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Abstract: Impurity detection is an important link in the chain of food processing. Taking walnut
kernels as an example, it is difficult to accurately detect impurities mixed in walnut kernels before
the packaging process. In order to accurately identify the small impurities mixed in walnut kernels,
this paper established an improved impurities detection model based on the original YOLOv5
network model. Initially, a small target detection layer was added in the neck part, to improve
the detection ability for small impurities, such as broken shells. Secondly, the Tansformer-Encoder
(Trans-E) module is proposed to replace some convolution blocks in the original network, which can
better capture the global information of the image. Then, the Convolutional Block Attention Module
(CBAM) was added to improve the sensitivity of the model to channel features, which make it easy
to find the prediction region in dense objects. Finally, the GhostNet module is introduced to make
the model lighter and improve the model detection rate. During the test stage, sample photos were
randomly chosen to test the model’s efficacy using the training and test set, derived from the walnut
database that was previously created. The mean average precision can measure the multi-category
recognition accuracy of the model. The test results demonstrate that the mean average precision
(mAP) of the improved YOLOv5 model reaches 88.9%, which is 6.7% higher than the average accuracy
of the original YOLOv5 network, and is also higher than other detection networks. Moreover, the
improved YOLOv5 model is significantly better than the original YOLOv5 network in identifying
small impurities, and the detection rate is only reduced by 3.9%, which meets the demand of real-time
detection of food impurities and provides a technical reference for the detection of small impurities
in food.

Keywords: YOLOv5; walnut kernels; impurities detection; small object detection

1. Introduction

Food safety has always been a social health issue of great concern to people. Impurity
pollution accounts for a large proportion of food pollution and is difficult to avoid [1].
Impurity pollution refers to the presence of other substances or foreign substances in
food other than the food itself [2], which will cause physical and psychological harm
to consumers. Taking walnut kernels as an example, impurities of walnut kernels can
be divided into exogenous impurities (stones, metal parts, and plastic fragments) and
endogenous impurities (walnut shells; spoiled walnut kernels) [3], which will seriously
affect consumers satisfaction. Therefore, impurity detection is one of the important links
to ensure the high quality of nut food [4]. In recent years, many researchers have tried
to use imaging detection technology to detect impurities in food, including X imaging
technology, terahertz detection technology, spectral detection analysis technology, machine
vision detection technology, etc.

In the field of machine vision detection, object detection methods based on deep
learning are developing rapidly. According to the nature of the algorithm stages, the
current mainstream algorithms can be divided into two categories: one of them is the two-
stage algorithm R-CNN series, and the representative algorithms include R-CNN, SPP-Net,
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and Faster R-CNN [5]. The series of algorithms first generate regions and then classify
samples through convolutional neural networks. Xie et al. used the Fsater-RCNN + VGG16
neural network model to detect bone impurities in salmon meat [6]. Wang et al. used
the Faster RCNN ResNet101 for detecting the potato surface defects and verified the high
recognition accuracy of the model [7]. The point of the R-CNN series of algorithms is that
the detection accuracy is high, but the detection speed is defective. The other type is a single-
stage algorithm, and the representative algorithm is the YOLO series. The YOLO (You Only
Look Once) algorithm directly inputs the entire image into the model network and returns
the classification category and location of the bounding box at the output, so it can extract
all features in the image and predict all objects [8,9]. Based on the results of various studies,
the YOLOv5 algorithm in the YOLO series has better comprehensive detection ability than
other YOLO models due to its accuracy and detection accuracy [10–12]. Many researchers
have applied the YOLOv5 model or the improved YOLOv5 model to the food safety field
for object detection [13]. Jubayer et al. used the YOLOv5 model to detect molds on food
surfaces and successfully identified the types of molds on food surfaces [14]. On the basis
of the original YOLOv5 network model, Chen et al. added a new involution bottleneck
module, which reduced the parameters and calculation amount, and introduced the SE
module to improve the sensitivity of the model to channel features, establishing a plant pest
identification model [15]. Qi et al. borrowed the human visual attention mechanism and
added the squeeze-and-excitation module to the YOLOv5 model to achieve a key feature
extraction [16]; the trained network model was evaluated on the tomato virus disease test
set, and the accuracy rate reached 91.07%. Han et al. adopted the YOLOv5 model based on
the flood filling method to achieve cherry quality detection [17].

