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Abstract: Vegetable consumption is recommended and encouraged by all nutritionists and doctors
across the planet. However, in addition to minerals which are beneficial to the body, certain minerals
with a negative influence on human health can sneak in. It is very important that in the case of some
minerals their content in vegetables is known, so that the recommended limits are not exceeded.
The purpose of this study was to evaluate the macro elements (Na, K, Ca, Mg) and trace elements
(Cu, Mn, Fe, Cd, Pb, Zn, Co) in 24 samples of vegetables from four botanical families (Solanaceae,
Brassicaceae, Apiaceae and Amaryllidaceae), purchased from the market in Timis, oara, Romania,
both imported products as well as local products. The atomic-absorption-spectrometry technique
(FAAS) was used to evaluate the macro elements and trace elements. The values obtained for the
macro elements and trace elements were used as input data for the analysis of multivariate data, the
principal component analysis (PCA) in which the vegetable samples were grouped according to their
contribution of certain mineral elements, as well as according to some of the botanical families to
which they belong. At the same time, based on the values obtained for trace elements, an assessment
of the risk to human health in terms of consumption of the vegetables studied was carried out. The
risk assessment for human health was determined on the basis of the estimated daily dose (EDI), the
values of the target hazard coefficient (THQ), the values of the total target hazard coefficient (TTHQ)
and the carcinogenic risk (CR). Following the determination of THQ, the values obtained followed
the order THQWith > THQCd > THQPb > THQCo > THQMn > THQZn > THQFe. The results on the
content of macro elements and trace elements, as well as the assessment of the risk to human health
when consuming the assessed vegetables, were within the limits of European Union (EU) and World
Health Organization and Food and Agriculture Organization (WHO/FAO)legislation.

Keywords: vegetables; macro elements; trace elements; principal components analyzed; assessment
of the risk to human health

1. Introduction

Vegetables are an important source of mineral elements that are essential for the proper
development of the human body [1]. Research has shown that the intake of vegetables
decreases the risk of developing various types of cancer, cardiovascular disease and mor-
tality of any cause [2]. As indicated in the consumer nutrition guide from Health Canada,
United States Department of Agriculture (USDA) and Health and Human Services (HHS),
the UK’s National Health Service and other agencies, a diet rich in vegetables, fruits and
whole grains, which are nutrient-rich foods, will still provide all the nutrients we need for
good nutrition [3]. The World Health Organization and Food and Agriculture Organization
(WHO/FAO) recommends eating a minimum of 400 g of vegetables and fruits per day
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(apart from potato and other starched tubers) to prevent some chronic diseases (heart
disease, cancer, diabetes and obesity) [4,5].

Even though nutrient deficiency is one of the major health concerns in both developed
and developing countries, exceeding certain limits should not be overlooked [6]. In recent
years, environmental contamination by heavy metals has been a global concern, due to
their persistence and mobility between the biotic and abiotic spheres. “Food intake of
plant-derived foods is a major fraction of human exposure that can endanger health”. [7]
Contamination of food with heavy metals is influenced by the following factors: the
composition of the soil, the genotype of the plant, the environment, and the type of
fertilizers and pesticides used [7–9]. The management of fertilizers and manure is relevant
for the production of food, but simultaneously causes effects on the environment, due to the
negative effects on air, soil and water quality. The impact on soil quality is mainly due to
the addition of heavy metals, which can have an impact on soil biodiversity and, in the case
of Cd, on food quality [10]. Research carried out in Romania as well as in other countries in
the world has shown that the highest concentrations of trace elements were obtained in the
case of samples of vegetables and fruits grown in soils near mining operations as well as
industrial areas [11–13].

The main minerals essential for humans are calcium (Ca), phosphorus (P), potassium
(K), sodium (Na) and magnesium (Mg), while iron (Fe), copper (Cu), zinc (Zn), manganese
(Mn), iodine (I) and selenium (Se) are trace elements [14]. Essential trace elements are
important for the biochemical and physiological functions of the human body [1]. Ca
is a major contributor in the prevention of cancer, as well as bone health. The latest
research has determined that high Ca levels are a risk factor for cardiovascular disease [15].
Another important element from a physiological point of view is Mg, which plays a
key role in muscle contraction, gland secretion and nerve transmission. The percentage
of Mg existing in the body is 70% in the skeleton, with the rest in the cells. It plays
a protective role against cardiovascular disease by increasing endothelium-dependent
vasodilation, improving lipid metabolism, reducing systemic inflammation and inhibiting
platelet aggregation [15]. Na and K have an effect on the regulation of blood-pressure
levels [16,17]. Na and K play a fundamental role in the distribution of fluids inside
and outside cells. Exposure to high levels of Na and K is maintained by the specific
permeability of cell membranes and by the activity of transmembrane transporters such
as Na/K-ATPase. K is an essential mineral and has a primary role in physiological
mechanisms, including the transmission of electrical activity in muscle cells and nerve
fibers [17,18]. Zn is an essential element for human metabolism that functions as an
enzymatic cofactor, contributes to the structure of proteins and regulates the expression
of genes [6]. Fe is a vital component of proteins, hemoglobin and myoglobin, and is
responsible for transporting oxygen, cellular metabolism, glucose metabolism and vascular
functions. Fe deficiency in humans leads to a number of health problems, including the
weakening of the immune system and the inhibition of hemoglobin, leading to anemia,
insomnia and other health disorders [19]. Copper (Cu) is an essential trace element in both
humans and animals. The human body contains approximately 100 mg Cu. Diets with
Cu deficiency have serious lifelong consequences. Both in childhood and throughout life,
these diets affect the development of the cardiovascular system, the appearance of bone
malformations and neurological anomalies, as well as immunological ones. Although
it is an essential micronutrient for humans, it can become toxic in the case of a high
level. Exposure to high levels of Cu results in the development of redox Fenton-type
reactions, leading to damage to oxidative cells and their death [20]. Manganese (Mn)
works as a cofactor for a variety of enzymes, including arginase, glutamine synthase,
pyruvate carboxylase and Mn superoxide dismutase (MnSOD). However, compared to
the shortcomings of other essential micronutrients, such as Fe and Zn, which can develop
major health problems, Mn deficiency in humans is rare. However, Mn poisoning can be
more common in overexposure to this metal, resulting in liver cirrhosis, polycythemia,
dystonia and Parkinson’s-like symptoms [21,22]. Even in small quantities, cadmium
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(Cd) is a very dangerous element for human health, especially when it is accumulated
in kidneys, lungs and liver. Cd contamination of vegetables is caused by frequent use of
phosphate fertilizers in agriculture. According to the International Agency for Research
on Cancer, Cd belongs to “Group 1” and is considered a precursor to human cancer, even
through a low exposure in food [23]. Co deficiency has the effect of developing anemia in
pregnant women, as Co stimulates the production of red blood cells, fights anemia, severe
fatigue, shortness of breath and hypothyroidism, all of which result from a lack of Co.
However, it can cause angina, asthma, cardiomyopathy, polycythemia and dermatitis [24].
Pb has been identified as a toxic metal at high concentrations, and widespread use of Pb
results in widespread environmental contamination and global health problems. Having a
cumulative toxic effect, Pb can influence the neurological system and kidneys and blood
circulation, especially in children, infants and fetuses. Pb is distributed in the brain,
liver, kidneys and bones. Over time, Pb accumulates in the teeth and bones, reflecting
cumulative human exposure. Pb can also affect the brain and intellectual development in
children, inducing apoptosis in the organs’ tissues [25–28].

