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Abstract: As an ingredient of great economic value, Tricholoma matsutake has received widespread
attention. However, heavy metal residues and preservatives in it will affect the quality of Tricholoma
matsutake and endanger the health of consumers. Here, we present a method for the simultaneous
detection of low concentrations of potassium sorbate and lead in Tricholoma matsutakes based on
surface-enhanced Raman spectroscopy (SERS) and fluorescence (FLU) spectroscopy to test the safety
of consumption. Data fusion strategies combined with multiple machine learning methods, including
partial least-squares regression (PLSR), deep forest (DF) and convolutional neural networks (CNN)
are used for model training. The results show that combined with reasonable band selection, the
CNN prediction model based on decision-level fusion achieves the best performance, the correlation
coefficients (R2) were increased to 0.9963 and 0.9934, and the root mean square errors (RMSE) were
reduced to 0.0712 g·kg−1 and 0.0795 mg·kg−1, respectively. The method proposed in this paper
accurately predicts preservatives and heavy metals remaining in Tricholoma matsutake and provides
a reference for other food safety testing.

Keywords: fluorescence spectroscopy; surface-enhanced Raman spectroscopy; data fusion; potassium
sorbate; lead element

1. Introduction

As a nutritious and precious ingredient, Tricholoma matsutakes have antioxidant,
immune-boosting, anti-inflammatory and blood sugar-regulating properties [1]. However,
they are highly susceptible to pollutants in the environmental soil during their growth,
such as burdensome metal elements [2,3]. The root and filamentous mycelium system of
Tricholoma matsutakes can absorb lead, cadmium, and mercury in the soil. Apart from
heavy metal contamination, the quality of Tricholoma matsutakes may also be affected by
excessive preservatives added by traders during transportation to preserve freshness. Long-
term consumption of Tricholoma matsutake with excessive heavy metals and preservatives
will affect the digestive system of the human body, and heavy metal poisoning may also
occur, posing significant challenges to food safety [4]. The accumulation of preservatives
and heavy metals in the body may lead to an acid-base imbalance in the human body,
causing symptoms such as dizziness and diarrhea. In severe cases, it may cause chronic
poisoning and increase the risk of cancer. To maintain good health, people should pay
attention to controlling their daily intake of preservatives and heavy metals. Therefore,
the detection of preservatives and heavy metal content plays a vital role in the quality
control of Tricholoma matsutakes and the guarantee of food safety. With the increased
awareness of the health concept, accurate and efficient detection of Tricholoma matsutake
quality and quantitative analysis of illegally used additives have become hot topics in
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modern medicine and food. In recent years, conventional methods based on graphite
furnace atomic absorption spectrometry and liquid/gas chromatography have been widely
used in the analysis of preservatives and heavy metals in Tricholoma matsutakes [5,6].
Although the accuracy of these traditional methods is relatively high, the corresponding
time and labor costs cannot be ignored, which is far from meeting the needs of rapid
detection [7]. Traditional methods are often limited to high-precision detection of a single
component, which cannot simultaneously detect the content of preservatives and heavy
metals in Tricholoma matsutakes.

Recently, spectroscopy technology has gradually emerged in the technical field of
preservatives and heavy metal detection with its advantages of fast detection and low
sample loss. Yang, et al. established a potassium sorbate content in cocktails predictive
model based on surface-enhanced Raman spectroscopy (SERS) [8]. The root mean square
error (RMSE) of the model is 0.1429 g·kg−1, and the limit of detection (LOD) can reach
0.062 g·kg−1. Wang, et al. used an improved chicken swarm optimization support vector
machine (ICSO-SVM) combined with three-dimensional fluorescence (FLU) spectra to
rapidly detect the potassium sorbate ranges 0.007 to 0.1 g·L−1 in orange juice [9]. The best
model result of mean square error (MSE) is 1.01·10−5 g·L−1. Spectroscopic technology has
been verified to have great application prospects in the qualitative analysis of potassium
sorbate. However, these existing studies still focus on detecting single-added substances,
while additives do not exist alone in reality. SERS-based methods require considerable
efforts to develop corresponding substrates for analytes to enhance the Raman signal
and improve the accuracy of prediction. Compared with the SERS-based method, the
FLU-based method can achieve higher sensitivity and resolution during measurement.
Affected by factors such as scattering, self-absorption and temperature, the instability of
fluorescence methods at high concentrations will limit the accuracy of the prediction model.
With the increased emphasis on food safety and the strict restrictions on the content of food
additives, achieving simultaneous detection of multiple mixed substances while ensuring
detection accuracy has become a hot spot in the current field of food testing. Therefore,
spectral data fusion technology is used in this work to make up for the shortcomings of
single spectral methods to establish a simultaneous detection model for preservatives and
heavy metals.