This paper takes walnut impurities as the detection target. There is a high requirement
for the real-time detection rate of impurities for the fast running speed of the walnut
processing line [18]. The YOLOv5 model can maintain a higher detection accuracy, while
maintaining a higher detection rate [19], so this paper chooses YOLOv5 as the detection
model. However, the original YOLOv5 model is challenging to extract image features
of impurities in walnut kernels under complex backgrounds. It is hard to detect small
impurities such as broken shells, resulting in a low impurity recognition rate. In order to
solve the above problems, we take the pursuit of a balance between detection performance
and detection rate as the goal and improve the original YOLOv5 network, so that it can
more accurately detect the impurities in the image without losing the detection rate. Firstly,
a small target detection layer is added to the neck part to improve the model’s ability to
detect small impurities. Secondly, the Tans-E module is proposed to replace some of the
convolution blocks in the original network. Thirdly, the CBAM module is added to improve
the sensitivity of the model to channel features, which is convenient for finding prediction
regions in dense objects. Finally, the GhostNet module is introduced to make the model
lighter and improve the model detection rate.

2. Materials and Methods
2.1. Samples Used in the Experiments

There is uncertainty in walnut processing; thus, we selected random sampling without
repetition. From March 2022 to April 2022, we randomly collected about 20 kg of walnut
kernels with impurities before the manual sorting process from the walnut processing line
of the Nut Fried Goods Base in Longgang Town, Lin’an District. All samples were collected
three times. The walnut kernels were mixed with broken walnut shells, unqualified walnut
kernels and other impurities. The mixture was divided into 40 groups of samples evenly,
according to quality.

2.2. Images Acquisition System and Dataset Creation
2.2.1. Images Acquisition System

The image acquisition system has two functions: simulating the walnut processing
line and take sample pictures. The system consists of a conveyor belt, aluminum profile, the
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computer, a camera (D435i from Intel, Santa Clara, CA, USA), a black inspection chamber,
and an LED light belt [3]. The conveyor belt is divided into two stages: high speed
and low speed. The density of the walnut kernel is changeable by controlling the speed
difference of the conveyor belt. The camera is used to capture images with resolutions
of 1920 × 1080 pixels. The color model is RGB. The camera is located 400 mm above the
second conveyor belt [20]. The black inspection chamber, which was made by diffuse
reflection plates, is set to cover the camera. Four equal power light belts (10 W each) are set
in the black inspection chamber to provide light, as shown in Figure 1.
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Figure 1. The hardware of the image acquisition system in the lab.

Before the images acquisition system began, one group of the walnut kernels mixed
with impurities was manually placed on the first-step conveyor belt, and the driving motor
was started. After entering the second stage of the conveyor belt, the sample is paved.
The walnut image was captured by the camera and stored in the computer. The image
acquisition frequency was 2/s. About 130 images of walnut mixed with different impurities
can be obtained by each group of the sample.

2.2.2. Dataset Production

In order to improve the effectiveness of training and increase the diversity of samples,
the collected image data were screened before training, and the images with low definition
were removed. Finally, 1320 walnut kernel images were obtained and stored in JPG format.
After processing by Matlab, the image resolution was set to 512 pixels × 512 pixels. In
this paper, the dataset is enhanced by changing the adaptive contrast, rotation, translation,
cropping and other methods, and the dataset is expanded to 5732 images [21]. The dataset
contains four categories of labels: walnut shell, small impurities (diameter less than 5 mm),
foreign impurities and metamorphic walnut kernels, as shown in Figure 2. The gray
value range of the walnut kernel is the basis for identifying the deterioration degree of
walnut kernels. All the images of walnut kernels are gray processed, and the gray value
range of the metamorphic walnut kernel is from 20 to 35 after testing and statistics. The
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image labeling software is Labelimg, which is used to label the real bounding box and
categories [22]. Then, according to the ratio of 3:1:1, all the enhanced images are divided
into the training set, validation set and test set. There are 3439 images in the training set,
1146 images in the validation set and 1146 images in the test set.
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Figure 2. Walnut kernel impurity type labeling.

