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Abstract: Cereal β-glucans are beneficial health ingredients that reduce cholesterolemia and post-
prandial glycaemia. However, their impact on digestive hormones and gut microbiota is not yet
fully established. Two randomized, double-blind, controlled studies were conducted. In the first
study, 14 subjects ingested a breakfast with or without β-glucan from oats (5.2 g). Compared to
the control, β-glucan increased orocecal transit time (p = 0.028) and decreased mean appetite score
(p = 0.014) and postprandial plasma ghrelin (p = 0.030), C-peptide (p = 0.001), insulin (p = 0.06), and
glucose (p = 0.0006). β-glucan increased plasma GIP (p = 0.035) and PP (p = 0.018) without affecting
leptin, GLP-1, PYY, glucagon, amylin, or 7α-hydroxy-4-cholesten-3-one, a biomarker of bile acid
synthesis. In the second study, 32 subjects were distributed into 2 groups to ingest daily foods with
(3 g/day) or without β-glucan for 3 weeks; stools were collected before/after treatment. No changes
in fecal microbiota composition/diversity (deep sequencing) were detected with β-glucans. These
results indicate that acute intake of 5 g β-glucan slows transit time and decreases hunger sensation
and postprandial glycaemia without affecting bile-acid synthesis, these changes being associated
with decreased plasma insulin, C-peptide, and ghrelin, and increased plasma GIP and PP. However,
regular daily intake of 3 g β-glucan is not sufficient to have an effect on fecal microbiota composition.

Keywords: beta-glucan; gut microbiota; digestive hormones; appetite; post-prandial glycemia

1. Introduction

Cereal β-glucans are soluble and linear polymers of glucose that are abundant in the
cell wall of oats and barley. Their high molecular weight (1000–2500 kDa) and solubility
determine their viscosity in solutions and their physiological effects in humans [1,2]. Due to
their physicochemical characteristics, β-glucans have been used as fat substitutes to reduce
the caloric content of foods [3–5]. They also form viscous solutions in the gastrointestinal
lumen, contributing to slowing gastric emptying and increasing feelings of fullness and
satiety [6]. In addition, they also interfere with enzymatic activities and bile micelles [7],
decreasing postprandial glucose absorption and increasing fecal excretion of bile salts,
forcing the body to synthesize new bile acids at the expense of endogenous cholesterol [2,8].
Accordingly, several clinical studies have reported that the consumption of foods containing
β-glucans contributes to the maintenance of normal blood cholesterol and to the reduction
of postprandial hyperglycemia in human subjects [8,9]. Based on this background, the
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European Food Safety Authority (EFSA) has accepted health claims for β-glucans from
cereals. These claims state that the intake of at least 3 g and 4 g of cereal β-glucan may
improve blood cholesterol and postprandial glycaemia, respectively [10].

The administration of oat β-glucans was also shown to stimulate the release of chole-
cystokinin (a digestive, anorexigenic hormone) in overweight women, in association with
decreased insulin release and increased subjective satiety [11]. However, their impact on the
level of other digestive hormones involved in the regulation of appetite, gastric emptying
and/or metabolism, such as GLP-1, GIP, PYY, PP, leptin, and ghrelin, has been less well
studied. Although plasma ghrelin and PYY decreased and increased, respectively, after
a meal enriched with oat bran, no changes in the release of digestive hormones, appetite,
or energy intake were observed in healthy young subjects after ingesting different doses
of dietary fiber in another study [12,13]. On the other hand, Weickert et al. reported that
wheat intake, but not that of β-glucan from oats, affects the postprandial secretion of
PYY and ghrelin [14]. The results regarding the effect of β-glucans on satiety-regulating
hormones are therefore contradictory, and further studies are needed to reach a consensus.
Finally, recent in vitro and in vivo studies suggest that β-glucans may also act as prebiotics,
modulating the colonic microbiota and stimulating the production of short-chain fatty
acids (SCFAs) through their fermentation [15]. However, most studies evaluated the effect
of β-glucans on the growth of Lactobacillus or Bifidobacterium species in pure cultures, the
composition of human fecal microbiota in bioreactors, or the cecal microbiota in rats. Few
studies were performed in humans and most did not analyze the whole microbiota, but
only some specific bacterial populations through plate count, qPCR, or fluorescent in situ
hybridization (FISH) [15].

Based on these antecedents, the aim of this study was to determine, in asymptomatic
human volunteers, (1) the acute effect of a breakfast enriched with oat β-glucan on orocecal
transit time, changes in plasma digestive hormones, and satiety; and (2) the effect of a
three-week intake of foods enriched with oat β-glucan on the composition and diversity of
gut microbiota, assessed by deep sequencing.

