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Abstract: The safety, shelf life, and quality of fresh cow milk treated using industrial High‑Pressure
Processing (HPP) treatment at 600 MPa for 10 min was studied to identify the novelty of this non‑
thermal technology in milk processing. Changes in microbiological and physicochemical properties,
including nutritional values of vitamins and amino acid profiles, were measured for a 60‑day stor‑
age period at 6 ◦C +/− 1 ◦C. The HPP treatment produced milk that met all microbial safety require‑
ments and exhibited a shelf life beyond 60 days in a hot and humid region. High physicochemical
stability was achieved, with consistent pH and undetectable titratable acidity. The HPP treatment
successfully retained all vitamins and minerals, including calcium (99.3%), phosphorus (99.4%), and
magnesium (99.1%). However, the 60‑day storage caused some degradation of Vitamin A (25%),
B3 (91%), B5 (35%), B6 (80%), and C (85%), and minerals, including potassium (5%) and zinc (18%)
when compared with fresh milk. This research has shown that the adoption of advanced treatment
with HPP is very beneficial to the dairy industry in preserving milk quality in terms of its physico‑
chemical and nutritional properties and extending its storage shelf life beyond 60 days.

Keywords: milk processing; microbiological properties; physicochemical properties; vitamins;
minerals; storage

1. Introduction
Milk is a balanced and nutritive food that is important for human health. However,

the high moisture and nutrition contents of milk cause rapid microorganism proliferation
and result in spoilage. The main microorganisms present in fresh milk include Staphylococcus
aureus, Salmonella spp., Listeria monocytogenes, Escherichia coli O157:H7, and Campylobacter [1],
which could pose a severe hazard to humans if they unknowingly consume contaminated milk.
Thermal treatments, including low‑temperature long‑time pasteurisation (LTLT, 63 ◦C/30 min),
high‑temperature short‑time pasteurisation (HTST, 72–75 ◦C for 15–20 s), ultra‑pasteurisa‑
tion/extended shelf‑life treatment (ESL, 125–128 ◦C for 2–4 s), and ultra‑high temperature
treatment (UHT, 135–140 ◦C for 1–3 s) are common techniques used for extending the
shelf life of milk [2]. However, common LTLT or HTST pasteurisation only provide an
average of 10 days of shelf life [3], while ultra‑pasteurisation or extended shelf‑life (ESL)
milk products may have a shelf life between 15 and 30 days [3,4]. In addition to lim‑
ited shelf life, thermal treatments also have detrimental effects on milk quality, such as
whey protein denaturation [5], reduction of calcium, vitamins (thiamine, B12, and C), and
changes in organoleptic properties [6]. In this regard, non‑thermal technologies such as
high‑pressure processing (HPP), pulse electric field, ultrasonication, and irradiation are
innovated with aims to minimise loss of nutrients by thermal treatment while still being
effective in destroying pathogenic and spoilage microorganisms in milk [7]. An investi‑
gation has demonstrated that HPP offers promising potential in processing high‑quality
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milk [8]. It normally employs pressure of 300–600 MPa at room temperature for 2–30 min
to eliminate pathogenic microorganisms and extends the shelf life of milk with minimal
alteration of nutritional and sensorial attributes [9]. High isostatic pressure only disrupts
the non‑covalent bonds (hydrogen, ionic, and hydrophobic bonds), causing alterations in
cell morphology and membrane that eventually leads to cell death and achieves microbial
inactivation [10]. Hence, the nutritional and sensory properties of the products are not af‑
fected. HPP also has other advantages such as low contamination risk and is declared an
environmentally friendly processing technology [10]. Although HPP offers many benefits,
its use by manufacturers is still limited due to high equipment costs.

