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Abstract: As a source of vital nutrients for the normal functioning of the body, chicken meat plays an
important role in promoting good health. This study examines the occurrence of total volatile basic
nitrogen (TVB-N) as an index for evaluating freshness, using novel colorimetric sensor arrays (CSA)
in combination with linear and nonlinear regression models. Herein, the TVB-N was determined
by steam distillation, and the CSA was fabricated via the use of nine chemically responsive dyes.
The corresponding dyes utilized, and the emitted volatile organic compounds (VOCs) were found to
be correlated. Afterwards, the regression algorithms were applied, assessed, and compared, with
the result that a nonlinear model based on competitive adaptive reweighted sampling coupled with
support vector machines (CARS-SVM) achieved the best results. Accordingly, the CARS-SVM model
provided improved coefficient values (Rc = 0.98 and Rp = 0.92) based on the figures of merit used,
as well as root mean square errors (RMSEC = 3.12 and RMSEP = 6.75) and a ratio of performance
deviation (RPD) of 2.25. Thus, this study demonstrated that the CSA paired with a nonlinear
algorithm (CARS-SVM) could be employed for fast, noninvasive, and sensitive detection of TVB-N
concentration in chicken meat as a major indicator of freshness in meat.

Keywords: colorimetric sensor array; chicken freshness; TVB-N; multivariable algorithm; linear and
non-linear models

1. Introduction

Food safety should be a primary focus for food experts as the world’s population
expands and consumer demand for food rises. Chicken, with its high protein and low
fat content, is a popular food in many countries owing primarily to its widespread avail-
ability [1]. However, one significant concern is the short shelf life of chicken flesh. This
is because unprocessed chicken flesh is extremely ephemeral and may only be stored for
three to five days at 4 ◦C in the refrigerator [2]. Additionally, the distribution channels,
retail outlets, and end users, on the other hand, have a vested interest in products that can
be stored for an extended time without compromising quality or safety [3,4]. Therefore,
due to the fact that chicken meat consumption is growing annually, there is a global food
safety issue with chicken meat that may have an impact on consumer health [5]. To address
these obstacles, an effective technique for the fast and precise monitoring of freshness in
chicken meat is necessary.

To date, chemical, physical, and microbiological tests, as well as sensory evaluation,
are the most important means for the traditional assessment of freshness in chicken [6].
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Several critical indicators have been applied for determining the freshness of meat and other
aquatic species such as the thiobarbituric acid reactive substances (TBARS), the total viable
count (TVC), and total volatile basic nitrogen (TVB-N). Most importantly, chemical and
microbiological examinations, including total viable counts, pH analysis, and TVB-N assay,
are often quite straightforward [2,7]. The downside of these approaches is that they are
frequently damaging, tedious, and not suitable for use in conjunction with contemporary
industrial processing and production techniques. As a result, the swift and noninvasive
assessment of chicken freshness is becoming particularly crucial. Furthermore, sensory
evaluation methodologies based on human sensations have widespread market appeal [3].
However, human, time, and geographical issues all have an impact on the precision and
reliability of the outcomes. Consequently, sensory tests are subjective and are based on
the degree of satisfaction of a particular community due to its customs and geographical
location. Hence, the demand for quick and noninvasive chicken freshness monitoring is
becoming deeply vital [8]. The odor of chicken meat is one of the most essential criteria to
consider when assessing its freshness. In addition, its nutritional richness makes it an ideal
colonization substrate for many disease and spoilage bacteria [8,9]. During microbiological
deterioration, microbes and enzymes break down the proteins and lipids in chicken meat,
progressively decreasing its freshness. A diverse number of VOCs are produced by enzymes
and microbes during the breakdown of primary materials such as hydrogen sulfide, ethanal,
and hydrogen nitride [10].

Several sophisticated analytical instruments, such as the electronic tongue (E-tongue),
computer vision (CV), electronic nose (E-nose), and various forms of spectroscopic technol-
ogy, have recently evolved for the noninvasive analysis of food quality and safety [3,11].
The E-nose, sometimes called the artificial olfactory approach, is made up of an array of
numerous generic sensors that generate a unique fingerprint in response to an odor stim-
ulus [12]. Additionally, the vast majority of commercially accessible artificial olfactory
devices nowadays are based on metal oxide semiconductor (MOS) sensors. Conductometric
behavior is typical of MOS sensors; this implies that the resistance of the sensor varies, either
decreasing or increasing, when it is exposed to odor vapor molecules [13]. In this regard,
the MOS sensor array is restricted by the fact that it is sensitive to changes in humidity.