2.2.3. Experimental Equipment

The training of this model is conducted based on the Windows 10 operating system and
the Pytorch framework. The CPU model of the test equipment is Intel®Core™ i7\11800H
CPU@3.70 GHz, the GPU model is GeForce RTX 3080 10 G, and the software environment is
CUDA 11.3, CUDNN 7.6 and Python3.8. The original YOLOv5 and the im-proved YOLOv5
are trained separately. The specific parameters are presented in Table 1.

Table 1. Test environment setting and parameters.

Parameter Configuration

Operating system Windows 10
Deep Learning Framework Pytorch2.6

Programming language Python3.8
GPU accelerated environment CUDA 11.3

GPU GeForce RTX 3080 10 G
CPU Intel®Core™ i7\11800H CPU@3.70 GHz

2.3. Walnut Kernel Impurity Detection Based on YOLOv5

Currently, the target detection algorithms applied in food detection have high recogni-
tion accuracy, but the detection models often have too many parameters and large volumes,
and are too complex and challenging to meet the needs of real-time detection [23]. Since
the actual application site of walnut impurity detection is located in the food assembly line,
the detection model should not only meet the requirements of recognition accuracy but
also meet the real-time requirements of detection. YOLOv5 has a higher detection accuracy
and a lighter model volume, so it has a faster response speed. Therefore, this paper adopts
the YOLOv5 model for the detection of walnut impurities; its frame is shown in Figure 3.
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2.4. Walnut Kernel Impurity Detection Based on YOLOv5
2.4.1. Small Object Recognition Layer

There are small impurities, such as broken shells in the walnut images, and the
detecting model used must be able to detect small objects. In the process of using the
original YOLOv5 model, impurities such as the small broken shells of walnut kernels are
small. The feature map in the YOLOv5 network structure is too small, while the multiple
of the downsampling is large; thus, it is difficult for the deeper feature map to learn the
features of small targets’ information, which lead to omissions of small impurities. To solve
this problem, this paper tries to add a small object detection layer to the original YOLOv5
head, which will continue to process the feature map for expansion. After the 17th layer of
the head part, it performs upsampling and other processing on the feature map so that the
feature map continues to expand. At the 20th layer, the acquired feature map with a size of
160 × 160 is concated with the feature map of the second layer in the backbone to obtain a
larger feature map for small target detection.

As shown in Figure 4, the function of upsampling is to enlarge the feature map so
that the displayed image has a higher resolution, which is more conducive to detecting
and recognising small targets. The upsampling process in this paper is implemented
by the method of transposed convolution. Unlike the ordinary convolution, transposed
convolution is adding a unit-step null pixel between each two pixels of the input image, so
that the obtained Feature Map size becomes larger.

2.4.2. Trans-E Block

The Transformer was first used in the field of natural language machine translation,
and its most significant feature is the self-Attention mechanism. The main working modules
in the Transformer structure are the encoder and decoder. During machine translation,
the encoder part models the input sequence. It extracts the output value of the last time
step at the structural output as a representation of the input sequence. The decoder then
takes the input sequence representation as its input value and generates the translation
with maximum probability. This paper simulates the encoder function in the Transformer
structure, and proposes a Transformer-Encoder (Trans-E) block and tries to apply it to the
image impurity detection. The structure of the Trans-E block is shown in the Figure 5.
The Trans-E block consists of two sub-layers, the multi-head attention layer and the fully-
connected layer. Among them, the multi-head attention layer is to perform multiple linear
mappings of different sub-region representation spaces through multiple heads under the
consideration of parallel computing; thus, it can obtain more comprehensive information
under different sub-spaces at different locations. The main function of theconnected layer
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is to map the feature space calculated by the previous layer to the sample label space. A
residual structure connects the two sub-layers. This article replaces the bottleneck blocks
and some Cnov blocks of CSPDarknet53 in the original YOLOv5 with Trans-E blocks.
Compared with CSP bottleneck blocks, Trans-E blocks have more advantages in capturing
global information.
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2.4.3. CBAM Attention Mechanism