MostHPP research has been performed at lab‑scale, with García–Risco et al. (1998) [11]
reporting the shelf life of HPP milk (45 days) when treated at 400 MPa for 30 min using
an HPP apparatus (Model 900, Eurotherm Automation, Lyon, France), while Mussa and
Ramaswamy (1997) [12] reported that milk subjected to HPP at 350 MPa for 32 min using
an ABB Isostatic Press (ABB Autoclave System, Autoclave Engineers, Erie, PA, USA) had
a shelf‑life of 12–25 days when stored at 0–10 ◦C. At the industrial scale, Stratakos et al.
(2019) [13] observed a storage life of 28 days at a storage temperature of 4 ◦C when milk
was treated at 600 MPa for 3 min using a 35 L commercial‑scale high‑pressure press. Stud‑
ies on the industrial scale of HPP are still limited as scale‑up of HPP treatment for milk
preservation from lab‑scale to pilot or industrial scale is a huge challenge due to high costs
and equipment availability. Tan et al. (2020) [14] reported that fresh milk’s shelf life was
extended to 22 days using an industrial‑scale HPP treatment (600 MPa, 5–7 min), but the
data were available for only microbiological evaluations. To date, no complete study has
been found reporting all microbiological, physicochemical, and nutritional contents of vita‑
mins and minerals of HPP‑treated milk at an industrial scale. This research was conducted
to evaluate the effectiveness of industrial HPP treatment of locally produced fresh milk in
Malaysia in a hot and humid climate with storage issues while overcoming detrimental
effects of milk quality using heat treatments.

2. Materials and Methods
2.1. Processing of Milk

Fresh cow milk was collected from the university farm, Ladang 16, Universiti Pu‑
tra Malaysia. Milk was mixed evenly, cooled to 4 ◦C, and poured into 350 mL polyethy‑
lene terephthalate (PET) bottles. Milk was treated in a 55 L high‑pressure processing unit
(Hiperbaric 55; Hiperbaric High‑Pressure Technologies, Burgos, Spain) at 600 MPa for
10 min at 10 ± 2 ◦C using water as the transmitting fluid. Fresh milk was used as a control.
High‑pressure treated milk was labelled as HPP milk, and untreated milk as fresh milk.
All milk samples were stored at 6 ± 1 ◦C for storage analysis. Samples were analysed for
microbiological and physicochemical properties and vitamin and mineral contents from
day 0. Fresh milk was kept for analysis until day 6, while treated milk until day 60. For
fresh milk, microbiology analysis was conducted daily, with a 3‑day interval for physico‑
chemical, vitamin, and mineral analysis. The HPP milk samples were analysed at intervals
of 5 days for microbiological, 6 days for physicochemical analysis, and 15 days for vitamin
and mineral analysis during the 60‑day storage.

2.2. Microbiological Analysis
Total plate count (TPC) and total yeast and mold count in milk were determined using

procedures described in Chapters 3 and 18 of the FDA Bacteriological Analytical Manual
(BAM) [15]. The total coliform count was calculated using the AOAC Official Method
991.14 by incubating for 24 ± 2 h at 35 ± 1 ◦C; then, the coliforms appeared as red colonies
with one or more gas bubbles counted promptly using the standard colony counter [15].
Mesophilic, thermophilic aerobic spore count, and psychrotrophic bacteria count were de‑
termined following Chapters 23, 26, and 13, respectively, in the Compendium of Methods
for the Microbiological Examination of Foods (CMMEF) [16] with different incubating times
and temperatures, where mesophilic incubated anaerobically at 35 ◦C for 3 to 5 days, ther‑
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mophilic aerobic at 55 ± 2 ◦C for 72 h while psychrotrophic bacteria at 17 ± 1 ◦C for 16 h,
followed by 3 more days at 7 ± 1 ◦C. Psychrotrophic spore count was determined. Bacillus
cereus, Staphylococcus aureus, and Listeria monocytogenes were determined following FDA
BAM Chapters 14, 12, and 10, respectively [15]. Escherichia coli (E. coli) and Clostridium
perfringens were determined by AOAC Official Method 991.14 [15] and 976.30 [15], respec‑
tively. For E. coli, the plates were incubated for 48 ± 4 h at 35 ± 1 ◦C. After the incu‑
bation period, E. coli colonies appeared as blue colonies associated with gas bubbles and
were counted promptly. For Clostridium perfringens, tryptose sulfite cycloserine (TSC) agar
was used for the incubation of black colony for 20 h at 35 ◦C. Salmonella spp. was deter‑
mined using the enzyme‑linked immunosorbent assay (ELISA) method as described by
Veling et al. [17]. Colonies were enumerated, and results were expressed as the logarithm
of colony‑forming units (log10CFU/mL). Colony‑forming unit (CFU) is a unit used in mi‑
crobiology to measure the number of viable microorganisms (bacteria, fungi, viruses, etc.)
in a sample that can reproduce through binary fission under controlled conditions.

