate,
phosphoric acid, acetamide, creatinine, D-mannitol, pentanedioic acid, and acetic acid
increased, while contents of lactic acid, urea, cholesterol, and glycerol decreased in the
HD group. Eight major perturbed metabolic pathways were found with the exposure
of Mep, which were linoleic acid metabolism, phenylalanine, tyrosine, and tryptophan
biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, glycine, serine,
and threonine metabolism, glycerolipid metabolism, alanine, aspartate, and glutamate
metabolism, and glyoxylate and dicarboxylic acid metabolism. This study lays a solid
foundation for clarifying the mechanism of Mep toxicity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12040867/s1, Figure S1: Changes in body weight of rats in ND,
LD, and HD groups. Figure S2: Linoleic acid metabolic pathway in rats among different groups. Table
S1. ROC curve and its statistical parameters. Table S2. Metabolic pathways list.
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