Herewith, a novel artificial olfactory method based on CSA proves its overriding
feature of eliminating humidity interference and emerges as a potent instrument for the
evaluation and monitoring of food quality [14,15]. Printing chemical reaction dyes onto
inert substrates is one of the core principles underlying this method. These dyes can include
pH indicators, dyes comprising huge permanent dipoles, metal salts, dyes involving metal
ions, and nanoparticles [16]. It differentiates by utilizing the color shift caused by the
interaction between the VOCs and the array of chemically sensitive dyes upon ligand
binding. As a method for food evaluations using multivariate calibration, we retrieved the
values of RGB (red, green, and blue) color constituents from color change patterns for each
dye. The CSA strategy proved effective in identifying intricate food matrices in a variety of
foods, including fruits, vegetables, tea, bakery, and meat products [17,18].

Chemometrics techniques enable the investigation of complex signals. To analyze
data, many researchers turn to linear regression algorithms, with partial least squares (PLS)
being one of the most used [19,20]. This technique, however, retains several irrelevant and
redundant variables, lowering model predictive strength and precision. In this scenario,
the PLS-coupled spectral variable selection algorithms have the potential to produce better
analytical results [21]. Due to the complexity of color change profiles, linear regression
models may be unable to provide sufficient explanation. Further, nonlinear regression
models have a greater capacity for self-learning than linear regression algorithms [22]. As a
result, in this work, the nonlinear regression tool “support vector machine (SVM)” is used
to address the regression issue as an expeditious learning neural method with minimal
training error.

The primary goal of this work was to fabricate a visible CSA in combination with
chemoselective responsive dyes paired with chemometric algorithms for real-time TVB-N
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measurement in chicken meat samples. The scope of the research covers the following
areas: (1) a chemo-responsive dye was printed onto reverse-phase silica gel plates for
preparation of the CSA sensors; (2) color change patterns of VOCs emitted from chicken
meat samples were acquired using a CSA at various storage times (1, 3, 5, 7, 9, and 11 days);
(3) by subtracting the images of the CSA sensor acquired before and after the sample was
exposed, a color-distinctive fingerprint of the chicken meat samples was obtained; and
(4) multivariate statistical methods were applied in order to qualitatively and quantitatively
analyze the TVB-N through robust modeling using four different efficient variable selection
algorithms based on linear and nonlinear regression models. Scheme 1 is a diagrammatic
depiction of the proposed approach.
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Scheme 1. Schematic representation of the proposed method for the detection of TVB-N in chicken
meat samples.

2. Experimental Sections
2.1. Collection and Preparation of Chicken Samples

The collection and utilization of chicken meat samples were based on the Chinese
National Standard (GB/T 32762-2016). Adult Luyuan (LY) chickens, one of China’s
most popular chicken breeds and a native of Zhangjiagang city in Jiangsu Province of
China, were used with the following specifications: Age = 10 weeks; antemortem live
weight = 2550~2750 g (2.75 kg); postmortem time = 45 min. The chicken breast from the
same batch was received fresh, sealed in clean polyvinyl chloride (PVC) bags, ice-packed,
and delivered to the laboratory as soon as possible. The samples were sliced into sections
(4 cm × 3 cm × 0.5 cm) and then measured into equal weights of 10 g (ca. ±0.1 g) on a
sterile cutting board to enable daily sampling in subsequent tests and to reduce probable
mistakes. Further, given the heterogeneous and complicated nature of chicken meat, all
samples were placed, sealed, labeled, and packaged into separate clean plastic bags and
kept under refrigeration at 4 ◦C. During the 11-day storage period, 14 samples were ran-
domly taken out from the refrigerator to determine their TVB-N content every other day
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(i.e., 1st, 3rd, 5th, 7th, 9th day, and 11th day). Given the inevitable systematic errors in
individual samples, 80 chicken breast samples were finally separated into calibration and
prediction sets in a 3:2 ratio for the process of model building.