2.3. Physicochemical Analysis
The pH of cow milk samples was measured using a pH meter (Mi805, Milwaukee,

Hungary). Titratable acidity (TA) was determined according to the Association of Offi‑
cial Analytical Chemists (AOAC) Official Method 947.05 using phenolphthalein indicator
to titrate with 0.1M NaOH and expressed as a percentage of lactic acid. Specific gravity
was determined following the method for the specific gravity of water in AOAC Official
Method 955.37, using a pycnometer. Total protein was determined using formaldehyde
titration described by Pyne’s method [18], in which oxalate was used as an alkali for the
titration, and total protein was calculated using a factor of 1.74. The total solid of cow
milk was determined using the oven drying method at 102 ± 2 ◦C for 2.5 h in accordance
with AOAC Official Method 16.032 [19]. Fat content was determined using the Roese–
Gottlieb Method in AOAC Official Method 905.02, which involved extraction, distillation,
and drying. Solid‑non‑fat (SNF) was determined by subtracting the total solid from the
total fat content.

2.4. Nutritional Analysis
2.4.1. Vitamin Content Analysis

VitaminA (Retinol) and E (alpha‑tocopherol) were determinedusing high‑performance
liquid chromatographic methods (HPLC) after alkaline saponification. Vitamin B1, B2,
and B6 were analysed following the method described by Agostini‑Costa et al. [20]. Vi‑
tamin B5 was determined based on Food Chemistry (2000), similar to the method reported
by Woollard et al. [21]. Vitamin B7, B9, and B12 were analysed based on AOAC Official
Method 960.46 using a microtiter assay [22]. In this test, the test vitamin extract was pipet‑
ted to the walls of a microtiter plate coated with microorganisms, followed by incubation
at 37 ◦C for 44–48 h until all vitamins were consumed. After the incubation period, the ab‑
sorbances were measured using a microtiter plate reader at 610–630 nm. Vitamin C (ascor‑
bic acid) was determined according to AOAC 967.21 using 2,6‑dichlorophenolindophenol
(DCPIP) titration [23]. Vitamin K was determined based on AOAC Official Method 999.15,
where extraction was performed using hexene, followed by HPLC determination [24]. Vita‑
min D was determined based on AOAC Official Method 995.05 via a single liquid–liquid ex‑
traction followed by saponification, solid‑phase extraction, and evaporation, as described
by Silva and Sanders [25].

2.4.2. Mineral Content Analysis
Milk mineral content, including Calcium (Ca), Potassium (K), Magnesium (Mg), Phos‑

phorus (P), Zinc (Zn), and Selenium (Se), first underwent acid digestion as reported by Kira
and Maihara [26], followed by mineral content analysis based on AOAC Official Method
984.27 (final action 1986) using inductively coupled plasma optical emission spectrometry,
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ICP‑OES (Varian 720‑ES, Varian Inc., Walnut Creek, CA, USA) with a solution of yttrium
as internal standard.

2.5. Statistical Analysis
All measurements were performed in triplicate with samples prepared from the same

batch of milk, except for logistic reasons, Vitamin K was without repetition. Mean values
were compared using analysis of variance (ANOVA) using the tool XLSTAT by Addinsoft
and Microsoft Excel software. Tukey’s test was performed to compare the differences be‑
tween the mean values at a confidence level of 0.05.

3. Results and Discussion
3.1. Microbiological Analysis

HPP treatment successfully decreased TPC by 75% and other bacteria counts in milk
by 100% (Table 1), meeting food safety limits and local industrial standards [27]. Figure 1
shows that storage of HPP‑treated milk for 60 days gave high microbiological stability as
its microbial activities were under control when compared to the definite unsafe condition
of fresh milk with the continuous growth of all microbiological bacteria stored at 6 ± 1 ◦C
for its first 6 days (Appendix A).