2. Materials and Methods
2.1. Subjects

The study was conducted at the Department of Nutrition of the Faculty of Medicine,
University of Chile. The protocol was approved by the “Comité de Etica de Investigacion
en Seres Humanos” (CEISH) (Acta 145-2014) of the Faculty of Medicine, the subjects
were informed about the objectives and procedures of the study, and those who agreed
to participate had to sign a written consent. Asymptomatic subjects, between 20 and
40 years of age, male or female, normal weight or overweight (BMI between 18.5 and
29.9 kg/m2) were recruited. Exclusion criteria included pregnancy, history of digestive
diseases, cholecystectomy, chronic intestinal pathologies and/or malabsorption syndrome
(celiac disease, chronic inflammatory bowel diseases), as well as the intake of drugs that
interfere with the intestinal microbiota or intestinal transit (antibiotics, anti-inflammatory
drugs, laxatives, and prokinetics) during the month prior to the study. Smoking, type-2
diabetes, organ failure (cardiac, hepatic, renal, and respiratory), or immunodeficiency
(HIV, chemotherapy, radiotherapy, and transplantation) were further exclusion criteria. A
biochemical and lipid profile was performed on the subjects recruited to eliminate those
who might present alterations incompatible with the study.

2.2. Food Products

Different foods (soup, lactose-free yoghurt, lactose-free milkshake, orange nectar,
cereal bars, and biscuits) were developed for use in short and long-term studies. Those used
by the β-glucan group were supplemented with an enriched beta-glucan fraction obtained
from dehulled oat groats by fine grinding and air fractionation (BETAvena, Granotec, Chile),
a technological process that allows oat beta-glucans to remain in their native form. The
molecular weight of β-glucans ranged from 65 to >2000 kDa. The viscosity of this beta-
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glucan concentrate in solution was not determined in this study. All β-glucan-enriched
foods contained 1 g of β-glucans per serving. Control subjects were given the same foods
without beta-glucans.

2.3. Short-Term Study
2.3.1. Experimental Design

The change in the area under the curve (AUC) of glycemia was chosen as the primary
outcome to calculate the sample size. To detect a 20% decrease in this parameter with
β-glucan in the setting of a crossover study, with a power of 80% and a risk α of 5%,
14 subjects had to be recruited. An experimental, randomized, double-blind, controlled,
crossover trial comprising two days of testing (β-glucan and control) separated by at least
one week was performed. Each subject received advice from a dietician to avoid as much
as possible foods containing oat or barley and changes in their diet between the two test
periods. On each of the test days, subjects who fasted overnight were required to report to
the Nutrition Department at 8:00 am. An intravenous catheter was placed in the forearm
vein and two basal blood samples were taken 10 min apart. Subjects were then required
to eat a breakfast consisting of 200 mL of lactose-free milkshake, 2 cookies, and 2 cereal
bars, with or without β-glucans (β-glucan and control period, respectively), in a time not
exceeding 15 min. The nutritional composition of the breakfasts is described in Table 1.
The breakfast enriched with β-glucan provided 5.2 g of β-glucan. This amount of β-glucan
was chosen on the basis that the intake of at least 4 g of cereal β-glucan can improve
postprandial blood glucose levels and that most of the outcomes assessed in this short-term
study were related to glucose metabolism.

Table 1. Nutritional composition of the breakfasts used in the study.

Control ß-Glucan

Energy (kcal) 393 396
Proteins (g) 9.5 11.6
Fat (g) 8.6 11.2
Available Carbohydrates (g) 69.5 62.1
Sugar (g) 12.7 11
Oat β-glucan (g) 0 5.2

Blood samples were obtained 30 min, 1:30, 3:30, 5:30, and 7:30, after finishing breakfast.
At the end of the study day, volunteers were offered a sandwich and a fruit juice. The
food products were prepared and provided by the “Consorcio de Cereales Funcionales”
in Santiago and delivered to the laboratory at the beginning of the study. The control and
experimental products were individually packaged and had an identical appearance, each
being labeled with a code that allowed them to be differentiated, but whose identity was
unknown to both the researchers and the volunteers.

2.3.2. Orocecal Transit Time Determination

A Hydrogen Breath test (HBT) was performed on the volunteers during the test,
to determine their orocecal transit time (OCTT). Breath samples were obtained by end
expiratory sampling in plastic syringes using a modified Haldane-Priestley tube, before
breakfast ingestion and at 15-min intervals thereafter. The hydrogen concentration in
breath samples was measured using an electrochemical cell (Lactotest, Medical Electronic
Construction, Brussels, Belgium). OCTT was defined as the time elapsed between the
start of breakfast and that at which an increase of more than 20 ppm above baseline H2
occurred [16].

2.3.3. Satiety Index

Sensations of hunger (how hungry are you?), fullness (how full are you?), satiety (how
satiated are you?), food craving (how strong is your desire to eat?), and prospective food
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consumption (how much would you be able to eat right now?) were assessed every 60 min
for 8 h after breakfast intake in each subject using 10 cm visual analogue scales (VAS) [17].
Corresponding areas under the VAS curves (AUC, cm·min) were calculated to describe
global changes in sensations during the post-prandial period. Average appetite (=desire to
eat + hunger + (10-fullness) + prospective food consumption) was calculated according to
Anderson et al. [18] to provide an overview of satiety.

2.3.4. Plasma Hormones Determination

Blood samples were collected in EDTA tubes and a DPPIV inhibitor (Millipore) and
protease inhibitor cocktail (Sigma) was immediately added, according to the manufacturer’s
instructions. Samples were centrifuged at 1000× g for 10 min and the plasma was aliquoted
and stored at −30 ◦C. A Human Metabolic Hormone Magnetic Bead Panel (HMHEMAG-
34K, Milliplex, Merck, Santiago, Chile) [19] was used to simultaneously determine plasma
concentrations of ghrelin, leptin, gastric inhibitory polypeptide (GIP), glucagon-like peptide
1 (GLP-1), peptide YY (PYY), pancreatic polypeptide (PP), glucagon, amylin, insulin,
and C-peptide, using a Luminex 200 System (Merck, Santiago, Chile), according to the
manufacturers’ instructions.