Since there is much useless information in the walnut kernel image, such as the
walnut kernel itself, in order to suppress other useless image information, we increase the
effective image feature weight, reduce the invalid weight, and make the training network
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model produce the best results. This paper introduces the based YOLOv5 Convolutional
Block Attention Module (CBAM). The working principle of this module is as follows:
take the global max pooling and global average pooling operations based on width and
height, respectively for the input feature map F (H × W × C), and the output result is
two 1 × 1 × C feature maps. Then, the obtained feature maps are sent to the neural network
(MLP), respectively. The number of layers in the neural network is two layers. The number
of neurons in the first layer is C/r (r is the reduction rate), the activation function is Relu,
and the second layer is the number of neurons. The number of neurons in the layer is
C. Then, an element-wise-based sum operation is performed on the output features, and
the final channel attention feature, namely Mc, is generated after the sigmoid activation
operation. Finally, the element-wise multiplication operation is performed on Mc and the
input feature map F to generate the input features required by the Spatial attention module.
The specific calculation is as follows:

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

= σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
)

(2)

The output of the channel attention module is taken as an input into the spatial
attention module, which is also subjected to maximum pooling and average pooling. Then
the two are stacked through the Concat operation, which only compresses the channel
dimension but not the spatial dimension to focus on the target’s location information. The
mechanism is shown in Figure 6.
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In this paper, the CBAM module is added after the C3 module and the Trans-E module
in the neck part so that the image features of walnut shells and foreign objects are weighted
and combined, which increases the network at the cost of a small amount of computation,
so that the network pays more attention to the key information of foreign objects such as
walnut shells, which helps to train a better network.

2.4.4. Ghostconv Makes Models Lightweight

Since the main part of the original YOLOv5 adopts the C3 structure for feature extrac-
tion, after adding the small target detection layer, the Trans-E block and the CBAM module
based on the original network, the overall network has a large number of parameters. When
the detection rate is low, it will be difficult to meet the real-time detection requirements.
The actual scene of the walnut kernel impurity detection is a moving conveyor belt, so the
detection model must have a relatively lightweight model and low detection delay. This
paper applies the GhostConv block in GhostNet and replaces some ordinary convolution
block in the current network model to make the detection model more lightweight.

Different from traditional convolution blocks, GhostConv performs feature map ex-
traction on images in two steps [24]. The first step is still using the normal convolution
calculation, and the feature map channel obtained at this time is less. The second step
uses cheap operation (depthwise conv) to perform feature extraction again to obtain more
feature maps, and then concat the feature maps obtained twice to form a new output.

As can be observed from Figure 7, the cheap operation will perform cheap computations
on each channel to enhance feature acquisition and increase the number of channels. This
mode requires significantly less computation than traditional convolution computations.
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In order to solve the problem that the original YOLOv5 network cannot detect small
impurities well and the detecting accuracy of individual near-color foreign objects is low,
this paper combines the small object detection layer, Trans-E block, CBAM module and
GhostConv to construct the entire improved YOLOv5 network model framework, as shown
in Figure 8.
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2.5. Experiment Process

First, the manual labeling method is used to mark each walnut image to obtain the
training label image, and then the walnut image set is divided into training set, validation
set and test set according to the ratio of 3:1:1. The training set is input into the improved
YOLOv5 network for training. During the training process, the stochastic gradient descent
algorithm is used to optimize the network model, and the optimal network weights are
obtained when the training is completed. Subsequently, the images in the validation set of
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weight values are used to test the performance of the network model and compare with the
test results of the original YOLOv5 model and other prediction models. The feasibility of
the walnut kernel impurity detection model based on the improved YOLOv5 was verified.
The test process is shown in Figure 9.
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2.6. Model Evaluation Index

The model loss of YOLOv5 consists of bounding box loss, object loss and classification
loss, which can be used to test the target prediction performance of the model. Precision
(Pre) and recall (Rec) can intuitively reflect the accuracy of target prediction, which are
calculated by the ratio of the number of TP, FP, TN, and FN [25], where TP represents the
number of correctly detected positive samples, and FP represents the error Number of
negative samples detected, FN indicates the number of positive samples not detected. The
F1 score is the weighted average of precision and recall. The AP value of each class is the
area composed of the label P-R map of that class. The mean average precision (mAP) is
the average of the AP values of various labels; thus, it can represent the global detection
performance of the model.