Table 1. Effects of HPP on microbiological properties of fresh milk.

Bacteria Count (log10 CFU/mL) Fresh Milk HPP Safety Limit

Total Plate 5.13 ± 0.06 b 1.26 ± 0.04 a <5
Total Coliform 2.56 ± 0.02 <1 <1.7
Escherichia coli 1.53 ± 0.12 <1 <2

Yeast and Molds 1.61 ± 0.15 <1 <1 *
Psychrotrophic Bacteria 6.81 ± 0.05 <1 <5
Psychrotrophic Spore 0.99 ± 0.15 <1 <1 *

Mesophilic Aerobic Spore 0.72 ± 0.06 <1 <5
Thermophilic Aerobic Spore <1 <1 <1 *

Staphylococcus aureus 2.96 ± 0.03 <1 <1.3
Bacillus cereus <1 <1 <5

Clostridium perfringens <1 <1 <4

Bacteria Existence (Present/Absent) Fresh Milk HPP Safety Limit

Listeria monocytogenes per 25 gm Absent Absent Absent
Salmonella spp. per 25 gm Absent Absent Absent

ab Mean ± standard deviation in same row with different superscripts letters are significantly different at p < 0.05.
Safety Limit values were compiled from Laws of Malaysia P.U.(A) 437 Of 1985 Food Act 1983 Food Regulations
1985 Arrangement of Regulations, Regasa et al. (2019), Official Journal of the European Communities (1990),
Gilbert et al. (2000) and Food Standards Australia New Zealand, (2018) except for * which was obtained from
industry (Fraser and Neave).

Total Plate Count (TPC) is a method of estimating the total number of microorganisms
in products commonly used by dairy manufacturers for determining the microbiological
quality of milk. In the Malaysian Food Act [27], the limit of TPC is ≤105 CFU/mL for safe
consumption, but the TPC of fresh milk was recorded at 5.13 log10CFU/mL, and it increased
significantly (p < 0.05) to 6.19 log10CFU/mL after 6 days of storage while HPP treated milk
was successfully reduced to 1.26 log10CFU/mL and maintained below 2 log10CFU/mL for
60 days of storage (Figure 1a), meeting the safety limit (Table 1). A lab‑scale HPP study by
Liepa et al. [28] reported a pronounced reduction in TPC by 99.7% using HPP (STANSTED
fluid power LTD, Stansted, Harlow, UK) at 550 MPa for 3 min, while Razali et al. [29] re‑
ported HPP (Avure 2L‑700 HPP Laboratory Food Processing System, Avure, Kent, Wash‑
ington, DC, USA) at 400 Mpa for 5 min reduced TPC to an undetectable level in milk. In a
similar studyusing the same commercial unit (Hiperbaric 55, Hiperbaric, Spain), Tan et al. [14]
reported a high TPC reduction of 99.98% at 600 Mpa for 5–7 min. Stratakos et al. [13]
showed that commercial scale HPP (Quintus 35 L, Avure Technologies, Kent, Washington,
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DC, USA) at 600 Mpa for 3 min reduced TPC by 83.33% and prolonged the shelf life of milk
to 28 days.
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Figure 1. Changes in (a) Total Plate Count, (b) Total Yeast and Molds Count, and (c) Psychrotrophic
Bacteria Count of HPP and ESL milk during 60‑day storage (log10 CFU/mL).

Yeasts and mould can cause the development of off‑flavours in milk due to the gen‑
eration of toxic metabolites by mycotoxins which restrict the shelf life of milk and pose a
potential health risk [30]. Fresh milk used in this study had yeast and molds count above
the safety limit of <1 log10CFU/mL [30]. HPP treatment reduced the count to safe and un‑
detectable levels (Figure 1b). A similar result was reported by Tan et al. [14], where most
vegetative yeasts and moulds in cow and goat milk were inactivated within 5–7 min at
450–600 Mpa. The effectiveness of HPP in controlling yeast and mould count in this study
has shown stability at an undetectable level throughout the 60 days of storage (Figure 1b)
which is longer than studies by Tan et al. [14] for 22 days.