Although there are a number of studies in which the content of macro elements and
trace elements of different varieties of vegetables has been evaluated, the information
published on this topic is limited. Most of the research carried out at international, and
especially national level, evaluates the trace-element content of products of plant origin
from contaminated areas. Even if some evaluations show trace elements within the limits
of international and national legislation, the increased levels for elements such as Pb and
Cd must be constantly monitored, compared with data available in the literature, and
carefully treated.

The purpose of this study was to determine the levels of macro elements (Na, K,
Ca, Mg) and trace elements (Cu, Mn, Fe, Cd, Pb, Zn, Co) in vegetables taken from
supermarkets in Timisoara (imported vegetables) and vegetables taken from local pro-
ducers, from agro-food markets in Timisoara (domestic production), using flame atomic
absorption spectrometry (FAAS). The vegetables selected for the study were the follow-
ing: Solanacee (tomato—L. esculentum, bell pepper—C. annuum, eggplant—S. melongena,
potato—S. tuberosum); Brassicaceae (cauliflower—Brassica oleracea, white cabbage—Brassica
oleracea var. capitata, kohlrabie—Brassica oleracea var. gongyloides.); Apiaceae (parsley—P.
crispum, carrot—Daucus carota subsp. Sativus, celery—A. graveolens); and Amaryllidaceae
(garlic—A. sativum, onion—A. cepa). A multivariate data analysis, principal component
analysis (PCA), was used to determine the association between elements in vegetable sam-
ples. The risk assessment for human health was determined on the basis of the estimated
daily dose (EDI), the values of the target hazard quotient (THQ), the values of the total
target hazard coefficient (TTHQ) and the carcinogenic risk (CR).

2. Materials and Methods
2.1. Reagents and Materials

All reagents used to determine macro elements and trace elements in the vegetable
samples were of extremely pure quality, purchased from Merck (Darmstadt, Germany):
nitric acid (65% HNO3) and hydrochloric acid (37% HCl). Acetylene was purchased from
Linde, Romania, purity 99.6%; the water used was deionized at a resistivity of 18.2 MΩ·cm−1

in a Milli-Q® EQ 7008/7016 Ultrapure and pure-water purification system (Merck).

2.2. Sample Collection and Preparation Process

The selection of vegetable families for evaluation was made according to the de-
gree of their consumption in the western region of Romania. The selected vegetable
families were the following: Solanacee (tomato—L. esculentum, bell pepper—C. annuum,
eggplant—S. melongena, potato—S. tuberosum); Brassicaceae (cauliflower—Brassica oleracea,
white cabbage—Brassica oleracea var. capitata, kohlrabi—Brassica oleracea var. gongyloides.);
Apiaceae (parsley—P. crispum, carrot—Daucus carota subsp. Sativus, celery—A. graveolens);
Amaryllidaceae (garlic—A. sativum, onion—A. cepa). The same vegetable families were
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purchased from local producers in Timis County, Timisoara agro-food market (domestic
product—d.p.), and from supermarkets in Timisoara (imported product—i.p.).

After purchase, the vegetable samples were subjected to a conditioning operation
to remove impurities (soil or remnants of vegetation, etc.), followed by washing with
high-quality reagent water (resistivity 18.2 MΩ·cm−1). Vegetable samples were minced
using a polypropylene manual grater, then mixed to homogenize the composition and
stored in porcelain containers until the analysis. For the determination of the dry matter,
100 g of each sample of vegetables prepared as described above were weighed to the
nearest ±0.001 g in porcelain dishes which had been previously cleaned, and dried to a
constant weight. The containers with the vegetable samples were kept in a drying chamber
(BINDER GmbH, Tuttlingen, Germany,) at 105 ◦C for 6 h. After this time, the containers
with the vegetable samples were removed from the oven and cooled in a desiccator with a
drying agent. This step was repeated until the difference between the last two successive
weights did not exceed ± 0.001 g [24]. Moisture and dry-matter content were calculated
according to Formulas (1) and (2) [29]:

Humidity =
(G 1 − G2)

(G 1 − G3)
· 100 (%) (1)

Dry matter = 100 − Humidity (%) (2)

where
G1 is the weight of the porcelain container and sample before drying;
G2 is the weight of the porcelain container and sample after drying;
G3 is the weight of the porcelain container.

2.3. Dry and Wet Mineralization

Dry mineralization. For each plant product, 2 g of dry matter obtained after drying
was taken and placed in a porcelain crucible. The porcelain crucibles with the vegetable
samples were placed in a calcination kiln where the temperature was gradually increased,
in the first step from 200 to 250 ◦C, and in the second step up to 550 ◦C for a period of 8 h,
until the white ash was obtained.

Wet mineralization. After cooling the crucibles with ashes, an amount of 10 mL HCl
and 5 mL HNO3 was added. It was evaporated until an almost dry sample was obtained.

The solution obtained after mineralization was transferred quantitatively into a volu-
metric flask of 100 mL, and the flask was filled up to the mark [29].

2.4. Macro Element and Trace-Element Determination

The determination of the content of macro elements and trace elements was made
using a flame-type atomic absorption spectrometer—Varian 280 FS SpectrAA—, and air-
acetylene (FAAS) equipment equipped with lamps for each element. Measurements were
carried out at 589.0 nm for Na, 766.5 nm for K, 422.7 nm for Ca, 202.6 nm for Mg, 324.8 nm
for Cu, 279.5 nm for Mn, 248.3 nm for Fe, 228.8 nm for Cd, 217.0 nm for Pb, 213.9 nm for
Zn and 240.7 nm for Co. Calibration curves were created using five concentration levels
of dilutions of standard solutions: for Na, Ca and Mg—5, 10, 15, 20, 25 mg·L−1, for K, Pb
and Co—2, 4, 6, 8, 10 mg·L−1, for Fe—3, 6, 9, 12, 15 mg·L−1, for Cu and Mn—1, 2, 3, 4,
5 mg· L−1, and for Zn and Cd—0.5, 1, 1.5, 2, 2.5 mg·L−1. The analyses of the samples were
carried out in triplicate. The results obtained are presented in g·Kg−1 dry weight for the
macro elements and µg·g−1 dry weight for the trace elements.

2.5. Assessment of the Risk to Human Health

Due to the lack of clear recommendations in the Romanian legislation for the amount
of fresh vegetables consumed every day, but also due to the lack of statistics regarding this
consumption, we considered 200 g vegetables as representing half the amount of fruits and
vegetables recommended by the WHO/FAO [4,5].
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The potential risk to human health due to vegetable consumption was assessed using
the target hazard quotient (THQ), and was calculated using Equation (3) [7,11,30,31]

THQ =
EDI
RfD

(3)

where EDI is the estimated daily dose in µg·Kg−1·day−1 and RfD is the reference dose;
the RfD is: Co—20 µg·Kg−1·day−1, Cd—1 µg·Kg−1·day−1, Pb—3.57 µg·Kg−1·day−1,
Zn—300 µg·Kg−1·day−1, Mn—140 µg·Kg−1·day−1, Fe—45,000 µg·Kg−1·day−1 and
Cu—40 µg·Kg−1·day−1 [32–37]

The estimated daily intake of trace elements (EDI) is calculated using Equation (4)

EDI =
C·IR·EF·ED

BW·AT
(4)

where C is the metal concentration in the sample in µg·Kg−1, IR is the ingestion rate
(vegetables/day as half of the recommended amount by WHO/FAO selected in mg/day),
EF is the frequency of exposure (365 days per year), ED is the duration of exposure (70 years),
BW is body weight (70 Kg) and AT is the average exposure time (EF × ED) [5,7,11,30,31].

If the THQ is below the value of 1, the risk to human health is low, even for sensitive
people, and if the THQ is equal to or greater than 1, risks to the health of consumers
may arise.