As a framework for integrating multi-source sample input signals, spectral data fusion
takes advantage of the complementary synergistic advantages of different input information
to significantly make up for the shortcomings of a single spectral data source. Data fusion
techniques have been widely used in the quantitative analysis of multiple indicators [10–12].
Zhao, et al. used near-infrared (NIR) and laser-induced breakdown spectroscopy (LIBS)
to quantitatively analyze the heavy metals in lily [13]. The introduction of near-infrared
spectroscopy makes up for the inability of LIBS to accurately quantify complex matrix
samples. Compared with the full-spectrum model, the model based on feature-level fusion
achieves better performance in quantifying Zn, Cu and Pb, with R2 of 0.9858, 0.9811 and
0.9460, and RMSE of 4.3047 mg·kg−1, 4.9592 mg·kg−1 and 0.9460 mg·kg−1. Li, et al.
used visible near-infrared (Vis-NIR) and near-infrared (NIR) to qualitatively assess total
volatile basic nitrogen (TVB-N) and total viable count (TVC) in chickens [14]. With the
introduced data-level and feature-level fusion strategy, the root mean square error of
prediction (RMSEP) in TVC and TVB-N content can reach 0.1889 and 2.6094, respectively.
Compared with the anticipated results based on single spectra, the RMSEP values decreased
by 0.0087 and 0.2816, respectively. Yang, et al. performed a quantitative analysis of
adulterated honey by combining spectral analysis with multiple high-level data fusion
strategies [15]. Three decision-level fusion strategies based on binary linear regression,
entropy weight method and trend line slope weight method were adopted, which achieved
better results compared with full-spectrum and feature-level fusion strategies. Based on
the fusion of UV–Vis and NIR spectral data, Xu, et al. proposed an alternative approach
for simultaneous detection of chemical oxygen demand (COD), ammonia nitrogen (AN)
and total nitrogen (TN) detection in surface water [16]. With the introduced data fusion
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strategy, the RMSEP of the three parameters can reach 6.95, 0.195 and 0.466, respectively,
which is decreased by 2.96%, 11.3% and 4.23% compared with single-spectroscopic-based
models. The studies mentioned above have proved that appropriate data fusion strategies
can effectively improve the results in the quantitative detection of multivariate mixtures.

In this work, a method based on SERS and FLU spectroscopy technology for the
simultaneous determination of potassium sorbate and the main heavy metal element lead in
Tricholoma matsutake was proposed to replace the traditional detection methods. Through
appropriate waveband selection and sample preprocessing, multivariate mixed detection
is converted into a quantitative analysis of two single substances to improve prediction
accuracy. Moreover, the complementarity of SERS and FLU spectral detection methods is
exploited to further optimize the quantitative detection model through a decision-level
fusion strategy. Existing research on preservatives and heavy metal spectral detection
mainly focuses on single-spectrum analysis and model optimization. With our method, the
amount of spectral data and prediction accuracy are significantly optimized, and the LOD
is minimized. The results of this study try to provide a theoretical basis for high-end food
quality assessment.