Spore‑forming bacteria, which include the psychrotrophic, mesophilic, and thermophilic
spore formers, are common in dairy products due to their ability to survive under differ‑
ent temperatures [31]. Psychrotrophic microorganisms constitute a major cause of milk
spoilage [32] due to their ability to produce heat‑resistant enzymes such as proteases, li‑
pases, and phospholipases under refrigeration [33,34]. The psychrotrophic bacteria count
of high‑quality fresh milk should be <105 CFU/mL based on the Malaysian Food Act [27],
but this study shows that the psychrotrophic bacteria count in fresh milk was higher at
6.81 ± 0.05 log10 CFU/mL (Table 1). The high psychrotrophic bacteria was reduced to an
undetectable level after HPP treatment, as were its spores and both the mesophilic and
thermophilic aerobic spores. This result is supported by Tan et al. [14], who reported that
psychrotrophic and mesophilic spores were not detected in HPP milk (600 Mpa, 7 min).
The psychrotrophic bacteria count of HPP milk was also not affected by long refriger‑
ation storage, which was maintained at undetectable levels throughout the 60 days of
storage (Figure 1c).

Other microbiological properties with counts that were all well‑kept below the safety
limits during the 60 days of storage after HPP treatment, although they had counts initially
exceeding safety levels before treatment, are the coliform (1.7 log10CFU/mL) and Staphylo‑
coccus aureus (1.3 log10CFU/m). This suggests that HPP treatment had high efficiency in
ensuring treated milk is safe despite unavoidable conditions in the milking process and
farms causing microbial contamination. Several researchers who have reported similar
findings on the effectiveness of HPP treatment in reducing these bacterial counts include
Stratakos et al. [13] on E. coli reduction by 5.6 and 6.8 log10CFU/mL at 600 Mpa for 3 and
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5 min, respectively, Liu et al. [35] on E. coli reduction by 2.9 log10CFU/mL at 600 Mpa for
5 min, and Tan et al. [14] on total coliform reduction by 1.6 log10CFU/mL at 450–600 Mpa
for 5–7 min.

Pathogenic bacteria such as Bacillus cereus, Clostridium perfringens, Listeria monocyto‑
genes, and Salmonella spp. were all undetected in fresh milk and also throughout the storage
for HPP milk. For safety consumption, Bacillus cereus and Clostridium perfringens in food
should be <105 CFU/mL [36] and <104 CFU/g [37], respectively, while Listeria monocytogenes
and Salmonella spp. should not be detected in a 25g sample [38].

3.2. Physicochemical Analysis
Figure 2 shows slight changes in all physicochemical properties of HPP milk during

60 days of storage except for acidity, which was reduced from initially 0.20% to <0.1% after
HPP treatment (Figure 2b). Acidity reduction accompanied by pH value increase after
HPP treatment at 600 MPa was also reported in other studies [15,29]. During HPP, the
casein micelle disaggregation alters minerals distribution and raises the concentration of
ionic calcium in milk, resulting in an increase in the phosphate concentration of the milk
serum and pH [28].

HPP milk had high pH stability throughout 60 days of storage, indicating it has low
bacteria load to produce lactic acid and generate free fatty acid through fat lipolysis [39].
Tan et al. similarly reported a pH decrease in HPP milk stored for 22 days [14]. It is com‑
mon to have an acidity increase in spoilt milk, as observed in fresh milk with 6 days of
storage (Appendix B), normally associated with an increase in free fatty acids [40], age
gelation [41], or browning reactions [42] during storage.

HPP did not cause many changes to the protein and fat contents of milk during its
60 days of storage (Figure 2c,d). This result was consistent with Tan et al. [14], who reported
no significant changes (p > 0.05) in the total protein and fat content of HPP milk samples
during 22 days of storage. High pressure will only influence the bonds which stabilise the
spatial structure of proteins and cause reversible or non‑reversible denaturation depending
on the pressure level [43]. Most studies have proven the effectiveness of HPP in preserving
milk fat, as high pressure does not damage milk fat globule membranes; thus, lipolysis is
prevented, and fat content is retained [44,45].