TTHQ is the sum of THQ of all trace elements, and was intended to assess the cumula-
tive effect and the potential health risk in the case of exposure to a mixture of trace elements.

TTHQ located above a value of 1 indicates a significant health problem [33].
TTHQ is calculated using Equation (5) [7,11,30,31].

TTHQ = TQH(Cu) + TQH(Mn) + TQH(Fe) + TQH(Cd) + TQH(Pb) + TQH(Zn) + TQH(Co) (5)

Carcinogenic risk (CR) is defined as a person’s likelihood of developing cancer over
the course of his life due to exposure to metals. In the case of this evaluation, only the
elements Cd and Pb are considered to be precursors of cancer.

The assessment of carcinogenic risk can be carried out using Equation (6)

CR = SF·EDI (6)

where EDI is the estimated daily intake of metal ingested through vegetables, and SF is the
carcinogenic slope factor. SF values were 14 µg Kg−1 day−1 (Cd) and 8.5 µg Kg−1 day−1

Pb [7,11,30,31,38].

2.6. Statistical Approach

Principal component analysis (PCA): in cases where the dataset contains a large
number of dependent variables, it is recommended that the dataset be reduced to smaller
segments, thus providing a clearer and easier-to-interpret result.

The analysis of the principal components (PCA) is an ideal tool for such problems, as
a dataset can be described by the main components, depending on the degree of variation
within the data; this produces a reduction in the size of the data, and allows for the
visualization of the basic structure of the data, as it indicates the experimental relationships
between the data and the samples.

Statistical analysis and graphical representations were conducted using the Origin Pro
2020 package software (Stat-Ease Inc., Minneapolis, MN, USA) [29,39].

Statistical differences between sample parameters (V1–V24) were assessed, using a
one-way ANOVA followed by a two-sample t-test with equal variance. Results of statistical
analyses between samples (V1–V24) were reported in tables in the same column with
different exponents where significant differences were identified (p < 0.05). Data presented
in the same column with the same exponents or letters showed no significant differences
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(p > 0.05). The statistical tool used for data processing was Microsoft Excel 365 (version
2208, Redmond, WA, USA).

3. Results and Discussion
3.1. Concentration of Macro and Trace Elements

In the first stage, 12 species of vegetables from four botanical families were selected.
The analyses performed to determine the water content showed values in the range
(61.82–95.31%) with an average of 88.02% in the case of the 24 vegetable samples. The
results obtained in terms of water content, macro elements and trace elements for the
24 samples of vegetables are presented in Tables 1 and 2.

Table 1. The macro elements and moisture content in the 24 vegetable samples of different botanical
families (g·Kg−1 dry weight, mean ± SD).

Sample
Coding Vegetable Samples Analyzed Moisture

Content (%) Na K Ca Mg

Solanaceae

V1 Tomato (L. esculentum) i.p. 93.76 0.68 ± 0.13 a,A 21.75 ± 2.29 a,A 0.16 ± 0.02 a,A 0.32 ± 0.01 a,A

V2 Tomato (L. esculentum) d.p. 94.52 2.21 ± 0.54 b,B 28.40 ± 4.17 b,B 0.17 ± 0.02 a,A 0.57 ± 0.09 b,c,B

V3 Bell Pepper (C. annum) i.p. 92.52 0.49 ± 0.22 c,A 25.25 ± 0.17 c,A 0.10 ± 0.03 b,A 0.52 ± 0.04 b,A

V4 Bell Pepper (C. annum) d.p. 92.94 0.77 ± 0.19 a,B 39.40 ± 2.40 d,B 0.12 ± 0.02 b,A 0.67 ± 0.04 c,d,B

V5 Eggplant (S. melongena) i.p. 91.55 1.62 ± 0.37 d,A 27.85 ± 1.23 b,A 0.90 ± 0.07 c,A 0.56 ± 0.05 b,A

V6 Eggplant (S. melongena) d.p. 92.50 1.54 ± 0.25 d,A 32.70 ± 1.83 e,B 0.11 ± 0.05 b,B 0.75 ± 0.09 d,B

V7 Potato (S. tuberosum) i.p. 79.93 0.99 ± 0.35 e,A 43.70 ± 2.54 f,A 0.31 ± 0.05 d,A 0.76 ± 0.09 d,A

V8 Potato (S. tuberosum) d.p. 77.40 0.93 ± 0.40 e,A 18.35 ± 0.24 g,B 0.06 ± 0.006 e,B 0.49 ± 0.05 b,B

Brassicaceae

V9 Cauliflower (B. oleracea) i.p. 90.60 1.33 ± 0.09 f,A 42.85 ± 2.97 f,A 0.27 ± 0.007 d,f,A 0.76 ± 0.07 c,A

V10 Cauliflower (B. oleracea) d.p. 91.90 4.56 ± 0.61 g,B 30.00 ± 1.90 h,B 0.24 ± 0.02 f,A 0.88 ± 0.12 e,B

V11 White cabbage (B. oleracea var. capitata) i.p. 92.13 0.93 ± 0.23 e,A 29.35 ± 3.00 h,A 0.61 ± 0.06 g,A 1.13 ± 0.16 f,A

V12 White cabbage (B. oleracea var. capitata) d.p. 91.40 1.84 ± 0.25 d,B 18.15 ± 0.95 g,B 0.50 ± 0.07 h,B 0.72 ± 0.03 d,B

V13 Kohlrabie (B. oleracea var. gongyloides) i.p. 91.12 0.57 ± 0.26 a,c,A 20.90 ± 2.40 a,A 0.05 ± 0.070 e,A 0.50 ± 0.06 b,A

V14 Kohlrabie (B. oleracea var. gongyloides) d.p. 90.53 2.76 ± 0.31 h,B 24.45 ± 2.51 c,B 0.26 ± 0.04 d,f,B 0.57 ± 0.04 b,c,A

Apiaceae

V15 Parsley (P. crispum) i.p. 85.47 8.97 ± 0.76 i,A 15.00 ± 0.77 i,A 0.04 ± 0.007 e,A 1.66 ± 0.27 g,A

V16 Parsley (P. crispum) d.p. 86.20 4.59 ± 0.98 g,B 18.95 ± 2.36 g,B 0.016 ± 0.002 i,B 0.94 ± 0.01 h,B

V17 Carrot (D. carota subsp. Sativus) i.p. 89.89 11.40 ± 2.97 j,A 26.20 ± 3.39 b,c,A 0.027 ± 0.04 j,A 0.48 ± 0.04 b,A

V18 Carrot (D. carota subsp. Sativus) d.p. 89.66 2.03 ± 0.37 b,B 30.70 ± 1.20 h,B 0.025 ± 0.002 j,A 0.56 ± 0.02 b,c,A

V19 Celery (A. graveolens) i.p. 95.21 1.36 ± 0.33 f,A 35.15 ± 7.45 j,A 0.15 ± 0.03 b,k,A 0.85 ± 0.10 c,h,A

V20 Celery (A. graveolens) d.p. 95.31 1.29 ± 0.36 f,A 34.60 ± 2.19 j,A 0.19 ± 0.04 a,k,A 1.20 ± 0.21 g,B

Amaryllidaceae

V21 Garlic (A. sativum) i.p. 61.82 0.80 ± 0.07 e,A 17.85 ± 1.44 g,k,A 0.01 ± 0.003 i,A 0.39 ± 0.01 a,A

V22 Garlic (A. sativum) d.p. 63.45 0.67 ± 0.19 a,B 18.30 ± 1.55 g,A 0.09 ± 0.007 e,B 0.40 ± 0.07 a,A

V23 Onion (A. cepa) i.p. 91.50 1.24 ± 0.33 f,A 17.80 ± 1.27 g,k,A 0.23 ± 0.02 j,A 0.67 ± 0.07 c,d,A

V24 Onion (A. cepa) d.p. 91.40 0.69 ± 0.22 a,B 16.70 ± 0.56 i,k,B 0.095 ± 0.004 e,B 0.36 ± 0.04 a,B

All results have been expressed as the average value of three determination ± standard deviation. a–k A t-test was
used to compare the mean differences registered for the macro elements among samples (V1–V24); data within
the same column (V1–V24) sharing different superscripts are significantly different (p < 0.05). A–B highlights the
significant differences between the i.p. and d.p. samples.