Post-prandial glucose concentrations were measured at 0, 30, 60, and 120 min with
a glucometer (Accu-Check, Roche, Santiago, Chile) and plasma 7α-hydroxy-4-cholesten-
3-one (7α-HC) was determined by liquid chromatography coupled mass spectrometry
(LC-MS/MS) by the Clinical Laboratory of the Pontificia Universidad Católica (Santiago,
Chile) (intra-assay coefficient of variation = 5.6%) [20].

2.4. Long-Term Study
2.4.1. Experimental Design

The primary outcome selected for the sample size calculation was the relative abun-
dance of butyrate-producing bacteria in the fecal microbiota of the subjects. Consider-
ing that these bacterial populations represent about 10% of the total microbiota, to have
90% chance of detecting a 5% increase in these populations with a 5% risk and considering
a 10% dropout, it was estimated that it was necessary to recruit 16 subjects per group. An
experimental, randomized, double-blind, controlled clinical study was conducted. The
recruited subjects were randomly distributed into two groups: control and β-glucan. Dif-
ferent foods (soup, lactose-free yogurt, lactose-free milkshake, orange nectar, cereal bars,
and cookies) enriched with β-glucan (β-glucan group) or without β-glucan (control group)
were provided to the subjects weekly for three weeks, under the supervision of a registered
dietitian. All β-glucan-enriched foods contained 1 g of β-glucan per serving and subjects
had to ingest 3 servings per day. The volunteers were free to eat other foods during the day
but were asked not to consume oats or barley-containing products. Each volunteer had to
deliver a freshly emitted stool in a plastic container before the beginning (baseline T0) and
at the end (T1) of the treatment period. The stools were kept frozen until analysis.

2.4.2. Digestive Symptoms

During the study, volunteers had to register daily the eventual presence of digestive
symptoms (abdominal pain, abdominal distension, vomiting/regurgitation, increased
borborygmi, and increased rectal gas) and distractors, and their respective intensity (0:
absent, 1: low, 2: mild, and 3: high), as previously described [21]. They also had to register
their stool frequency and consistency daily according to the seven-point Bristol stool scale,
using an ad hoc form. For the statistical analysis, the sum of the digestive symptoms was
calculated for each study week and for each subject considering their respective intensity.

2.4.3. Microbiota Analysis

Bacterial genomic DNA was extracted from 220 mg of stool samples using the QIAmp
DNA Stool Mini Kit (Qiagen, Hilden, Germany) according to manufacturer instructions.
Library preparation and Illumina sequencing were performed at the Roy J. Carver Biotech-
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nology Center, University of Illinois (Urbana-Champaign, Champaign, IL, USA). Libraries
were prepared from 2 ng of DNA using the Fluidigm Access Array (Fluidigm, South San
Francisco, CA, USA) in a two-step process. In the first step, the V3–V4 region of the 16S
rRNA gene was amplified using the primers 341F (50-CCTACGGGNGGCWGCAG-30) and
785R (50-GACTACHVGGGTATCTAATCC-30) [22], and index and sequencing adapters
were added in a second PCR. The amplicons were quantified through Qubit fluorometry,
and their sizes were verified in 11 random samples using an Agilent 2100 Bioanalyser (Agi-
lent Technologies, Santa Clara, CA, USA) to determine their overall quality. The amplicons
were then pooled, purified with a 2% agarose e-gel (Invitrogen, Life Technologies, Grand
Island, NY, USA), and the average amplicon size was determined. Finally, pooled libraries
were quantified with qPCR performed using a CFX connect Real-Time PCR (Bio-Rad, Her-
cules, CA, USA) before loading the libraries into the sequencer. Sequencing was performed
with MiSeq Illumina system (Illumina, San Diego, CA, USA), using the V3 kit, generating
paired end reads of 2300 nt.

Illumina FASTQ sequences were analyzed with the QIIME software package, as
previously described [23]. Paired reads were demultiplexed (CASAVA V1.8.2), trimmed
(Trimmomatic V0.36) to remove low-quality sequences, merged (FLASH V1.2.11), and
adapters removed (Cutadapt V1.9). Chimeric sequences were removed with VSEARCH.
OTUs were constructed as described in the closed reference protocol in QIIME (V 1.8.0)
using the the Greengenes 13.8 database at 97% sequence similarity. Rarefactions curves
were calculated using QIIME. All analyses of abundances and α- and β-diversity were
performed using the Phyloseq and microbiome packages in R statistical software. Values
were obtained for observed OTUs and Chao1 index.

2.5. Statistical Analysis

Except for the results corresponding to the microbiota analysis, which were processed
using R statistical software [24], all other data were analyzed using “Statistica” (StatSoft,
Tulsa, OK, USA). Whether the variables followed a normal distribution was assessed with
the Shapiro-Wilks test. Results were expressed as mean ± SD or as median [interquartile
range]. Changes in the variables between the initial and final periods of both groups were
analyzed by analysis of variance.