HPP treatment was also found to cause no significant changes (p > 0.05) to the total
solids (Figure 2e) and non‑fat milk solids (Figure 2f), similar to those reported by
Tan et al. [14]. However, these contents changed significantly (p < 0.05) in an inconsis‑
tent manner during 60 days of storage. The increase in total solids and non‑fat solids of
HPP‑treated milk could be due to the precipitation fraction of large casein–casein and the
formation of casein–fat aggregates during HPP [46] or induced fat crystallisation due to the
duration of pressure treatment and storage [47]. Specific gravity was not affected through‑
out this study; it was retained at 1.02–1.03 g/mL.

3.3. Nutritional Analysis
3.3.1. Vitamin Content

Most of the vitamin contents of milk in the present study, which includes fresh milk,
were found in relatively low levels compared to commercially fortified milk, probably due
to the nature of milk in which vitamins are not present as a primary source of milk. Some of
these vitamins, which include beta‑carotene and Vitamin A, B1, B2, B3, B6, C, and E, were
too low and were below the limit of reporting (LOR) or below the minimum concentration
of a substance in a sample that can be reliably detected by a laboratory, hence levels below
this limit can cause variation and affect accuracy. Despite the low vitamin levels, HPP
treatment did not cause significant changes (p > 0.05) in milk vitamins except for the slight
Vitamin C increase (Table 2). This was unexpected and can be explained by the variations
due to the detection level below LOR. Sierra and Vidal–Valverde [48] found no significant
(p > 0.05) losses of Vitamin B1 and B6 in whole milk after HPP (400 MPa, 30 min), while
Moltó‑Puigmartí et al. [49] also reported no loss in the total Vitamin C level in human milk
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after HPP (600 MPa, 5 min, 22–27 ◦C). Retention of vitamins in milk was probably due
to the property of vitamins, which consists of small molecules and covalent bonds that
were not affected by high pressure [50]. The storage study here shows that vitamins in
HPP milk reduced gradually over the 60‑day storage (Figure 3). Most vitamins in HPP
milk, including Vitamin A (25%), B3 (91%), B5 (35%), B6 (80%), and C (85%), fell below
their original level at the end of storage, except for Vitamin B7 (25%), B9 (100%), and B12
(20%) with increment. There is no comparison of other work on vitamin deterioration in
HPP‑treated milk during storage, but records of vitamin deterioration in fresh milk during
6 days of refrigeration storage were found for Vitamin A, B6, B12, and C (Appendix C). It is
similarly reported that although vitamins were well‑retained in juices after high‑pressure
treatment, they were also degraded during refrigeration storage [51,52].
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Foods 2023, 12, 592 8 of 14

Table 2. Effects of HPP on vitamin content of fresh milk.