The most abundant elements in the evaluated vegetables were Na, K, Ca and Mg. Na
was determined for this work with values ranging from 0.49 to 11.40 g·Kg−1 d.w., with an
average of 5.94 Kg−1 d.w., the lowest value being recorded in the bell pepper i.p. sample
and the highest value in the carrot i.p. These values are comparable to those obtained in
the United Kingdom for several onion samples in the range of 0.03–0.14 g·Kg−1 d.w. [42].
In the Pakistan Punjab area, several samples of bell pepper and onion indicated values for
Na in the range of 5.8–12.8 g·Kg−1 d.w. [43]. In Poland, several potato cultivars indicated
values in the range of 0.66–1.61 g·Kg−1 d.w. [44].
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Table 2. Trace-element content in the 24 vegetable samples of different botanical families with permissible limits (EU and WHO/FAO) (µg·g−1 dry weight,
mean ± SD).

Sample Coding Vegetable Samples Analyzed Cu Mn Fe Cd Pb Zn Co

Solanaceae

V1 Tomato (L. esculentum) i.p. 32.5 ± 1.69 a,A 13.00 ± 0.63 a,A 33.50 ± 0.21 a,A 0.10 ± 0.007 a 0.75 ± 0.02 a,A 4.50 ± 0.28 a,A N.D.
V2 Tomato (L. esculentum) d.p. 46.00 ± 4.10 b,B 13.50 ± 0.28 a,A 30.50 ± 0.28 a,A N.D. 0.65 ± 0.04 b,B 9.50 ± 0.98 b,B 2.20 ± 0.07 a

V3 Bell Peppers (C. annuum) i.p. 60.00 ± 0.77 c,A 27.50 ± 0.63 b,A 62.50 ± 0.91 b,A 0.10 ± 0.014 a,A 0.75 ± 0.07 a,A 17.50 ± 0.42 c,A 0.85 ± 0.04 b,A

V4 Bell Peppers (C. annuum) d.p. 30.50 ± 1.69 a,B 22.50 ± 0.74 c,B 60.50 ± 3.67 b,A 0.50 ± 0.035 b,B 0.80 ± 0.10 c,B 20.50 ± 0.56 d,B 3.20 ± 0.15 c,d,B

V5 Eggplant (S. melongena) i.p. 76.50 ± 0.98 d,A 28.50 ± 0.28 b,A 51.00 ± 0.56 c,A 0.15 ± 0.007 a 0.75 ± 0.02 a,A 11.00 ± 0.42 b,A N.D.
V6 Eggplant (S. melongena) d.p. 51.00 ± 1.90 e,B 25.00 ± 0.98 b,c,A 51.00 ± 0.77 c,A N.D. 0.50 ± 0.04 d,B 16.00 ± 0.42 c,B 2.90 ± 0.21 c

V7 Potato (S. tuberosum) i.p. 8.00 ± 0.77 f,A 12.50 ± 0.91 a,A 62.50 ± 0.91 b,A N.D. 0.50 ± 0.05 d,A 18.50 ± 0.91 d,A 3.55 ± 0.17 d,A

V8 Potato (S. tuberosum) d.p. 46.50 ± 3.67 b,B 15.00 ± 0.91 a,d,A 31.00 ± 0.77 a,B N.D. 0.70 ± 0.007 e,B 5.50 ± 0.14 a,B 2.90 ± 0.14 c,B

Brassicaceae

V9 Cauliflower (B. oleracea var. botrytis) i.p. 5.00 ± 0.63 f,A 20.00 ± 1.13 c,e,A 83.00 ± 2.68 d,A N.D. 0.20 ± 0.01 f,A 28.50 ± 1.69 e,A 0.50 ± 0.09 b,A

V10 Cauliflower (B. oleracea var. botrytis) d.p. 5.00 ± 0.35 f,A 16.00 ± 0.63 d,B 110.00 ± 5.30 e,B N.D. 1.00 ±
0.1 g,B 12.00 ± 1.20 b,B 0.65 ± 0.03 b,A

V11 White cabbage (B. oleracea var. capitata) i.p. 5.00 ± 0.56 f,A 19.50 ± 0.91 b,A 76.50 ± 3.53 f,A N.D. 0.65 ± 0.02 b,A 9.00 ± 0.63 b,A 3.15 ± 0.53 c,d

V12 White cabbage (B. oleracea var. capitata)
d.p. 6.00 ± 0.42 f,A 17.50 ± 0.70 d,b,A 72.00 ± 4.87 f,A 0.25 ± 0.021 c 0.80 ± 0.04 c,B 4.50 ± 0.28 a,B N.D.

V13 Kohlrabie (B. oleracea var. gongyloides) i.p. 9.00 ± 0.77 f,A 8.00 ± 0.35 f,A 54.00 ± 2.68 c,A N.D. 0.60 ± 0.05 h,A 8.00 ± 0.28 b,A N.D.
V14 Kohlrabie (B. oleracea var. gongyloides) d.p. 8.50 ± 0.49 f,A 10.50 ± 1.13 a,f,A 75.00 ± 0.63 f,B 0.25 ± 0.014 c 0.85 ± 0.04 i,B 7.50 ± 0.28 b,A 0.75 ± 0.09 b

Apiaceae

V15 Parsley (P. crispum) i.p. 14.00 ± 0.77 g,A 29.50 ± 0.63 b,A 94.00 ± 0.56 g,A N.D. 0.80 ± 0.04 c,A 0.45 ± 0.10 a,A N.D.
V16 Parsley (P. crispum) d.p. 5.00 ± 0.63 f,B 15.00 ± 0.49 d,B 53.00 ± 1.41 c,B N.D. 0.75 ± 0.02 a,B 0.90 ± 0.04 b,B 2.15 ± 0.03 a

V17 Carrot (D. carota subsp. Sativus) i.p. 0.50 ± 0.07 h,A 11.50 ± 0.70 a,A 78.50 ± 1.13 f,A 0.30 ± 0.02 d 0.85 ± 0.04 i 0.85 ± 0.03 b,A N.D.
V18 Carrot (D. carota subsp. Sativus) d.p. 9.50 ± 0.98 f,B 11.00 ± 0.77 a,A 86.00 ± 0.63 d,B N.D. N.D. 1.30 ± 0.14 f,B N.D.
V19 Celery (A. graveolens) i.p. 8.50 ± 0.63 f,A 20.50 ± 0.84 b,A 67.50 ± 1.83 b,A 0.20 ± 0.007 c,A 0.70 ± 0.01 e,A 22.50 ± 1.41 d,A N.D.
V20 Celery (A. graveolens) d.p. 42.50 ± 1.69 b,B 15.00 ± 0.14 d,B 33.00 ± 0.28 a,B 0.20 ± 0.014 c,A 0.70 ± 0.04 e,A 11.00 ± 0.56 b,B N.D.