3. Results
3.1. Short-Term Study

Of the 18 asymptomatic volunteers initially recruited in the acute study, 4 were
excluded because they presented alterations in their biochemical profiles (fasting glycemia
>110 mg/dL) incompatible with their participation. The remaining 14 subjects completed
the study; their anthropometric characteristics and biochemical/lipid profiles are described
in Table S1.

Of these 14 participants, only 6 were identified as hydrogen producers, i.e., they
showed increases in breath H2 concentrations greater than 20 ppm above baseline values
in both breath test periods, compared with baseline values, allowing their OCTT to be
determined. Five subjects had an increase in H2 in the control period and not in the β-
glucan period, and only one had an increase in H2 in the β-glucan period and not in the
control period. As shown in Figure 1, OCTT increased significantly (by 28%) in all 6 subjects
during the β-glucan period, compared to the control period.

Post-prandial feelings of hunger, fullness, satiety, food craving, and prospective food
consumption were evaluated by VAS scoring during the control and β-glucan periods, and
the mean appetite score was calculated according to the values obtained. The VAS results
are shown in Figure 2; no difference was observed between the two groups for any of the
parameters studied.
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Figure 2. Changes in subjective feelings (VAS score) of satiety/appetite during the postprandial
period after eating breakfast with foods enriched (Grey line) or not (black line) with β-glucan.
(A) Satiety (Treatment (Trt.) × Time: p = 0.65); (B) Fullness (Trt. × Time: p = 0.95); (C) Desire to
eat (Trt. × Time: p = 0.29); (D) Prospective food consumption (Trt. × Time: p = 0.39); (E) Hunger
(Trt. × Time: p = 0.97); (F) Mean appetite score (Trt. × Time: p = 0.83). Means ± SEM. Two-way
ANOVA for repeated measurements (Treatment × time interaction).

However, when the results were expressed as AUCs for each of these variables
(Table 2), paired comparisons indicate that breakfast with β-glucan-enriched foods non-
significantly decreased “desire to eat” (p = 0.05) and significantly decreased hunger and
prospective food consumption (p = 0.04 and p = 0.033, respectively). Accordingly, the
subjects’ mean appetite score also significantly decreased in the β-glucan period (p = 0.014).
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Table 2. Area under the VAS curves (AUC) for satiety, fullness, hunger, food craving, prospective
food consumption, and calculated values for mean appetite score during the control and β-glucan
periods. Means ± SD.

AUC (cm·min) Control (n = 15) β-Glucan
(n = 15)

p Value
(Paired t-Test)

Satiety 47.1 ± 13.6 49.2 ± 12.9 0.19
Fullness 44.8 ± 12.6 46.8 ± 13.2 0.19
Desire to eat −46.1 ± 12.4 −49.6 ± 11.0 0.05
Prospective food consumption −45.0 ± 8.7 −48.3 ± 10.9 0.033
Hunger −47.2 ± 9.0 −50.7 ± 9.1 0.04
Mean appetite score −107 ± 39 −121 ± 39 0.014

Changes in the post-prandial plasma concentrations of digestive hormones and glu-
cose are described in Figure 3. No significant Treatment X Time effect was detected when
the postprandial control and β-glucan curves were compared for all digestive hormones
evaluated in the study. However, paired comparisons of their corresponding AUCs (Table 3)
indicate that administration of β-glucan non-significantly decreased the plasma concentra-
tions of insulin by 18.8% (p = 0.06) and significantly decreased those of ghrelin by 1.5 time
(p = 0.030) and C-peptide by 7.9% (p = 0.001). Intake of the β-glucan-enriched breakfast also
increased plasma GIP and PP by 10.4% (p = 0.035) and 19% (p = 0.018), respectively, without
affecting those of leptin, GLP-1, PYY, glucagon, and amylin. When considering differences
in AUC between the β-glucan and control periods, a positive correlation was observed
between insulin and C-peptide (r = 0.58; p = 0.03) and between PYY and GLP-1 (r = 0.75,
p = 0.002). The AUC of blood glucose also decreased significantly by 9.5% (p = 0.006) after
the β-glucan-enriched breakfast.
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Figure 3. Post-prandial changes in the plasma concentrations of digestive hormones. (A–C) peptide
(Treatment (Trt.) × Time: p = 0.75); (B) Insulin (Trt. × Time: p = 0.25); (C) Glucagon (Trt. × Time:
p = 0.94); (D) PP (Trt. × Time: p = 0.83); (E) Leptin (Treatment (Trt.) × Time: p = 0.95); (F) Ghrelin
(Trt × Time: p = 0.88); (G) PYY (Trt. × Time: p = 0.042); (H) GIP (Trt. × Time: p = 0.87); (I) GLP-1
(Trt. × Time: p = 0.79); (J) Amylin (Trt. × Time: p = 0.90). (Means ± SEM). Two-way ANOVA for
repeated measurements (Treatment × time interaction).
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Table 3. The area under the curves (AUC) of post-prandial plasma concentrations of digestive
hormones and glucose during the control and β-Glucan periods (Means (CI95%)).