Vitamin Content LOR Unit Fresh Milk HPP

Vitamin A (as Retinol) * 0.1 mg/100 mL 0.04 ± 0.00 a 0.04 ± 0.00 a

Beta‑carotene * 1 mg/100 mL 0.02 ± 0.00 a 0.02 ± 0.00 a

Vitamin B1 * 0.25 mg/100 mL 0.04 ± 0.00 a 0.03 ± 0.00 a

Vitamin B2 * 0.25 mg/100 mL 0.17 ± 0.00 a 0.18 ± 0.00 a

Vitamin B3 (as Niacin) * 0.25 mg/100 mL 0.11 ± 0.00 a 0.11 ± 0.00 a

Vitamin B5 0.25 mg/100 mL 0.40 ± 0.00 a 0.40 ± 0.00 a

Vitamin B6 * 0.25 mg/100 mL 0.05 ± 0.01 a 0.06 ± 0.00 a

Vitamin B7 (Biotin) 1 µg/100 mL 4.00 ± 0.00 a 4.00 ± 0.00 a

Vitamin B9 (Folic Acid) 1 µg/100 mL 6.00 ± 0.00 a 6.33 ± 0.33 a

Vitamin B12 (Cyanocobalamin) 1 µg/100 mL 1.67 ± 0.58 a 2.00 ± 0.00 a

Vitamin C * 2 mg/100 mL 1.00 ± 0.00 a 1.67 ± 0.33 ab

Vitamin D 0.1 µg/100 mL 2.50 ± 0.00 a 2.50 ± 0.00 a

Vitamin E (Alpha‑Tocopherol) * 0.1 mg/100 mL 0.07 ± 0.00 a 0.07 ± 0.00 a

Vitamin K 0.1 µg/100 g 0.3 0.65
ab Mean ± standard deviation in same row with different superscripts letters are significantly different at p < 0.05;
* Results showing vitamin content lower than LOR. LOR is the limit of reporting.
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Figure 3. Changes in (a) Vitamin A, (b) Vitamin B3, (c) Vitamin B5, (d) Vitamin B6, (e) Vitamin B7,
(f) Vitamin B9, (g) Vitamin B12, and (h) Vitamin C of HPP and ESL milk during 60‑day storage.
Dotted lines represent the fresh milk before treatment.

3.3.2. Mineral Content
The milk samples used in this study had the highest mineral content of potassium,

followed by calcium, phosphorus, magnesium, and zinc (Figure 4). There was no signif‑
icant difference (p > 0.05) in the mineral contents of milk after HPP treatment (Day 0). It
successfully retained calcium, phosphorus, and magnesium contents by 99.3%, 99.4%, and
99.1%, respectively. However, significant changes (p < 0.05) were observed in the mineral
contents of HPP milk over the 60 days of storage in an inconsistent manner (Figure 5).
Significant loss (p < 0.05) was observed in potassium (5.3%) and zinc (18.4%), whereas cal‑
cium, phosphorus, and magnesium contents increased by 1.6%, 1.1%, and 13.1%, respec‑
tively, after storage when compared with the original fresh milk. Selenium remained unde‑
tected at levels <0.2 mg/kg throughout this study. Andrés et al. [53] observed no significant
(p > 0.05) changes in mineral profiles of potassium, calcium, magnesium, and zinc in milk
after HPP (450–650 MPa, 3 min, 20 ◦C) during the 45 days of storage at 4 ◦C. The inconsis‑
tent changes were more prominent for fresh milk kept refrigerated for 6 days of storage,
with a higher degradation of potassium (4.3%), calcium (7.2%), and phosphorus (14.8%),
except for selenium which also remained at undetectable level (Appendix D).
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Figure 4. Changes in mineral content of fresh milk after HPP treatment. Potassium, Calcium, Phos‑
phorus, and Magnesium in unit mg/100 mL; Zinc and Selenium in unit mg/kg. Alphabet “a” repre‑
sent no significant difference between bar at p > 0.05.
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before treatment.
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4. Conclusions
This research has shown the potential of HPP treatment in preserving milk quality

for the dairy industry. This novel technology gives promising results in terms of not only
product safety and nutritional properties but also extending shelf life significantly when
compared to conventionally heat‑treated milk. HPP‑treated milk had a storage shelf life
beyond 60 days, with all microbial testing meeting permitted safety levels. It had high
stability for physicochemical properties with consistent pH and acidity during the entire
storage. HPP treatment has successfully retained calcium, phosphorus, magnesium, and
zinc contents by 99.3, 99.4, 99.1, and 100%, respectively. The HPP treatment itself did not
cause much vitamin and mineral deterioration. However, some changes were observed for
the vitamin and mineral contents at the end of 60‑day storage. Degradation was observed
for Vitamin A, B3, B5, B6, and C, and the minerals potassium and zinc, while an increase in
Vitamin B7, B9, B12, calcium, phosphorus, and magnesium contents were detected. Future
HPP research focusing on milk vitamins and minerals to overcome this study limitation
is suggested.
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Figure A1. Changes in microbiological properties of fresh milk during 6 days of storage at 6 ± 1 ◦C.
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Appendix B Physicochemical Analysis Data

Table A1. Changes in physicochemical properties of fresh milk during 6 days of storage at 6 ± 1 ◦C.