Amaryllidaceae

V21 Garlic (A. sativum) i.p. 10.00 ± 0.56 f,a,A 10.00 ± 0.98 a,A 55.00 ± 0.56 c,A N.D. N.D. 1.85 ± 0.03 f,A N.D.
V22 Garlic (A. sativum) d.p. 5.50 ± 0.35 f,B 10.00 ± 0.63 a,A 38.00 ± 1.34 a,B 0.40 ± 0.03 e 0.80 ± 0.05 c 1.70 ± 0.14 f,A N.D.
V23 Onion (A. cepa) i.p. 7.00 ± 0.63 f,A 15.00 ± 1.34 d,A 76.00 ± 1.27 f,A N.D. N.D. 11.50 ± 0.63 b,A N.D.
V24 Onion (A. cepa) d.p. 31.50 ± 1.20 a,B 11.50 ± 0.42 a,d,A 18.50 ± 1.62 g,B 0.25 ± 0.01 c 0.75 ± 0.03 a 3.50 ± 0.28 a,B N.D.

WHO/FAO [40] 40 N.A. 450 0.2 0.3 60 N.A.
EU [41] 20 500 N.A. 0.2 0.43 50 50

N.D.—Not detectable; N.A.—not applicable. All results have been expressed as the average value of three determination ± standard deviation. a–i A t-test was used to compare the
mean differences registered for the trace elements among samples (V1–V24); data within the same column (V1–V24) sharing different superscripts are significantly different (p < 0.05).
A–B highlights the significant differences between the i.p. and d.p. samples.
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K was determined in this paper with values ranging from 16.70 to 43.70 g·Kg−1 d.w.,
with an average of 30.2 g·Kg−1 d.w., the lowest value being recorded in the onion d.p.
sample, and the highest value in the potato i.p. sample. These values are comparable to
those obtained in the Pakistan Punjab area, where samples of tomato, bell pepper and
onion indicated values for K in the range of 4.2–33.4 g·Kg−1 d.w. [43], and in Poland, where
several potato cultivars indicated values in the range of 11.59–24.34 g·Kg−1 d.w. [44]. In
Latvia, onion samples indicated values in the range of 9.85–28.41 g·Kg−1 d.w, with carrot
in the range of 2.31–3.91 g·Kg−1 d.w. [45].

Ca was determined in this work with values between 0.016 and 0.90 g·Kg−1 d.w.,
with an average of 0.45 g·Kg−1 d.w., the lowest value being recorded in the parsley d.p.
sample and the highest value in the eggplant sample i.p. These values are comparable
to those obtained in the United Kingdom for several onion samples in the range of 0.2 to
0.6 g·Kg−1 d.w. [46]. In Poland, several potato cultivars indicated values in the range of
11.59–24.34 g·Kg−1 d.w. [44]. In Latvia, onion samples indicated values in the range of
9.85–28.41 g·Kg−1 d.w., with carrot in the range of 2.31–3.91 g·Kg−1 d.w. [45].

Mg was determined in this paper with values between 0.32 and 1.66 g·Kg−1 d.w., with
an average of 0.99 g·Kg−1 d.w., the lowest value being recorded in the tomato i.p. sample
and the highest value in the parsley i.p. sample. These values are comparable to those
obtained in Poland, where samples of garlic indicated values for Mg of 0.23 g·Kg−1 d.w.,
and onion samples indicated 0,06 g·Kg−1 d.w. [47]; also in Poland, several potato cultivars
indicated values in the range of 1.46–1.84 g·Kg−1 d.w. [44], while in the United Kingdom,
onion samples were in the range of 0.04–0.1 g·Kg−1 d.w. [42].

Following the determination of macro elements, the obtained values followed the
order K > Na > Mg > Ca.

Cu was determined in this paper with values between 0.5 and 76.50 µg·g−1 d.w., with
an average of 38.5 µg·g−1 d.w., the lowest value being recorded in the sample of carrot
i.p. and the highest value in the sample of eggplant i.p. These values are comparable
to those obtained in France, in supermarkets in the city of La Rochelle, for samples of
green pepper—51.34 µg·g−1 d.w., carrot—30.38 µg·g−1 d.w., eggplant—44.36 µg·g−1 d.w.,
cabbage—49.55 µg·g−1 d.w., potato—25.23 µg·g−1 d.w., tomato—104.68 µg·g−1 d.w. and
onion—70.71 µg·g−1 d.w. [48]; in Italy, in the city of Bologna, for several tomato cultivars
the values recorded for Cu were located in the range of 11.50–13.10 µg·g−1 d.w. [49],
and in Finland, for potato samples—6 µg·g−1 d.w., carrot—5 µg·g−1 d.w. and celery
root—12 µg·g−1 d.w. [50].

Manganese (Mn) was determined in this work with values ranging from 8 to
29.5 µg·g−1 d.w., with an average of 18.7 5 µg·g−1 d.w., the lowest value being recorded
in the kohlrabie sample i.p. and the highest value in the sample of parsley i.p. These
values are comparable to those obtained in Finland for potato samples—7 µg·g−1 d.w.,
carrot—27 µg·g−1 d.w. and celery root—15 µg·g−1 d.w. [50], in India, in the Pradesh
area, for tomato samples—1.6 µg·g−1 d.w. [48,51], in northwestern Botswana, two super-
markets in Maun, tomato samples—19.1 µg·g−1 d.w., onion samples—19.8 µg·g−1 d.w.,
cabbage—38.6 µg·g−1 d.w. and potato—17.2. µg·g−1 d.w. [52].

Fe was determined in this paper with values ranging from 18.5 to 110 µg·g−1 d.w.
with an average of 64.25 µg·g−1 d.w., the lowest value being recorded in the onion sample
d.p. and the highest value in the cauliflower sample d.p. These values are comparable
to those obtained in Iran, where Isfahan samples of bell pepper indicated an Fe con-
tent in the range of 45–50 µg·g−1 [53], in Finland, for potato samples—34 µg·g−1 d.w.,
carrot—30 µg·g−1 d.w., celery root—55 µg·g−1 d.w., cauliflower—59 µg·g−1 d.w., white
cabbage, 53 µg·g−1 d.w., onion—28 µg·g−1 d.w., sweet pepper—4.1 µg·g−1 d.w. and
tomato—29 µg·g−1 d.w. [50], and Upper Egypt, for tomato samples—19.69 µg·g−1 d.w. [54].

Cadmium (Cd) was determined in this paper with values ranging from 0.1 to
0.5 µg·g−1 d.w., with an average of 0.3 µg·g−1 d.w., the lowest value being recorded in
tomato i.p. and bell pepper i.p. samples and the highest value in the bell pepper sample d.p.



Foods 2023, 12, 749 9 of 19

These values are comparable to those obtained in Denmark, Copenhagen, for several carrot
samples with values in the range of 0.09–0.206 µg·g−1 d.w. and several samples of potato
with values in the range of 0.032–0.088 µg·g−1 d.w. [55]; in Macedonia, in the Skopje Usje
region, for carrot—1027 µg·g−1 d.w., parsley—0.053 µg·g−1 d.w., and also in Skopje in the
Jurumleri region, for carrot—0.029 µg·g−1 d.w., and cauliflower—0.013 µg·g−1 d.w. [56],
and Spain, for more tomato samples—0.05 µg·g−1 d.w., and onion—12 µg·g−1 d.w. [57].