2.2. Reference Measurement of TVB-N Content

The TVB-N is a significant chemical and physical test used to determine the quality of
meat. In this experiment, the TVB-N concentration was determined using steam distillation
in accordance with the Chinese National Standard (GB/T 5009.228-2016) with minor adjust-
ments [8]. To begin with, 10 g (±0.1 g) of chopped sample was placed in a beaker, mixed
with 100 mL of distilled water, and vigorously shaken for 30 s using a high-speed disperser
XHF-DY, Xinzhi, Inc., Ningbo (Zhejiang, China). We then filtered the mixture solution using
filter paper after allowing it to stand for 30 min at room temperature. Then, 10 mL of filtrate
and 5 mL of Magnesia suspension (10 g/L) were both distilled for 5 min using a Kjeldahl
distillation apparatus, and distilled water amounting to 10 mL was used as a standard. A
50 mL aqueous solution of boric acid (40 g/L) and a solution of 0.1 g bromocresol green and
methyl red in ethanol (95%, 100 mL) were both added to the distillate before it was collected
in an Erlenmeyer titration flask. A final titration of 0.1 mol/L HCl was performed on the
boric acid solution. Each sample was tested in triplicate. The TVB-N results were expressed
in mg/100 g, and the concentration was calculated adhering to the following formula:

X =
(v 1 − v2) × c × 14

m × 5/100
× 100 (1)

where X is the sample’s TVB-N concentration represented in mg/100 g, v1 is the quantity of
hydrochloric acid ingested by the titrated boric acid absorbing liquid (mL), v2 is the quantity
of hydrochloric acid absorbed by the titrated blank absorbing liquid (mL), c represents the
concentration of HCL (mol/L), and m denotes sample weight in grams. The values of the
TVB-N content during refrigerated storage (1–11 days) were shown in Figure S1 and Table S1.

It is worth noting that the TVB-N measurements, as well as the picture collection
before and after the silica gel plate reaction, were all performed on the same day with the
same samples. This was specifically performed to ensure the correctness and consistency
of the results.

2.3. Fabrication of the Colorimetric Sensor Array (CSA)

The chemically responsive dyes selected for this experiment were tested prior to the
experiment to make sure the colorimetric sensor array could provide an optimum response.
As shown in Table S2, this study employed twelve chemoresponsive dyes (comprising
three pH markers and nine metalloporphyrins). Analytes with Lewis acid-base capabilities
can be recognized by porphyrins and their metallic complexes with a good deal of accuracy.
The metalloporphyrins are almost perfect for the identification of metal-ligating vapors
due to their high color intensity, significant spectrum shifts upon ligand binding, and
free coordination points for axial ligation. The indicators of pH are dyes that change
color when their environment changes from being acidic or basic according to the proton
(Brønsted) acidity [3,15].

In order to achieve the successful fabrication of the odor imaging sensor array, it is
imperative to select the most suitable plate. For this research, C2 reverse-phase silica gel
plates from Merck KGaA in Darmstadt, Frankfurt, Germany, were used. The colorimetric
sensors were created using the four procedures. To begin with, the pH indicators were
dissolved in ethanol after a precise amount of 20 mg of each chemically responsive dye was
diluted in a 10 mL chloroform solution. The mixture was then ultrasonically treated for 2 h
at room temperature to produce a solution (2 mg/mL). As a result, each dye solution was
then printed onto the plates using microcapillary pipettes of 0.1 µL capacity. Thereafter, the
CSA, consisting of nine pigment solutions (3 × 3 dyes), was constructed. The fabricated
arrays were kept in a nitrogen-flushed glove bag before being used in this experiment.
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2.4. Collection of CSA Data

In this study, an HP Scanjet 4890 flatbed scanner was used to capture the images obtained
by the CSA (Hewlett Packard Inc., Shanghai, China). A resolution of 600 dots per inch
(dpi) was selected on the scanner to provide sharp and detailed images. The original image
was taken before a chicken meat sample was scanned using a flatbed scanner, avoiding any
potential exposure to the sensor array. After that, a sample of chicken was placed in front
of a colorimetric array. Here, a 250 mL glass vessel was used to contain the sample so that
it could come into contact with the sensor array. This allowed for the best possible reaction
between the CSA and the head gas produced by the free volatile compounds in each meat
sample. A ventilator provided the necessary exposure for the duration of this analysis, the
room temperature remained constant at 25 ◦C, and the sample was kept at 4 ◦C prior to
data collection. The following criteria were organized in a logical order: the size of the Petri
dish, the duration of the headspace, and the volume of the sample. Thus, the CSA was
removed from the glass vessel and rescanned after thorough equilibration to acquire the
final image. As depicted in Figure 1, we subtracted the final image from the initial image to
develop a vibrant difference image. This difference image was used to determine the color
change delineation of volatile oxidative compounds (VOCs) in the sample [16,17]. It should
be mentioned that exploratory tests were carried out in this work to estimate the equilibration
period of the sensor response. Accordingly, preliminary investigations showed that after
5 min of equilibration, the desired reactions between the VOCs and the dyes were achieved.
As a result, the response time was fixed at 5 min. Finally, non-uniformity was eliminated by
averaging the centers of each dye point (each point is a circular region made up of 800 pixels).Foods 2023, 12, x FOR PEER REVIEW 6 of 15 

 

 

 

Figure 1. After subtracting their original images from their final images, chicken meat samples were 

then analyzed, and the difference images were obtained. 