Post-Prandial AUC of Plasma Digestive
Hormones (pg·h/mL)

Control
(n = 14)

β-Glucan
(n = 14)

p Value
(Wilcoxon Paired Test)

Ghrelin 27 (−30–58) −13.6 (−91–18) 0.030
Leptin 27,502 (13,502–38,172) 24,206 (16,115–47,404) 0.68
GIP 1204 (952–1513) 1329 (1161–1504) 0.035
GLP-1 60.9 (34.5–84.9) 53.1 (32.3–80.3) 0.47
PYY 231 (186–280) 240 (204–288) 0.64
PP 237 (179–342) 282 (181–473) 0.018
Glucagon 77.3 (62.4–89.1) 81.4 (65.9–98.2) 0.30
Insulin 6155 (4389–7935) 4999 (3563–8407) 0.064
C-Peptide 16,277 (13,373–17,707) 14,491 (11,037–17,817) 0.001
Amylin 79.7 (46.3–107.6) 74.1 (58.9–109.2) 0.40
Glycaemia 367 (341–425) 332 (315–358) 0.0063

Plasma concentrations of 7-α-HC, used as a marker of cholesterol metabolism, did not
differ at baseline between the two treatment periods (12.3 ng/mL [8.2–24.3] vs. 11.3 ng/mL
[7.4–26.0], respectively, for the control and β-glucan period; p = 0.55). No differences in
this parameter were observed 7 and 8 h after β-glucan ingestion, compared to the control
period (ANOVA, p = 0.10).

3.2. Long-Term Study

Thirty-two subjects were enrolled in the study and their anthropometric characteristics
as well as their biochemical and lipid profiles at inclusion are shown in Table S2. Both
groups were similar in terms of the different parameters assessed, except for blood glucose
and phosphatemia which were significantly higher and lower, respectively, in the β-glucan
group than in the control group. All volunteers completed the study, and no adverse effects
were reported.

The volunteers recorded the presence and intensity of digestive symptoms daily, in-
cluding abdominal pain, bloating, borborygmi, rectal gas, and reflux/vomiting. The sum
of these symptoms (total digestive symptomatology) by week for each group is shown
in Figure S1. ANOVA shows a significant effect of treatment (p = 0.048), with digestive
symptomatology being higher in the β-glucan group than in the control group. However,
no time effect (p = 0.34) nor time X treatment interaction (p = 0.57) was detected. When
individual digestive symptoms were compared between the two groups, no differences
were detected for abdominal pain, borborygmi, rectal gas, and vomiting/regurgitation. Sig-
nificantly more bloating was recorded in the β-Glucan than in the control group at week 1
(4 [1–7] vs. 0 [0–3], respectively; p = 0.04), but this difference disappeared at weeks 2 and 3.
The weekly stool frequency, according to their consistency, for each treatment group is
shown in Table S3. No changes in hard (corresponding to type 1 and 2 of the Bristol Scale)
or watery (type 6 and 7) stool output were observed in the β-glucan group, compared to
the control. Most of the stools emitted by the volunteers were of normal consistency (3
to 5), and their frequency varied between 5 and 7 per week, with no change over time or
with treatment.

The fecal microbiota of the volunteers was characterized before and after the three-
week period of dietary supplementation with β-glucan or control, by sequencing the V3–V4
region of the 16S RNA gene. Of the 32 subjects enrolled in the study, one from the control
group and one from the ß-Glucan group were removed before analysis due to the low
number of sequences (<8000) detected in their samples. A total of 1,548,315 high-quality
filtered sequences were obtained, i.e., 25,805 ± 9033 sequences per sample. As shown in
Figure S2, all four rarefaction curves reached an asymptote, indicating that the depth of the
sequence was sufficient to represent most of the diversity of the bacterial community, no
statistical differences were observed between them.
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A total of 10 phyla, 44 families, and 79 genera were detected. The core microbiota repre-
senting the genera present in all subjects at baseline included Faecalibacterium (25.9 ± 6.1%),
Lachnospiracea incertae sedis (10.9 ± 4.0%), Blautia (4.9 ± 2.8%), unclassified clostridiales
(4.2 ± 2.8%), Coprococcus (3.2 ± 1.3%), Ruminococcus (1.7 ± 1.2%), Lachnospira (1.2 ± 1.1%),
Dorea (1.0 ± 0.6%), and Oscillospira (0.89 ± 0.61%), all belonging to the phylum Firmicutes,
and Bacteroides (17.8 ± 11.4%) of the phylum Bacteroidetes. As shown in Figure 4A, no
significant differences in diversity were detected between the two groups at T0 or T1. Fur-
thermore, α-diversity was similar in both groups at T0 (Observed: 846 ± 147 vs. 836 ± 108;
Chao-1: 1456 ± 271 vs. 1457 ± 246, for the control and β-glucan group, respectively) and
did not change significantly at T1 (ANOVA: p = 0.29 and p = 0.26 for Observed and Chao-1).
No differences in α-diversity were observed between genders (p = 0.33 and p = 0.64 for
the Observed and Chao-1 index, respectively). Relative abundances of the phyla, families,
and genera at T0 and T1 are shown in Table S4. Only taxa with a relative abundance >0.1%
were considered. The corresponding changes between T1 and T0 are shown in Figure 4B–D.
Significant changes were observed at T1, compared to T0, for some bacterial populations. At
the phylum level (Figure 4B), the abundances of Actinobacteria and Firmicutes decreased
and that of Bacteroidetes increased over time in both groups, with no differences between
them. Considering changes over time at the family level (Figure 4C), the abundance of
Bacteroidaceae and Porphyromonadaceae increased and that of Clostridiaceae decreased
only in the control group, while that of Bifidobacteriaceae decreased in the β-glucan group
and that of Coriobacteriaceae decreased in both groups, these changes not being signifi-
cantly different between groups. Finally, considering changes at the genus level (Figure 4D),
the abundance of Bacteroides and Parabacteroides increased and that of Dorea and Blautia
decreased, only in the control group, while that of Bifidobacterium decreased in the β-glucan
group. Again, these changes over time were not significantly different between the groups.
In summary, no significant differences were observed between the control and the β-glucan
group for these different taxa at the end of the treatment period.
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Figure 4. ß-diversity and changes in relative abundances (Log2 fold differences) of bacterial taxa
between T1 and T0. (A) Inter-individual β-diversity at T0 (before treatment) and T1 (after treatment)
in the control and β-glucan groups. Changes in the relative abundances of bacterial phyla (B), families
(C), and genera (D). In (B–D), only bacterial taxa with a prevalence >50% are shown. In the box
and whisker plots, the line shows the median, the wide of the box, the interquartile range and the
whiskers, the highest and lowest values. * p < 0.05.
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4. Discussion