Properties
Storage (Days)

0 3 6

pH Value (pH) 6.57 ± 0.03 ab 6.60 ± 0.00 a 6.50 ± 0.00 b

Acidity as Lactic Acid (%) 0.20 ± 0.00 a 0.20 ± 0.00 a 0.37 ± 0.03 b

Fat (g/100 g) 3.57 ± 0.12 a 3.50 ± 0.06 a 3.57 ± 0.12 a

Protein (g/100 g) 3.10 ± 0.00 a 3.27 ± 0.09 a 3.10 ± 0.00 a

Total Solids (g/100 mL) 12.07 ± 0.12 a 12.57 ± 0.09 b 12.37 ± 0.12 ab

Non‑Fat Milk Solids (g/100 g) 8.40 ± 0.15 a 8.77 ± 0.03 a 8.60 ± 0.00 a

Specific Gravity (g/ mL) 1.02 ± 0.00 1.02 ± 0.00 1.02 ± 0.00
ab Mean ± standard deviation in same row with different superscripts letters are significantly different at p < 0.05.

Appendix C Vitamin Content Analysis Data

Table A2. Changes in vitamin content of fresh milk during 6 days of storage at 6 ± 1 ◦C.

Vitamin Content LOR Unit
Storage (Days)

0 3 6

Vitamin A (as Retinol) * 0.1 mg/100 mL 0.04 ± 0.00 b 0.02 ± 0.00 a 0.02 ± 0.00 a

Beta‑carotene * 1 mg/100 mL 0.02 ± 0.00 a 0.02 ± 0.00 a 0.02 ± 0.00 a

Vitamin B1 * 0.25 mg/100 mL 0.04 ± 0.00 a 0.04 ± 0.00 a 0.04 ± 0.00 a

Vitamin B2 * 0.25 mg/100 mL 0.17 ± 0.00 a 0.18 ± 0.01 a 0.17 ± 0.01 a

Vitamin B3 (as Niacin) * 0.2 mg/100 mL 0.11 ± 0.00 <0.2 <0.2
Vitamin B5 0.25 mg/100 mL 0.40 ± 0.00 a 0.58 ± 0.01 b 0.58 ± 0.00 b

Vitamin B6 * 0.25 mg/100 mL 0.05 ± 0.01 b 0.02 ± 0.00 a 0.02 ± 0.00 a

Vitamin B7 (Biotin) 1 µg/100 mL 4.00 ± 0.00 a 4.33 ± 0.58 a 4.33 ± 0.58 a

Vitamin B9 (Folic Acid) 1 µg/100 mL 6.00 ± 0.00 a 7.50 ± 0.50 b 7.50 ± 0.50 b

Vitamin B12 (Cyanocobalamin) 1 µg/100 mL 1.67 ± 0.58 <1 <1
Vitamin C * 2 mg/100 mL 1.00 ± 0.00 c 0.47 ± 0.06 b 0.20 ± 0.10 a

Vitamin D 0.1 µg/100 mL 2.50 ± 0.00 a 2.52 ± 0.01 a 2.51 ± 0.01 a

Vitamin E (Alpha‑Tocopherol) * 0.1 mg/100 mL 0.07 ± 0.00 a 0.08 ± 0.00 b 0.08 ± 0.00 b

Vitamin K 0.1 µg/100 g 0.30 0.45 0.46
abc Mean ± standard deviation in same row with different superscripts letters are significantly different at p <
0.05. * Results showing vitamin content lower than limit of reporting (LOR).

Appendix D Mineral Content Analysis Data

Table A3. Changes in mineral content of fresh milk during 6 days of storage at 6 ± 1 ◦C.

Mineral Content
Storage (Days)

0 3 6

Potassium (mg/100 mL) 131.67 ± 0.88 a 145.33 ± 2.03 b 126.00 ± 0.58 a

Calcium (mg/100 mL) 119.67 ± 1.86 b 147.67 ± 2.33 c 111.00 ± 1.53 a

Phosphorus (mg/100 mL) 73.63 ± 0.37 b 86.10 ± 1.78 c 62.73 ± 1.27 a

Magnesium (mg/100 mL) 10.73 ± 0.17 a 12.97 ± 0.18 b 10.90 ± 0.10 a

Zinc (mg/kg) 3.13 ± 0.07 b 2.37 ± 0.03 a 3.27 ± 0.24 b

Selenium (mg/kg) <0.2 <0.2 <0.2
abc Mean ± standard deviation in same row with different superscripts letters are significantly different at p < 0.05.
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