2.5. Multivariable Calibration Analysis 

2.5.1. Theory of Partial Least Squares (PLS) Model 

PLS is a straightforward classical linear chemometric technique that has found wide-

spread use, notably in the evaluation and identification of analytes of interest [21,23]. The 

PLS relies heavily on the complete spectrum data set, which comprises both crucial and 

irrelevant data sets. Consequently, the inferior performance of the created PLS model is 

deemed a result of the utilization of redundant and unimportant variables. 

2.5.2. Theory of Support Vector Machine (SVM) Model 

The support vector machine (SVM) is a nonlinear model that is often employed for 

functional regression analysis [24]. The SVM is a very effective machine-learning 

Figure 1. After subtracting their original images from their final images, chicken meat samples were
then analyzed, and the difference images were obtained.



Foods 2023, 12, 720 6 of 14

2.5. Multivariable Calibration Analysis
2.5.1. Theory of Partial Least Squares (PLS) Model

PLS is a straightforward classical linear chemometric technique that has found
widespread use, notably in the evaluation and identification of analytes of interest [21,23].
The PLS relies heavily on the complete spectrum data set, which comprises both crucial
and irrelevant data sets. Consequently, the inferior performance of the created PLS model
is deemed a result of the utilization of redundant and unimportant variables.

2.5.2. Theory of Support Vector Machine (SVM) Model

The support vector machine (SVM) is a nonlinear model that is often employed for
functional regression analysis [24]. The SVM is a very effective machine-learning approach
that was developed from the theory of statistical learning. There is a growing application
of this technique in many fields, such as classification (SVC) and regression analysis (SVR),
as it is able to decipher practical challenges including small samples, nonlinearity, and high
dimensionality in a practical manner [24,25].

2.5.3. Theory of Random Frog (RF) Model

The RF is one of the most structured and efficient variable filtering approaches, and it
was first designed to identify genes and categorize diseases [10,21]. This variable screening
method algorithm is based on the reversible jump Markov Chain Monte Carlo (RJMCMC)
method. The RF variable selection model is mathematically clear and has been demon-
strated to be computationally efficient as it utilizes an iterative process. Based on three
stages, this model works as follows: (1) the variables in the subgroup V0 that include
the Q variables are chosen at random; (2) iteratively, the subset’s identified and favored
variables are enhanced by variables constructed from a Norm (Q, θQ). The Q and θQ
represent the mean and standard deviation, respectively; and (3) after selecting the vari-
ables, a probability is calculated from which the variables’ suitability and significance can
be determined.

2.5.4. Theory of Uninformative Variable Elimination (UVE) Model

Centner et al. were the first to propose the UVE algorithm. It is a prominent method
for selecting relevant variables by taking into account the robustness of the PLS regression
model [26]. The elimination of the extraneous variables is supported by an increase in
the variance of the dependent variable in conjunction with a decrease in that variable’s
covariance (y). The UVE approach uses the matrix X (N ×) and the matrix R (N × L) of
artificial random variables to assess the importance of each prediction variable (k). The
stability value and the cutoff threshold are the two most critical aspects for the execution
of this model. A Monte Carlo cross-calculation is used to calculate the frequency of the
maintained variables in the former, whereas the artificial random variables with the highest
possible absolute value of c are used in the latter. This cutoff is used to exclude variables
that provide no useful information, such as those with absolute c values below the threshold.
The PLS regression equation’s coefficient matrix is analyzed in UVE using a leave-one-out
approach, and the resultant equation is as follows:

ŷ = Xβ + E (2)

where ŷ is the projected value vector (n × 1), which is composed of variables from n spectra,
X is the matrix (n × ρ), β marks the vector regression coefficients (ρ × 1), and E is the model
offset vector (n × 1).