loss = lbbox + lobject + lclassi f ication (3)

Pre =
TP

(TP + FP)
(4)

Rec =
TP

(TP + FN)
(5)

F1 =
2× Pre× Rec

Pre + Rec
(6)

AP =
∫ 1

0
Pre(Rec)dRec (7)

mAP =
1
|QR| ∑

q=QR

AP(q) (8)
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3. Results and Discussion
3.1. Model Training Results

According to the data set type, the loss function of the prediction model can be divided
into training loss and validation loss, and the curve is shown in the Figure 10a. It can
be observed from the figure that in the process of model training, when the number of
iterations is between 0 and 150, the training loss and validation loss decrease rapidly, and
when the number of iterations reaches more than 250, the loss value of the prediction model
begins to stabilize gradually. In this paper, the training model with 300 iterations is selected
as the final walnut kernel impurity detection model. In addition, it can be observed from
the mAP curves of the training set and the validation set in the Figure 10b that the trained
prediction model does not appear to be overfitting.
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3.2. Model Test Results and Analysis

In order to verify the performance of the detection model, the number of impurities for
each category in the random 300 images in the validation set was counted and calculated,
and then compared with the test results of the model. Among the 300 images in the
validation set, the number of walnut shell impurities is 2059, the number of metamorphic
walnut kernels is 786, the number of small impurities is 2621, and the number of other
impurities is 432. The precision rate, recall rate, F1 score and mAP were used to evaluate the
prediction accuracy of the model for various impurities. The predicted results are shown in
Table 2.

Table 2. Recognition results of targets using improved YOLOv5 model.

Class Num Pre (%) Rec (%) mAP (%) F1 (%)

Shell 2059 92.21 96.32 94.20 94.56
Small_impurities 2624 83.56 87.84 85.12 86.21

metamorphic_walnut 786 89.24 93.37 90.98 91.26
Other impurities 432 90.25 94.93 92.21 92.87

Total 5901 89.69 93.42 91.25 91.77

The confusion matrix can intuitively reflect the prediction results of classification
problems, showing the prediction probability for each category. From the confusion matrix
in the Figure 11, it can be observed that among the four types of impurities, the detection
accuracy of the walnut shell is the highest, which can reach 92.21%, and the detection
accuracy of small impurities is the lowest. Since impurities are located at the boundary of
the image, the annotation information is accurate, resulting in a small part of the spoiled
walnut kernels being predicted as other impurities.
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3.3. Performance Comparison of Different Models

In order to better verify the performance of the improved walnut kernel impurity
detection model, 300 images in the above validation set were used as the test objects,
and the original YOLOv5, YOLOv4, Faster R-CNN, and SSD300 models were used to
test and compare the test results [26]. Similarly, the accuracy, F1 score and mAP are used
as indicators to evaluate the performance of the model. Considering that in actual nut
processing, the detection rate of the model is high to meet the needs of real-time detection,
so it is also necessary to use the model size and the average GPU detection speed as the
evaluation indicators of the model. The test results of each model are shown in Table 3.

Table 3. Comparison of precision, recall, F1-score, mean Average Precision, detection speed and
ModelSizes between proposed model and other advanced models.

Model P (%) R (%) F1-Score
(%) mAP (%) Dect.

Time (ms)
ModelSizes

(M)

Faster-RCNN 87.36 89.25 88.39 81.62 121.86 110.770
SSD300 67.75 75.38 65.43 69.36 89.07 82.781

YOLOv4 82.56 90.14 85.56 85.62 400 245.5
YOLOv5 85.32 88.97 86.43 83.25 43.64 41.489
Proposed
YOLOv5 90.25 91.56 90.81 88.9 45.38 43.562