The worldwide increase in obesity, type-2 diabetes, non-alcoholic liver disease, and
cardiovascular diseases has stimulated interest in identifying dietary constituents capable
of controlling blood glucose, insulin, and lipids as well as blood pressure, and food intake.
Dietary fibers, including β-glucans, have been implicated in the prevention of insulin resis-
tance, hypertension, dyslipidemia, and obesity, although the exact mechanisms associated
with these health benefits have not yet been fully elucidated.

In the present study, we evaluated the effect of β-glucan intake on plasma concen-
trations of 10 digestive hormones simultaneously in healthy subjects, in addition to the
determination of hunger perception, orocecal transit time, post-prandial glycaemia and
plasma 7-α-HC, a marker of cholesterol metabolism. Our results show that acute ingestion
of a breakfast containing 5.2 g β-glucan from oats leads to a significant decrease in the mean
appetite score of volunteers during the postprandial period, mainly due to reduced hunger
sensation and prospective food intake. Similar to our results, most studies conducted
with β-glucans in human volunteers showed a positive effect on hunger/satiety sensation,
although their real impact on subsequent food and energy intake was less evident [25–28].
Only a few studies did not show a positive effect of β-glucan on hunger perception. In the
case of the Peters et al. study [29], for example, it is probable that this lack of effect was due
to the low amount of β-glucan (1.2 g) administered to the volunteers.

Our results also confirm that breakfast with β-glucans decreased post-prandial gly-
caemia and insulinemia, as reported in other studies [1,6,9,10,30]. Such effect could be
explained by the fact that β-glucans slow gastric emptying [6], interfere with amylase
activity [31], and reduce the expression of the glucose transporters SGLT-1 and GLUT2 at
the brush border of enterocytes [32], through their ability to form viscous solutions in the
lumen of the upper GI tract [12]. In our study, the impact of β-glucan breakfast on gastric
emptying, and eventually on intestinal transit time, is suggested by the slower OCTT
observed in the hydrogen-producing subjects and could also contribute to the reduced
sensation of hunger/satiety. Regarding the insulin response elicited by breakfast with
β-glucan, we only detected a non-significant decrease in insulin release, as reflected by
changes in plasma insulin and AUC. However, the AUC of C-peptide was clearly decreased
(p = 0.001). Since the pancreas releases C-peptide from pro-insulin in equimolar amounts
and its hepatic extraction rate is lower than that of insulin, it is considered a reliable marker
of insulin secretion [33]. This is confirmed by the fact that changes (between the β-glucan
and control periods) in plasma insulin correlated with those observed with C-peptide.
Consequently, our results indicate a decrease in insulin secretion, although plasma insulin
levels were not significantly affected (p = 0.06). This lower pancreatic insulin response with
β-glucan breakfast is probably due to the slower glucose absorption observed in our study,
which would result in less stimulation of insulin release by the pancreas. These results
highlight the importance of simultaneously determining insulin and C-peptide.