Pb was determined in this paper with values ranging from 0.2 to 1 µg·g−1 d.w.,
with an average of 6 µg·g−1 d.w., the lowest value being recorded in the cauliflower
sample i.p. and the highest value in the cauliflower sample d.p. These values are com-
parable to those obtained in Spain for several samples of tomato—0.04 µg·g−1 d.w., and
onion—0.037 µg·g−1 d.w. [57], in Macedonia, in the Skopje, Usje region, for
parsley—0.031 µg·g−1 d.w., and also in the Skopje region, in the city of Jurumleri, for
onion—0.078 µg·g−1 d.w., and cauliflower—0.023 µg·g−1 d.w. [56], and in Serbia, in the
Vojvodina Province, for potato—1.13 µg·g−1 d.w. [58].

Zn was determined in this paper with values ranging from 0.45 to 28.5 µg·g−1 d.w. with
an average of 14.47 µg·g−1 d.w., the lowest value being recorded in the parsley sample i.p.
and the highest value in the cauliflower sample i.p. These values are comparable to those
obtained in Egypt, Alexandria, for tomato—7.69 µg·g−1 d.w., carrot—8.03 µg·g−1 d.w.,
eggplant—11.5 µg·g−1 d.w., garlic—14.9 µg·g−1 d.w., onion—11.4 µg·g−1 d.w., and potato—
7.16 µg·g−1 d.w. [59], in Iran for tomato—10 µg·g−1 d.w. and bell pepper—48 µg·g−1

d.w., [53]; in Poland, samples of garlic indicated values for Zn of 12,2 µg·g−1 d.w., and
onion samples indicated 4,33 µg·g−1 d.w.

Co was determined in this paper with values ranging from 0.5 to 3.55 µg·g−1 d.w., with
an average of 14.47 µg·g−1 d.w., the lowest value being recorded in the cauliflower sample
i.p. and the highest value in the white cabbage sample i.p. These values are comparable to
those obtained in Finland, for potato samples– 0,08 µg·g−1 d.w., carrot—0,04 µg·g−1 d.w.,
celery root—0.03 µg·g−1 d.w., cauliflower—0.11 µg·g−1 d.w., white cabbage, 0.06 µg·g−1

d.w., onion—0.04 µg·g−1 d.w., sweet pepper—0.03 µg·g−1 d.w. and tomato—0.03 µg·g−1

d.w. [50], and in Canada, in the city of Brandon, for carrot samples—0.2 µg·g−1 d.w. [60].
Following the determination of trace elements, the obtained values followed the order

Fe > Cu > Mn > Zn > Co > Pb > Cd.
The resulting differences can be attributed to the conditions of cultivation, soil compo-

sition, fertilizing methods, and the quality of water used for irrigation.

3.2. Chemometric Analysis

Principal component analysis (PCA) is the most common technique used to obtain a
basic perspective of the data structure and especially to determine the parameters that have
the greatest influence in the classification of samples, as well as their differentiation. In this
work, the analysis (PCA) was carried out in two directions: first, for the classification of
samples according to the origin of the botanical family to which they belong, and second for
the classification of samples according to the evaluated macro elements and trace elements.
Using as input data the values of the macro elements (Na, K, Ca and Mg) in the case of the
24 vegetables, the variance in the data was explained by the first three main components,
at the rate of 87.97%, as follows: PC1 = 35.55%, PC2 = 32.77% and PC3 = 19.65%. A
grouping of samples could not be obtained according to botanical origin. Three groupings
of vegetable samples were obtained according to the macro elements assessed, Figure 1.
The formation of the first grouping at the top of the PC3 vs. PC1 score graph is dependent
on the Ca content of the evaluated vegetable samples. The second group, formed in the
center of the graph of the scores PC3 vs. PC1, is dependent on the Mg and Na content of
the evaluated vegetable samples. In addition, the third grouping, formed at the bottom
left of the PC3 vs. PC1 score graph, is dependent on the high K content of the evaluated
vegetables, Figure 2. In the case of analysis of the main components, PC1 vs. PC2 and PC2
vs. PC3, no significant results were obtained in terms of grouping the samples according to
their content of macro elements.
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Using as input data the values of trace elements (Cu, Mn, Fe, Cd, Pb, Zn and Co) for the
24 vegetables, the variation in the data was explained by the first three main components
at a rate of 98.64% as follows: PC1 = 69.62%, PC2 = 24.22% and PC3 = 4.80%. In the case of
the analysis of the main components, PC1 vs. PC2, two groups were obtained as follows:
one for seven out of eight samples of vegetables from the botanical family Solanaceae,
seen in Figure 3; the formation of this group is due to the Cu intake of vegetables from
this botanical family, and the second group, for five out of six samples from the botanical
family Brassicaceae, the formation of this group is due to the Fe intake of vegetables from
this botanical family, seen in Figure 4.

In the case of the analysis of the main components, PC3 vs. PC1, three groups of
samples indicated in Figure 5 were obtained: for the first group, located at the top of the
central part, the formation is due to the Zn content of the evaluated vegetable samples,
while for the second group, located on the left side, it is due to the Cu content of the
vegetable samples; for the third group, located on the right, the formation is due to the Fe
content of the assessed vegetable samples see in Figure 6. In the case of the analysis of the
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main components, PC2 vs. PC3, no significant results were obtained in terms of grouping
of samples according to their content of trace elements.
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3.3. Assessment of the Risk to Human Health

The trace-element content determined for the 24 vegetables presented in Table 2 was
reported for fresh vegetables, for human-health risk assessment. [61]

Tables 3 and 4 show the results obtained for EDI, THQ, TTHQ and CR for the seven
trace elements studied.

Estimated daily intake (EDI) was calculated in the case of a body weight of 70 Kg
for all the assessed vegetable samples: the values obtained are shown in Table 3, and
plotted in Figure 7. The EDI values obtained for the analyzed trace elements were lo-
cated in the following ranges: Cu (2.89 × 10−5–6.01 × 10−3 µg·Kg−1·day−1), Mn (4.02 ×
10−4–2.45 × 10−3 µg·Kg−1·day−1), Fe (8.84 × 10−4–7.94 × 10−3 µg·Kg−1·day−1), Cd (3.75
× 10−6–8.35 × 10−5 µg·Kg−1·day−1), Pb (1.07 × 10−5–1.67 × 10−4 µg·Kg−1·day−1), Zn
(3.74 × 10−5–2.12 × 10−3 µg·Kg−1·day−1) and Co (2.69 × 10−5–1.24 × 10−4 µg·Kg−1·day
−1). The EDI values obtained for each trace element in the vegetable samples analyzed
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were significantly lower than the reference values (RfD): for Cu the highest value ob-
tained was 6.01 × 10−3 µg·Kg−1·day−1, located well below the RfDCu value—40 µg·Kg−1

·day−1, for Mn the highest value obtained was 2.45 × 10−3 µg·Kg−1·day−1, located well
below the RfDMn value—140 µg·Kg−1 ·day−1, for Fe the highest value obtained was
7.94 × 10−3 µg·Kg−1·day−1, located well below the RfDFe value—45,000 µg·Kg−1 ·day−1,
for Cd the highest value obtained was 8.35 × 10−5 µg·Kg−1·day−1, located well below
the RfDCd value—1 µg·Kg−1·day−1, for Pb the highest value obtained was 1.67 × 10−4

µg·Kg−1·day−1, located well below the RfDPb value—3.57 µg·Kg−1·day−1, for Zn the high-
est value obtained was 2.12 × 10−3 µg·Kg−1·day−1, located well below the RfDZn value—
300 µg·Kg−1 ·day−1 and for Co the highest value obtained was 1.24 × 10−4 µg·Kg−1·day−1,
located well below the value of RfDCo—20 µg·Kg−1·day−1 [32–37].
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Table 3. Obtained results for the estimated daily intake (EDI) in the case of vegetable samples.