As can be observed from the data in the Figure 12, the detection accuracy of the
improved YOLOv5 model is 5.77% higher than that of the original YOLOv5, and both are
higher than other detection models, mAP has increased by 6.79%, and F1 has increased by
5.06%. The result is also better than the fire inspection small target detection model based
on YOLO algorithm, whose mAP is 80.23% and F1 is 73% [27]. The experiment proves that
the introduction of the small target detection layer, the replacement of the Trans-E block,
and the introduction of the CBAM module on the basis of the original YOLOv5 model can
help improve the accuracy and performance of walnut kernel impurity detection.
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Model detection speed is also one of the important performance indicators for real-
time detection of food impurities. While improving the accuracy of impurity detection,
the YOLOv5 model parameters have increased, and the model size has also increased by
1.74 M. At the same time, the detection time of a single image is increased to 65.25 ms,
which is 21.51 ms longer than the original YOLOv5 single image detection time. In order to
reduce the detection time of a single image and improve the efficiency of real-time detection
of impurities, this paper replaces the conventional Conv of the main part and the detection
head part with Ghostconv to make the model more lightweight. After replacing Conv with
Ghostconv, the single image impurity detection time is reduced from 65.25 ms to 45.38 ms,
which is only 4.99% longer than the original YOLOv5 detection time. Compared with the
improved SE-YOLOv5, the detection response time is reduced by 10.4%. [17] This model
also leads to other commonly used detection models such as YOLOv4 in the detection rate
performance. Therefore, the improved YOLOv5-based walnut kernel impurity modeling
model is a suitable detection model.

3.4. Comparison of Recognition Result

Figure 13 compares the results of the original YOLOv5 and the improved YOLOv5 for
detecting impurities in walnut kernels. The brown boxes in the figure represent walnut
shells, the green boxes represent mildewed walnut kernels, and the red boxes represent
small impurities. It can be observed from the figure that the missed detection rate of small
impurities in the improved YOLOv5 model is greatly reduced, and the corresponding
target confidence is improved. Under the background of high-density walnut kernels and
extremely small impurities, the original YOLOv5 has a weak ability to extract features,
resulting in the inability to accurately predict the impurity target. The detection perfor-
mance of the improved YOLOv5 model is significantly better than the former, with a large
number of detected small targets and high accuracy, and better performance in detecting
small impurity targets.
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4. Conclusions and Future Research

The detection of walnut impurities is of great significance to the safety of nut food.
In this paper, an impurity detection model of walnut kernels based on the improved
YOLOv5 network is established: a small target recognition layer is added to the original
prediction head of the model to obtain more small impurities feature information. Then,
some convolution blocks in the network are replaced by Trans-E blocks, which can capture
more comprehensive information in different subspaces at different locations. The CBAM
attention module is added to the neck part of the network model for feature fusion, which
improves the network performance at a small cost. Finally, Ghostconv is introduced to
replace the original Conv, which reduces the computational burden of the model and
improves the detection speed. The improved model detection mAP can reach 88.9% and F1
can reach 90.81%, which is better than the original YOLOv5 network and other networks.
Moreover, the improved network model has not only a high detection rate, but also a
significant improvement in the identification rate of small target impurities. The model
improvement studied in this paper is to maintain a balance between detection performance
and detection speed, so as to meet the demand of the real-time detection of walnut im-
purities. Near infrared spectroscopy is an important tool in the field of food impurity
detection [28]. However, it requires demanding hardware. The detection technology based
on YOLOv5 has a higher detection rate, lighter detection equipment and a wider range of
application objects when compared to the near infrared spectroscopy. It also has certain
advantages in detection accuracy. The research content is also applicable to other nut
food impurity detection fields, and provides technical reference for the detection of snack
food impurities.

However, the improved YOLOv5 model has limitations, such as a fraction of missing
and wrong detection cases for small foreign bodies. Therefore, the detection accuracy of
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the model still needs to be improved. Improving the resolution of the camera is conducive
to improving the detection accuracy. Then, due to the influence of external light source, the
illumination of the image is biased. Fan Youchen et al. improved the YOLOv5 combined
with dark channel enhancement to solve the problem of insufficient illumination. [29] This
method can be applied to solve the illumination problem of the image. In addition, making
the detection model lighter is one of the key points of future research. Chu et al. proposed a
real-time apple flower detection method based on YOLOv4 and using the channel pruning
method. [30] Isa Iza Sazanita et al. used the adaptive moment estimation optimizer and the
function reducing-learning-rate-on-plateau to optimize the model’s training scheme [31].
In the future, we can try to replace the backbone network with other lightweight networks
to reduce the number of model parameters.
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