Regarding post-prandial changes in the other digestive hormones, we observed a
significant decrease in post-prandial ghrelin and an increase of GIP and PP with β-glucan
breakfast, while leptin, GLP-1, PYY, glucagon, and amylin were not affected. GLP-1,
PYY, leptin, and PP are anorexigenic hormones while ghrelin is orexigenic. In addition,
amylin, which is released by pancreatic β-cells, may also act in the brain, producing
satiety-like effects [34]. Consequently, all these hormones are involved in the highly
complex process of appetite/satiety regulation [35]. Regarding our results, it is likely that
the decrease in plasma ghrelin and the increase in PP help to explain the lower mean
appetite score observed after breakfast with β-glucan, in the absence of changes in the
other anorexigenic hormones. Although several studies have assessed the impact of β-
glucan on digestive hormones, they did not determine as many hormones simultaneously
as in our study. Our results confirm those reported by Barone Lumaga et al. who also
observed a reduction in plasma ghrelin and an increase in PP with the intake of a drink
containing 3 g of β-glucan in healthy volunteers, with no changes in PYY, GLP1, and
GIP [36]. Vitaglione et al. [37] and Juvonen et al. [12] also reported reduced ghrelin levels
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with bread or pudding containing β-glucan, respectively, while in both studies, an increase
in PYY levels was also observed, in opposition to our observations. In another study,
ingestion of a whole-meal rye bread containing oat β-glucan concentrate resulted in a
decrease of GIP with no change in GLP-1 [38]. Some studies were also conducted in
patients with obesity or metabolic syndrome, showing that acute administration of β-glucan
enriched foods dose-dependently increases PYY [39], increases CCK without affecting
ghrelin (8), or decreases GIP without affecting insulin, GLP-1, or ghrelin [40]. Beck et al.
also demonstrated that β-glucan supplementation for three months in overweight women
on an energy-deficient diet resulted in decreased plasma leptin, PYY, and GLP-1 levels
and increased CCK [41]. In contrast to other studies, we observed increased plasma levels
of GIP after breakfast with β-glucan. GlP is mainly secreted by enteroendocrine K-cells
located in the proximal gut epithelium, which explains the rapid onset of its secretion after
a meal. Dietary fat has been shown to be the most potent stimulator of GIP secretion in
humans [42]. Consequently, it is possible that the higher levels of GIP observed in our study
are due to the fact that the lipid content of the β-glucan breakfast was slightly higher than
that of the control, a difference inherent to the elaboration of the β-glucan-containing foods
to maintain good acceptability of these products. In addition to its well-described role as
an incretin hormone acting on pancreatic β-cells and in the control of lipid metabolism in
adipose tissue, GIP has recently been shown to regulate progenitor cell proliferation in the
central nervous system, behavior, and bone remodeling [42].

Moreover, we also determined post-prandial changes in plasma 7α-HC, a metabolic
intermediate in bile acid synthesis. Bile acid synthesis in the liver and its fecal excretion are
key events in the regulation of endogenous cholesterol pool. Bile acid excretion has been
reported to increase significantly within 24 h of ingestion of oat β-glucans, a phenomenon
that results in the stimulation of bile acid synthesis with the formation of 7α-HC. Serum
7α-HC correlates with the activity of cholesterol 7-α-hydroxylase, and the rate-limiting
liver enzyme for bile acid synthesis and is therefore considered a reliable marker of bile
acid synthesis in humans [43]. Andersson et al. [44] reported an increase in plasma 7α-
HC by 84% 8 h after ingestion of a breakfast containing 11 g of oat β-glucan, i.e., a very
high amount of this dietary compound. In our study, no changes in plasma 7α-HC were
detected at 7 and 8 h postprandially, probably because the breakfast given to our volunteers
provided only 5.2 g of β-glucan. These results suggest, therefore, that this dose of β-glucan,
when consumed acutely, is insufficient to stimulate bile acid synthesis.

We also conducted a second clinical study to assess the prebiotic effect of daily con-
sumption of 3 g of β-glucan from oat for 3 weeks in human volunteers. We selected this
amount because it is the daily intake suggested by EFSA for functional foods containing
β-glucan to reduce cholesterolemia in humans, and we wanted to see if this lower amount
could change the microbiota. The composition and diversity of the fecal microbiota were
determined by high-throughput sequencing before and at the end of the treatment period
in both groups. Our results suggest that daily intake of 3 g of β-glucan for 3 weeks does not
significantly affect fecal microbiota diversity and composition. Although several in vitro,
animal and human studies have evaluated the impact of β-glucan on bacterial growth and
microbiota composition, their results are highly contradictory, and it is still difficult to draw
firm conclusions about the possible prebiotic effect of β-glucans.

For example, β-glucan from barley was shown to stimulate the growth of B. infantis,
B. longum, and B. adolescentis in pure culture in a 24 h batch fermentation [45]. These
results were confirmed by Shen et al. [46] who reported a dose-dependent increase in
Lactobacillus and Bifidobacterium in association with a decrease of Enterobacteriaceae in rats
supplemented with cereal β-glucan for 6 weeks. However, another study using human
fecal microbiota cultured in a fermenter with β-glucan showed higher levels of the family
Erysipelotrichaceae and the genus Syntrophococcus, and lower levels of clostridiales, with
no changes in bifidobacteria [47]. Similarly, Hughes et al. reported no significant changes
of Lactobacillus and Bifidobacterium populations with β-glucan inoculated under similar
experimental conditions. These authors described that β-glucan fermentation led to an
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increase in the C. histolyticum cluster and, to a lesser extent, up-regulation of clostridia
cluster IX, Bacteroides–Prevotella, and Atopobium, these changes being accompanied by the
generation of SCFAs characterized by a high propionate content [48].