2.5.5. Theory of Competitive Adaptive Reweighted Sampling (CARS) Model

CARS is a frequently employed variable selection method that is beneficial for locating
and utilizing factors that are pertinent to the analytes being examined [16]. In particular,
variables with strong definite coefficients in PLS are called “important spectral variables.”
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Thus, the importance of the variables is determined by the absolute values of the regression
coefficients generated by PLS [20]. For this reason, CARS relies on the sequential, competi-
tive, and iterative selection of crucial spectral characteristics, including: (1) based on the
actual coefficients of the relevant variables, a subset of N Monte Carlo sampling runs was
selected for each cycle of CARS; (2) using the exponentially declining function (EDF) and
adaptive reweighted sampling (ARS), the variables with small true regression coefficient
values were excluded; and (3) the best subset for variable selection was established by
estimating the root mean square error of calibration (RMSEC) for each potential subgroup.

2.6. Statistical Data Analysis

As part of this study, the major usage of Matlab R2014b was involved for the analysis of
spectrum and reference data, as well as model applications, which were all run on Microsoft
Windows 10 (Mathworks Inc., Natick, MA, USA). The variable selection approaches such as
RF, UVE, and CARS were applied based on linear (PLS) and nonlinear (SVM) algorithms.

3. Results and Discussion
3.1. Reference Measurement Results

In order to evaluate the freshness of chicken meat samples, the actual content of TVB-N
was evaluated. Table 1 shows the descriptive statistics of these data. The results show
that there was no discernible variation in the standard deviation of the samples from the
calibration set and those from the prediction set. In addition, neither the range nor the mean
of the samples was significantly different, indicating that both calibration and prediction
sets were effectively distributed. This effective distribution of samples across the two data
sets (calibration and prediction) was deemed sufficient and verified the model’s application
for the efficient prediction of TVB-N contents in chicken meat samples.

Table 1. Descriptive statistics of the contents of TVB-N for chicken quality in calibration and predic-
tion sets.

Constituents Subsets No. of Samples Unit Range Mean Standard Deviation

TVB-N
Calibration set 48 mg/100 g 13.98–67.85 42.33 16.25
Prediction set 32 13.99–66.44 41.78 16.26

3.2. Colorimetric Sensor Array Characteristics Variables (CSA)

The microbial deterioration of chicken flesh is distinguished by the production of
nitrogenous compounds, otherwise referred to as VOCs. In this study, the concentration
of TVB-N was found to be closely related to the volatile component amines emitted by
chicken meat samples during refrigeration. The CSA plays an important role in the de-
tection of the fundamental odor changes that take place in spoiled chicken meat. These
changes were primarily caused by the action of microbes and the decomposition of specific
intrinsically active compounds such as proteins, carbohydrates, and fat in the chicken [2].
The two primary reasons why the chosen chemical dyes respond to most VOCs by present-
ing definite colorific fingerprints are simplified molecular structure alteration and open
coordination sites for axial ligation [3,10]. The color-sensitive image points collected in this
study contain 10 variables altogether: red, green, and blue color (RGB), hue, saturation, and
value (HSV), LAB values, and Euclidean distance. Further, the color-specific fingerprints
can be recognized by the sensor by displaying a peculiar response. The CSA difference
images were separated by subtracting the initial image from the final image following
exposure to the VOCs of the chicken meat samples, resulting in a dramatic color shift for
each individual sample. As clearly illustrated in Figure 1, the difference image of a CSA
was obtained by digitally evaluating each pixel before and after the exposure. A unique
fingerprint is created by the color of each image (∆R, ∆G, ∆B, ∆H, ∆S, ∆V, ∆L, ∆A, ∆B, and
Euclidean Distance).
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3.3. Sample Classification and Evaluation of the Model Performance

For the successful application of the prediction models, the samples (80 in total) were
separated into calibration and prediction sets in a 3:2 ratio. During the analysis of the
data sets, 48 samples were allocated to a calibration set for the purpose of constructing
the model. The remaining 32 samples were assigned to a prediction set to test the robust-
ness of the model that was constructed [10]. An SPXY technique, which is based on the
distances between the X and Y variables, was utilized, and this resulted in the successful
categorization of data into calibration and prediction sets [27].

Several statistical parameters were used and evaluated in this study to assess the
effectiveness of the built models. Thus, the correlation coefficients of calibration and
prediction (Rc and Rp), the root mean square errors of calibration and prediction (RMSEC
and RMSEP), and the ratio of the performance deviation (RPD) of the created models were
employed and compared [21,22]. The lower values of RMSEC and RMSEP and the higher
values of Rc and Rp are therefore preferred when assessing the performance of the model.
Additionally, the RPD value is typically utilized to evaluate the reliability of the developed
models. As a result, RPD values of ≥1.50 indicate that the model is practicable, whereas
values of ≥2.00 suggest that the model is stable [14]. These evaluation parameters were
computed using the formula below:

Rc =

√
1 − ∑n

i=1(ycal − yact)

∑n
i=1(ycal − ymean)

(3)

RMSEC =

√
∑n

i=1(ycal − yact)
2

n
(4)

Rp =

√
1 − ∑n

i=1
(
ypre − yact

)
∑n

i=1
(
ypre − ymean

) (5)

RMSEP =

√
∑n

i=1
(
ypre − yact

)2

n
(6)

RPD =
SD

RMSEP
(7)

where, n is the number of samples employed for model development; ycal is the predicted
value in calibration set; yact is the actual value measured by reference method; ymean
represents the average value; ypre is the predicted value in prediction set, and SD is the
standard deviation of measured values in prediction set.

3.4. Different Variable Selection Algorithms Based on Linear and Nonlinear Regression Models
3.4.1. Results Variable Selection Algorithms Based on PLS Linear Regression Model

The PLS was utilized in the form of a traditional linear regression model, and it was
based on a total of ninety variables from the fabricated CSA sensor. Figure S2 and Table 2
show the outcome of the PLS model’s performance in predicting TVB-N in a chicken meat
sample. Figure S2A illustrates that a minimum of four nLVs were chosen to demonstrate
comparably significant linear fits between CSA data and the respective reference data for
TVB-N prediction. It is, however, evident from the scatter plot performance presented in
Figure S2B that the results achieved by this model are accompanied by high prediction
error values (RMSEP mg/100 g) as well as low prediction coefficient values (Rp). It appears
that the PLS model’s performance is influenced by the use of redundant variables deemed
irrelevant for the analyte under study [16,23].
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Table 2. Model performance outcomes from the different variable selection methods for TVB-N
content based on linear and nonlinear regression models.

Quantitative
Algorithms

Variable
Selection

Number of
Variables

Calibration Set Prediction Set
RPD e

Rc a RMSEC b Rp c RMSEP d

PLS

- 90 0.79 9.94 0.63 13.37 1.15
RF 30 0.86 8.53 0.81 9.65 1.61

UVE 18 0.81 9.55 0.77 10.52 1.35
CARS 13 0.85 8.58 0.81 9.71 1.58

SVM

- 90 0.97 3.84 0.83 9.26 1.52
RF 30 0.99 2.30 0.86 9.17 1.57

UVE 18 0.98 3.05 0.89 7.90 1.83
CARS 13 0.98 3.12 0.92 6.75 2.25

a Rc: determination coefficient of the calibration set; b RMSEC: root-mean-square error of calibration; c Rp:
determination coefficient of the prediction set; d RMSEP: root-mean-square error of prediction; e RPD: ratio of
performance deviation.

The RF-PLS algorithm was used as an efficient variable selection approach for pre-
dicting TVB-N in chicken flesh samples. Notably, prior to its operation, the RF-PLS basic
configurations were N = 10,000 cycles, a baseline quantity of variables featured in the
subset Q = 2, and a moderating value of variability = 0.2, as presented in Figure 2A [21].
Meanwhile, default settings were kept for the rest of the RF-PLS setup parameters. The best
result for TVB-N using this model was seen when nLVs = 5 (Figure 3A and Table 2), with
Rp = 0.81 and RMSEP = 9.65 mg/100 g, respectively (Figure 3B and Table 2). Additionally,
the UVE-PLS variable selection technique was used to identify pertinent informative factors
from the CSA data in order to build a reliable and accurate model for quantifying TVB-N
in chicken meat samples. In the present study, UVE-PLS was employed utilizing a number
of different selection criteria, as shown in Figure 2B. The t-value of the stability index is
shown in blue (vertical line), and two dotted blue (horizontal line) depict the upper and
lower bounds of the real and hypothetical variables, respectively. Furthermore, the real and
generated variables are separated by a tiny blue line by yellow and red wavy lines on the
left and right sides, respectively. The variable was determined to be quite steady when a
coefficient of 0.99 was employed in the selection procedure. As demonstrated in Figure 3D
and Table 2, the performance of this model provided an ideal value of Rp = 0.77 and
RMSEP = 10.52 mg/100 g. This model was further developed using two latent variables, as
can be seen in Figure 3C. Additionally, for the purpose of creating a robust quantitative
model for TVB-N concentration in chicken flesh samples, the CARS-PLS variable selection
method was employed to extract critical factors from the CSA data. The following CARS
configurations were used for maximum efficiency: the Monte Carlo number of sample
sessions was 25, the iteration count was 5, and the frequency of the coefficients of variance
was 5 [16]. As illustrated in Figure 2C (intermediate plot), proper variables were proposed
and developed in two stages to ensure precision in the CARS-PLS model: in the initial cycle,
the number of investigated variables was rapidly reduced to display a rapid sampling
of variables. The second stage involves loosening selection criteria so that the number
of variables sampled steadily grows up to 50 (Figure 2C, last plot). Accordingly, as is
evident from examining Figure 2C (initial plot), the RMSEC values of the selected variable
segments dropped drastically and then continuously increased up to the 17th sampling.
The CARS-PLS model outperformed the prior model (UVE-PLS) with an nLVs of 4, as seen
in Figure 3E. Furthermore, as displayed in Figure 3F and Table 2, the correlation coefficient
of the prediction and error values is Rp = 0.81 and RMSEP = 9.71 mg/100 g.
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Figure 3. Number of latent variables selected and scatter plot performance of actual vs. predicted
values based on linear regression algorithm for TVB-N prediction in chicken meat samples obtained
by RF-PLS (A,B); UVE-PLS (C,D); and CARS-PLS (E,F).