Sample
Coding

EDI Cu
(µg·Kg−1·day−1)

EDI Mn
(µg·Kg−1·day−1)

EDI Fe
(µg·Kg−1·day−1)

EDI Cd
(µg·Kg−1·day−1)

EDI Pb
(µg·Kg−1·day−1)

EDI Zn
(µg·Kg−1·day−1)

EDI Co
(µg·Kg−1·day−1)

V1 1.16 × 10−3 4.64 × 10−4 1.19 × 10−3 3.57 × 10−6 2.67 × 10−5 1.60 × 10−4 N.D.
V2 1.44 × 10−3 4.23 × 10−4 9.55 × 10−4 N.D. 2.04 × 10−5 2.97 × 10−4 6.89 × 10−5

V3 2.56 × 10−3 1.18 × 10−3 2.67 × 10−3 4.27 × 10−6 3.21 × 10−5 7.48 × 10−4 3.63 × 10−5

V4 1.23 × 10−3 9.08 × 10−4 2.44 × 10−3 2.02 × 10−5 3.23 × 10−5 8.27 × 10−4 1.29 × 10−4

V5 3.69 × 10−3 1.38 × 10−3 2.46 × 10−3 7.24 × 10−6 3.62 × 10−5 5.31 × 10−4 N.D.
V6 2.19 × 10−3 1.07 × 10−3 2.19 × 10−3 N.D. 2.14 × 10−5 6.86 × 10−4 1.24 × 10−4

V7 9.17 × 10−4 1.43 × 10−3 7.17 × 10−3 N.D. 5.73 × 10−5 2.12 × 10−3 4.07 × 10−4

V8 6.01 × 10−3 1.94 × 10−3 4.00 × 10−3 N.D. 9.04 × 10−5 7.10 × 10−4 3.75 × 10−4

V9 2.69 × 10−4 1.07 × 10−3 4.46 × 10−3 N.D. 1.07 × 10−5 1.53 × 10−3 2.69 × 10−5

V10 2.31 × 10−4 7.41 × 10−4 5.09 × 10−3 N.D. 4.63 × 10−4 5.55 × 10−4 3.01 × 10−5

V11 2.25 × 10−4 8.77 × 10−4 3.44 × 10−3 N.D. 2.92 × 10−5 4.05 × 10−4 1.42 × 10−4

V12 2.95 × 10−4 8.60 × 10−4 3.54 × 10−3 1.23 × 10−5 3.93 × 10−5 2.21 × 10−4 N.D.
V13 4.57 × 10−4 4.06 × 10−4 2.74 × 10−3 N.D. 3.04 × 10−5 4.06 × 10−4 N.D.
V14 4.60 × 10−4 5.68 × 10−4 4.06 × 10−3 1.35 × 10−5 4.60 × 10−4 4.06 × 10−4 4.06 × 10−5

V15 1.16 × 10−3 2.45 × 10−3 7.80 × 10−3 N.D. 6.64 × 10−5 3.74 × 10−5 N.D.
V16 3.94 × 10−4 1.18 × 10−3 4.18 × 10−3 N.D. 5.91 × 10−5 7.10 × 10−5 1.70 × 10−4

V17 2.89 × 10−5 6.64 × 10−4 4.54 × 10−3 1.73 × 10−5 4.91 × 10−5 4.91 × 10−5 N.D.
V18 5.61 × 10−4 6.50 × 10−4 5.08 × 10−3 N.D. N.D. 7.68 × 10−5 N.D.
V19 2.33 × 10−4 5.61 × 10−4 1.85 × 10−3 5.47 × 10−6 1.92 × 10−5 6.16 × 10−4 N.D.
V20 1.14 × 10−3 4.02 × 10−4 8.84 × 10−4 5.36 × 10−6 1.88 × 10−5 2.95 × 10−4 N.D.
V21 2.18 × 10−3 2.18 × 10−3 1.20 × 10−2 N.D. N.D. 4.04 × 10−4 N.D.
V22 1.15 × 10−3 2.09 × 10−3 7.94 × 10−3 8.35 × 10−5 1.67 × 10−4 3.55 × 10−4 N.D.
V23 3.40 × 10−4 7.29 × 10−4 3.69 × 10−3 N.D. N.D. 5.59 × 10−4 N.D.
V24 1.55 × 10−3 5.65 × 10−4 9.09 × 10−4 1.23 × 10−5 3.69 × 10−5 1.72 × 10−4 N.D.

N.D.—Not detectable.
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Table 4. Obtained results for the target hazard quotient (THQ), the total of the target hazard quotient
(TTHQ) and the carcinogenic risk (CR) in the case of vegetable samples.

Sample
Coding THQ Cu THQ Mn THQ Fe THQ Cd THQ Pb THQ Zn THQ Co TTHQ CR Cd CR Pb

V1 2.90 × 10−2 3.31 × 10−3 2.65 × 10−5 3.57 × 10−3 7.64 × 10−3 5.35 × 10−4 N.D. 4.41 × 10−2 4.99 × 10−8 3.74 × 10−7

V2 3.60 × 10−2 3.02 × 10−3 2.12 × 10−5 N.D. 5.82 × 10−3 9.92 × 10−4 6.89 × 10−5 4.93 × 10−2 N.D. 2.85 × 10−7

V3 6.41 × 10−2 8.40 × 10−3 5.94 × 10−5 4.27 × 10−3 9.16 × 10−3 2.49 × 10−3 3.63 × 10−5 9.03 × 10−2 5.98 × 10−8 4.49 × 10−7

V4 3.08 × 10−2 6.48 × 10−3 5.42 × 10−5 2.02 × 10−2 9.22 × 10−3 2.76 × 10−3 1.29 × 10−4 7.59 × 10−2 2.82 × 10−7 4.52 × 10−7

V5 9.23 × 10−2 9.83 × 10−3 5.47 × 10−5 7.24 × 10−3 1.03 × 10−2 1.77 × 10−3 N.D. 1.22 × 10−1 1.01 × 10−7 5.07 × 10−7

V6 5.46 × 10−2 7.65 × 10−3 4.86 × 10−5 N.D. 6.12 × 10−3 2.29 × 10−3 1.24 × 10−4 7.70 × 10−2 N.D. 3.00 × 10−7

V7 2.29 × 10−2 1.02 × 10−2 1.59 × 10−4 N.D. 1.64 × 10−2 7.07 × 10−3 4.07 × 10−4 7.71 × 10−2 N.D. 8.03 × 10−7

V8 1.50 × 10−1 1.38 × 10−2 8.90 × 10−5 N.D. 3.01 × 10−2 2.37 × 10−3 3.75 × 10−4 2.15 × 10−1 N.D. 1.27 × 10−6

V9 6.71 × 10−3 7.67 × 10−3 9.91 × 10−5 N.D. 3.07 × 10−3 5.10 × 10−3 2.69 × 10−5 2.40 × 10−2 N.D. 1.50 × 10−7

V10 5.79 × 10−3 5.29 × 10−3 1.13 × 10−4 N.D. 1.32 × 10−2 1.85 × 10−3 3.01 × 10−5 2.78 × 10−2 N.D. 6.48 × 10−7

V11 5.62 × 10−3 6.26 × 10−3 7.65 × 10−5 N.D. 8.35 × 10−3 1.35 × 10−3 1.42 × 10−4 2.87 × 10−2 N.D. 4.09 × 10−7

V12 7.37 × 10−3 6.14 × 10−3 7.86 × 10−5 1.23 × 10−2 1.12 × 10−2 7.37 × 10−4 N.D. 3.78 × 10−2 1.72 × 10−7 5.50 × 10−7

V13 1.14 × 10−2 2.90 × 10−3 6.09 × 10−5 N.D. 8.70 × 10−3 1.35 × 10−3 N.D. 2.44 × 10−2 N.D. 4.26 × 10−7

V14 1.15 × 10−2 4.06 × 10−3 9.02 × 10−5 1.35 × 10−2 1.31 × 10−2 1.35 × 10−3 4.06 × 10−5 4.57 × 10−2 1.89 × 10−7 6.44 × 10−7