Few clinical trials have evaluated the impact of β-glucans on the composition of the
microbiota. In a study of 20 polypectomized patients consuming 125 g/day of bread with
3 g ß-glucans for 3 months, Turunen et al. analyzed fecal total aerobes and anaerobes,
coliforms, E. coli, Enterococcus, C. perfringens, Bacteroides species, Bifidobacterium species,
Lactobacillus species, and Candida species by plate count at baseline, and one and three
months. Only slight changes were observed: significant decreases in total coliform at day
30 and C. perfringens at day 90, with no changes in Bifidobacterium and Lactobacillus [49].
Consequently, fecal SCFA content was hardly changed in these subjects and no changes
in fecal β-glucuronidase and β-glucosidase activities and pH were detected. On the other
hand, Mitsou et al. recruited 52 healthy volunteers who had to ingest a cake with 0.75 g
of β-glucan daily. Using culture methods, they reported an increase of Bifidobacterium
species after 15 d of treatment, but only in subjects over 50 years of age [50]. However,
these results are questionable considering that the treated group had significantly lower
Bifidobacterium counts than the control group at the start of the treatment. In another
clinical trial, Nilsson et al. [51] determined changes in fecal SCFAs in healthy volunteers
supplemented with 20 g of dietary fibers including 10 g β-glucan daily for 8 weeks. They
reported an increase in acetic, propionic, butyric, isobutyric, and isovaleric acids, and a
decrease in lactic acid, compared to baseline, suggesting that β-glucans were fermented in
the colon. However, no control group was used in this study.

Finally, only two studies used high-throughput sequencing to study changes in the
microbiota following β-glucan intake. In the first study, the fecal microbiota of 26 healthy
subjects was compared before and after a 2-months dietary intervention with pasta con-
taining 3 g of barley β-glucans [52]. No changes in diversity were observed after β-
glucan intake, and pyrosequencing results indicated that the relative abundances of Eu-
bacteriaceae, Ruminococcaceae, and Fusobacteriaceae families and Clostridium and Fae-
calibacterium genera decreased at the end of the treatment period. Using culture meth-
ods, the authors also reported higher counts of Lactobacillus species and lower counts
of Bacteroides/Prevotella, Enterobacteriaceae, and total coliforms at the end of the treat-
ment. No changes in Bifidobacterium were observed with both methods. However, a major
drawback of this study was the absence of a control group, which severely limits the
interpretation of these results.

Recently, Wang et al. [53] conducted a double-blind, controlled, crossover study in
30 subjects who ingested successively, and in random order, for 5 weeks a control diet or a
diet supplemented with 3 or 5 g/day of low molecular weight (LMW) barley β-glucan, or
3 g/day of high molecular weight (HMW) barley β-glucan. No changes in α-diversity were
observed with β-glucan, regardless of its MW. Compared to the control period, the relative
abundance of Firmicutes decreased and that of Bacteroidetes increased with 3 g of HMW
β-glucan, with no change in response to 5 g HMW or 3 g LMW β-glucan. At the lower
taxonomical level, the order Bacteroidales and the genera Bacteroides and Streptococcus
increased in the period with 3 g/day HMW β-glucan. A limitation of this interesting study
is that the microbiota was analyzed only at the end, and not at the beginning of the four
treatment periods. Although these were separated from each other by a 4-week washout
period, it is unclear whether this time was sufficient to allow the microbiota to restore its
initial composition. In summary of these studies, the impact of β-glucan administration of
on the microbiota appears to be very modest, compared with other dietary fibers such as
fructo- and galacto-oligosaccharides whose prebiotic properties have been well studied.

5. Conclusions

This study confirms the interest in using β-glucans for functional foods, due to their
beneficial effects on gastrointestinal transit time, post-prandial levels of blood glucose and
digestive hormones, and satiety. However, further studies are needed to determine what
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levels of β-glucan intake are able to modulate gut microbiota in consumers. These results
suggest that the health-promoting effects of dietary β-glucans (at the low dose of 3 g/d) are
probably due more to their physiological effect in the proximal part of the gastrointestinal
tract than to their prebiotic effect in the colon.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12040700/s1. Table S1: Anthropometrical and biochemical
characteristics of the subjects recruited in the acute study (Means ± SD). Table S2: Anthropometrical
and biochemical characteristics of the subjects recruited in the medium-term study (Means ± SD).
Table S3: Weekly frequency of stools according to their consistency (based on the Bristol Scales)
in the subjects from the control and β-glucan group during the study (Median [IQR]). Table S4:
Prevalence and relative abundances of the bacterial taxa (Phylum, Family, and Genus) present in
the fecal microbiota of the subjects at baseline (T0) and at the end of the treatment administration
(T1) in the control and β-glucan groups. Only the taxa with a relative abundance ≥0.1% are shown.
Figure S1: Total digestive symptoms by week of administration of β-glucan-enriched foods or control
foods. Data distribution was normalized through square root transformation and the statistical
analysis was carried out on the transformed data. Means values of these data for each group were
subsequently backtransformed and are shown with their corresponding CI95%. Two-way ANOVA
for repeated measurements: Time effect: p < 0.34, Treatment effect: p = 0.048, and Time X Treatment
interaction: p = 0.57. Figure S2: Rarefaction curves before and after treatment with control or β-glucan
supplemented foods. (Red curve: control group at T0; Blue curve: β-glucan group at T0; Orange
curve: control group at T1; Green curve: β-glucan at T1).
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