3.4.2. Results Variable Selection Algorithms Based on SVM Nonlinear Regression Model

The SVM was used to establish a relationship between the CSA data and the reference
chemical data for actual TVB-N content prediction in chicken meat samples prior to apply-
ing variable selection models based on the SVM nonlinear model. The SVM model uses
RBF as the kernel function, and the predictive performance of the model will be affected by
the penalty parameter (c) and the RBF kernel function parameter (g). A clearly depicted
example of the optimization of the RMSEC model parameters (g and c) using the grid
optimization algorithm and the five-fold cross-validation method is shown in Figure S3A.
The RMSEC value is the least when g = 0.25 and c = 2, as is clearly shown in the figure above.
Accordingly, based on the CSA spectral features, this model is the optimum SVM prediction



Foods 2023, 12, 720 11 of 14

model and produced Rp and RMSEP (mg/100 g) values of 0.83 and 9.26, respectively, as
indicated in Figure S3B and Table 2. Subsequently, the SVM models served as the basis for
the application of variable selection algorithms such as RF, UVE, and CARS. It should be
noted that before implementing these variable selection approaches, the SVM models were
also optimized for parameters g and c to ensure the lowest RMSEC for effective prediction
performance [25]. As seen from Figure 4A, the lowest RMSEC for the RF-SVM model was
achieved when g = 0.25 and c = 4, whereas the lowest RMSEC for the UVE-SVM model was
obtained when g = 0.088 and c = 4 (Figure 4B). On the other hand, as seen in Figure 4C, the
best RMSEC score for CARS-SVM was achieved with g = 0.5 and c = 2. As result, as shown
by scatter plot performance in Figure 4D for RF-SVM, the best results were shown for vari-
able selection fused with SVM, with Rp = 0.86 and RMSEP = 9.17 mg/100 g. Similarly, for
UVE-SVM, an improved outcome was attained with Rp = 0.89 and RMSEP = 7.90 mg/100 g
(Figure 4E and Table 2). In addition to this, the CARS-SVM, which was chosen as the
optimal model, generated a better outcome with Rp = 0.92 and RMSEP = 6.75 mg/100 g, as
can be plainly shown in Figure 4F and Table 2, respectively.
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Figure 4. Grid search optimization (based on c and g) of RMSEC model parameters and scatter
plot performance of actual vs. predicted values based on SVM nonlinear regression algorithm
for TVB-N prediction in chicken meat samples obtained by RF-SVM (A,D); UVE-SVM (B,E); and
CARS-SVM (C,F).

3.5. Discussion and Comparison of the Built Models

In the present study, we explored a novel CSA combined with algorithms to examine
TVB-N as an indicator of freshness in chicken meat samples. The application of these
algorithms relied on variable selection (RF, UVE, and CARS) approaches, along with PLS
and SVM as linear and nonlinear models, to develop a more robust predictive model. In
the initial application, the PLS as a linear regression model was utilized to establish a
correlation between CSA data and reference chemical data for TVB-N. As shown in Table 2,
correlation was established, but with low Rc and Rp values as well as strong RMSEC and
RMSEP scores as validated by the RPD value (>1.00). This unconvincing performance of the
PLS might be explained by the fact that it utilized entire variables, which are considered to
have contained some information that was extraneous to the target analyte. Hence, variable
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selection techniques were used for the screening and exploitation of relevant variables to
predict TVB-N in chicken meat samples. The variable selection approaches were used, and
the results improved, especially for RF-PLS and CARS-PLS, as seen by the RPD values of
1.61 and 1.58 for the former and latter, respectively (Table 2). This result may be related to
the use of informative factors that were thought to have contained data pertinent to the
prediction of TVB-N in chicken meat samples. It can be shown that RF-PLS, UVE-PLS,
and CARS-PLS selected 30, 18, and 13 variables, respectively, representing 33.33%, 20%,
and 14.44% of the total variables (Table 2). A further note should be made that, despite
the fact that the linear regression models (PLS) produced significantly better results than
the TVB-N prediction, the result generally has been regarded as poor, as it has recorded
low Rc and Rp values, as well as high RMSEC and RMSEP values, as clearly illustrated in
Figure 3B,D,F and Table 2.