V15 2.91 × 10−2 1.75 × 10−2 1.73 × 10−4 N.D. 1.90 × 10−2 1.25 × 10−4 N.D. 6.58 × 10−2 N.D. 9.30 × 10−7

V16 9.86 × 10−3 8.45 × 10−3 9.29 × 10−5 N.D. 1.69 × 10−2 2.37 × 10−4 1.70 × 10−4 4.40 × 10−2 N.D. 8.28 × 10−7

V17 7.22 × 10−4 4.75 × 10−3 1.01 × 10−4 1.73 × 10−2 1.40 × 10−2 1.64 × 10−4 N.D. 3.71 × 10−2 2.43 × 10−7 6.87 × 10−7

V18 1.40 × 10−2 4.64 × 10−3 1.13 × 10−4 N.D. N.D. 2.56 × 10−4 N.D. 1.90 × 10−2 N.D. N.D.
V19 5.82 × 10−3 4.01 × 10−3 4.11 × 10−5 5.47 × 10−3 5.47 × 10−3 2.05 × 10−3 N.D. 2.29 × 10−2 7.66 × 10−8 2.68 × 10−7

V20 2.85 × 10−2 2.87 × 10−3 1.97 × 10−5 5.36 × 10−3 5.36 × 10−3 9.83 × 10−4 N.D. 4.31 × 10−2 7.50 × 10−8 2.63 × 10−7

V21 5.45 × 10−2 1.56 × 10−2 2.67 × 10−4 N.D. N.D. 1.35 × 10−3 N.D. 7.17 × 10−2 N.D. N.D.
V22 2.87 × 10−2 1.49 × 10−2 1.76 × 10−4 8.35 × 10−2 4.77 × 10−2 1.18 × 10−3 N.D. 1.76 × 10−1 N.D. 2.34 × 10−6

V23 8.50 × 10−3 5.20 × 10−3 8.20 × 10−5 N.D. N.D. 1.86 × 10−3 N.D. 1.56 × 10−2 N.D. N.D.
V24 3.87 × 10−2 4.04 × 10−3 2.02 × 10−5 1.23 × 10−2 1.05 × 10−2 5.73 × 10−4 N.D. 6.61 × 10−2 N.D. 5.16 × 10−7

N.D.—Not detectable.

The target-hazard-quotient values (THQ) were calculated for all vegetable samples,
the values obtained being presented in Table 4 and plotted in Figure 8. The THQ values
obtained for the analyzed trace elements were located in the following ranges: THQCu
(7.2 × 10−4–1.5 × 10−1), THQMn (2.9 × 10−3–1.2 × 10−2), THQFe (1.97 × 10−5–2.67 × 10−4),
THQCd (3.57 × 10−3–8.35 × 10−2), THQPb (3.07 × 10−3–4.77 × 10−2), THQZn (1.25 × 10−4–
7.07 × 10−3) s, i THQCo (1.34 × 10−3–1.87 × 10−2). Following the determination of the THQ,
the obtained values followed the order THQCu > THQCd > THQPb > THQCo > THQMn >
THQZn > THQFe.
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The total target-hazard-quotient (TTHQ) values were calculated for all vegetable
samples, and are presented in Table 4 and plotted in Figure 9. The values obtained for the
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All values obtained for the target hazard quotient (TQH) and the total target hazard
quotient (TTQH) were below 1, indicating that there are no significant health risks associ-
ated with the intake of trace elements or their mixture by eating the assessed vegetables.

Carcinogenic risk (CR) is aimed at assessing an individual’s increased likelihood of
developing cancer throughout his life, due to the ingestion of vegetables analyzed in this
paper. The results obtained for the assessment of carcinogenic risk (CR) are presented in
Table 4 and plotted in Figure 10. The values obtained for the assessment of the carcinogenic
risk in the case of consumption of vegetables studied in this work were situated in the
following ranges: Cd (4.99 × 10−8–2.82 × 10−7) and Pb (1.50 × 10−7–2.34 × 10−6). For the
two assessed elements, Cd and Pb, the carcinogenic risk index (CR) was well below the
limits imposed by the legislation and norms: 14 µg·Kg−1·Day−1 Cd and 8.5 µg·Kg−1·Day−1

Pb [7,11,30,31,38].
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4. Conclusions

The research carried out in this paper evaluated 24 vegetables from four botanical fam-
ilies (Solanaceae, Brassicaceae, Apiaceae and Amaryllidaceae), taken from local producers
(domestic product) and supermarkets (imported product) regarding the content of macro
elements (Na, K, Ca and Mg) and trace elements (Cu, Mn, Fe, Cd, Pb, Zn and Co), using
the FAAS evaluation technique. The macro elements showed the highest content for the
analyzed vegetable samples, being an important source of K, Na, Mg and Ca. Comparison
of the present results with those obtained by other researchers were fairly close, especially
in case of macro elements.

For most of the samples there were significant differences between i.p. and d.p. for both
major-element and trace-element content, with no clear rule influencing these differences.

PCA analysis was carried out in two directions: the first for the classification of
samples according to the origin of the botanical family to which they belong, and the
second for the classification of samples according to the macro elements and trace elements
evaluated. Using as input data the values of the macro elements (Na, K, Ca and Mg) for the
24 vegetables, the results are composed of three groups of vegetables, as follows: the first
group is influenced by the content of the samples in Ca, the second group is influenced by
the Mg and Na content, and the third group by the content of the vegetable samples in K.
A grouping of samples could not be obtained on the basis of botanical origin.

Using as input data the trace-element values (Cu, Mn, Fe, Cd, Pb, Zn and Co) of 24
vegetable samples, two groups were obtained as follows: one for seven out of eight samples
of vegetables from the botanical family Solanaceae, the importance of this group being the
intake of these vegetables for Cu; the second group comprising five out of six vegetables of
the botanical family Brassicaceae, the importance of this group being the intake of these
vegetables for Fe.

The values obtained for the trace-element content of 24 vegetable samples taken from
local producers (domestic product) and supermarkets (imported product) were used as
the input to assess the risk to human health in terms of their consumption. The estimated
daily intake (EDI) was calculated in the case of a body weight of 70 Kg for all the assessed
vegetable samples. The EDI values obtained for each trace element in the vegetable
samples analyzed were significantly lower than the RfD reference values. The target
hazard quotient (THQ) and the total target hazard quotient (TTHQ) were calculated for all
vegetable samples, the results obtained being well below the limit value of 1, indicating
that there are no significant health risks associated with the intake of trace elements or their
mixture by eating the vegetables assessed.

The results obtained for the carcinogenic-risk assessment (CR) for the two assessed
elements, Cd and Pb, were well below their baselines.

The results obtained in this work for the content in macro elements and trace elements,
as well as the assessment of the risk to human health of the 24 samples of vegetables
from four botanical families (Solanaceae, Brassicaceae, Apiaceae and Amaryllidaceae),
taken from local producers (domestic product) and supermarkets (imported product), were
situated within the limits of the EU and WHO/FAO legislation, taking into consideration
an amount of daily consumed vegetables of 200 g, representing half the amount of fruits
and vegetables recommended by the WHO/FAO.
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