To investigate whether there is a nonlinear relationship between the TVB-N content
and the CSA database, the Runs Test tool was employed for the datasets. The details
about the features of the Runs Test tool are shown in the supplementary material. In
particular, |z| > 1.96 shows that the analyzed data are nonlinear when the significance
level is 0.05. The testing results, calculated to be z = 2.88 for TVB-N (Table S3), revealed the
strong nonlinearity between the TVB-N content and the CSA database in chicken. Thus, a
nonlinear regression model known as the support vector machine (SVM) was utilized on the
obtained CSA data, which included a total of 90 different factors, in order to predict TVB-N.
As shown in Table 2, the SVM outperformed the PLS in terms of Rc and Rp values, as well
as prediction errors (RMSEC and RMSEP), as evidenced by an RPD value of 1.52. The
variable selection strategies (RF, UVE, and CARS) based on the SVM nonlinear regression
model outperformed those based on the linear PLS (Table 2). The Rc and Rp increased
dramatically, whereas RMSEC and RMSEP remained exceedingly low. Given that these
models were applied using the same number of variables as the linear, as is vividly seen
in Table 2, their performance is appreciably improved. Notably, the CARS-SVM model
generated the best results, with the highest Rp and the lowest RMSEP. Furthermore, the
CARS-SVM achieved the highest RPD value of 2.25 (Figure 4F and Table 2), indicating that
it is the most accurate and robust model for predicting TVB-N in chicken breast samples.

4. Conclusions

In conclusion, a novel method using CSA in conjunction with linear and nonlinear
regression models has been developed for detecting the freshness of chicken meat samples.
The TVB-N content was determined through steam distillation, and the CSA was effectively
and efficiently fabricated by employing nine chemoselective dyes. We discovered a good
association between the volatile organic compounds (VOCs) released by the chicken flesh
during refrigeration and the corresponding dyes employed after successfully fabricating
the CSA. Then, variable selection techniques were used, such as random frog (RF), un-
informative variable elimination (UVE), and competitive adaptive reweighted sampling
(CARS). These techniques were based on linear “partial least squares” (PLS) and nonlinear
“support vector machines” (SVM) regression models. As a result, the CARS-SVM, as a
nonlinear model, offered the best results for predicting the analyte under study, with a high
prediction coefficient (Rp) of 0.92 and the lowest prediction error (RMSEP) of 6.75. This
great performance could be attributed to the selection of the fewest factors necessary for
the prediction of TVB-N in chicken flesh samples, as evidenced by the highest RPD value of
2.25 obtained. Given the tremendous nutritional relevance of chicken meat, the proposed
approach might be used to monitor the freshness of chicken meat as part of the important
difficulties afflicting the meat industry and consumers. In spite of this, further research
should be conducted to determine whether or not the developed technique can be applied
to other types or breeds of chicken meat, particularly as chicken meat is not homogeneous
in nature.



Foods 2023, 12, 720 13 of 14

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/foods12040720/s1, The theory of Runs test; Figure S1:
Scatter plot showing chemical reference measurements values of TVB-N in the chicken breast fillets
during 11days; Figure S2. PLS (linear) performance based on (A) number of latent variables; and
(B) scatter plot result of actual vs. predicted values for TVB-N content in a chicken meat sample;
Figure S3: SVM (nonlinear) performance based on (A) optimization of SVM model parameters and
(B) a scatter plot result of actual vs. predicted values for TVB-N content in a chicken meat sample;
Table S1: Statistics table of the chemical reference measurements values of TVB-N in the chicken breast
fillets during 11days; Table S2: Name and formula of chemoresponsive dyes used for fabricating CSA;
Table S3: Results of the runs test applied to detect the nonlinearity between the CSA database and
TVB-N reference in chicken by the APaRPs method.
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