2. Materials and Methods
2.1. Sample Preparation

The Tricholoma matsutakes were collected from Kunming, Yunnan province, and se-
lected with different sizes and shapes. Collected Tricholoma matsutakes were cleaned with
ultrapure water and homogenized into small particles by a ceramic knife. The potassium
sorbate aqueous solution and lead standard solution were added proportionally to the
cleaned and homogenized samples to simulate contamination of preservatives and heavy
metal elements. We added acetonitrile and extraction salt to the homogenized samples,
took the supernatant as the Tricholoma matsutake extract, and vortexed the extract in the
purification tube to eliminate fluorescence interference. Because the purchased Tricholoma
matsutake samples originally contained lead elements, the extract with low lead concen-
trations cannot be obtained directly. A selected portion of extract samples was subjected
to be extracted and purified, and lead ions were adsorbed from the extracting solution
using a composite material. The processed extracting solution without lead was used to
dilute other extracts to obtain the desired low concentrations. The standard for potassium
sorbate content in mushrooms in China is no more than 0.5 g·kg−1, and the standard for
lead content is no more than 1 mg·kg−1. Samples were prepared into 15 potassium sorbate
concentrations (0 to 2 g·kg−1) and 15 lead concentrations (0 to 2 mg·kg−1). The selected
sample concentrations are shown in Table 1. By combining different concentrations of
potassium sorbate and lead, 225 samples with different potassium sorbate and lead contents
were prepared in the experiment. Ten samples of each type were prepared to ensure the
credibility of the experimental results.

Table 1. The concentrations of additives in the samples.

Serial Number Potassium Sorbate (g·kg−1) Lead Element (mg·kg−1)

1 0 0
2 0.001 0.001
3 0.003 0.003
4 0.005 0.005
5 0.01 0.01
6 0.03 0.03
7 0.05 0.05
8 0.1 0.1
9 0.3 0.3
10 0.5 0.5
11 0.8 0.8
12 1.0 1.0
13 1.2 1.2
14 1.6 1.6
15 2.0 2.0
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2.2. Spectroscopy Data Acquisition

Raman spectroscopy is a powerful label-free technique to identify molecules by mea-
suring the vibrational and rotational character of their chemical bonds. SERS exploits the
phenomenon of enhanced Raman scattering on the surface of plasmonic nanoparticles or
nanostructures [17]. The SERS spectra of Tricholoma matsutakes samples were acquired by
a laser SERS spectrometer (DXR532) with a 785 nm laser source equipped with a coupled
device detector. During the SERS experiments, modified gold nanoparticle sol was used as
the substrate to simultaneously enhance the SERS signals of potassium sorbate and lead
ions. The excitation wavelength of the light source was set to 780 nm, with a power of
150 mW and a resolution of 4. The spectral scanning range was set from 50 to 3000 cm−1.
To ensure the accuracy of the experiment, three spectra were collected for each sample, and
the average spectra were obtained as the final result.

Fluorescence is a type of radiation transition, which is the radiation released by a
substance from an excited state to a low-energy state with the same multiplicity. When a
molecule in the ground state absorbs energy and jumps, the molecule becomes unstable
and jumps back to the ground state. Photons are emitted during the transition back to
the ground state, which produces fluorescence [18]. The FLU spectra were measured by
a steady-state/lifetime spectrofluorometer. The slits of excitation/emission were set at
3 nm. To achieve a quantitative analysis of lead elements, the excitation wavelength was
set as 262 nm, and the emission wavelength range was 300–500 nm. When the excitation
wavelength is set to 262 nm, the emission spectra change intensity is not affected by
changes in potassium sorbate content. To achieve a quantitative analysis of potassium
sorbate, the excitation wavelength was set as 358 nm, and the emission wavelength range
was 375–700 nm. Considering that the influence of lead on the emission spectra of FLU
cannot be eliminated even by changing excitation wavelength, the extract was purified by
composite materials before testing to ensure accurate measurement of potassium sorbate.
All the samples were scanned three times to reduce instrumental errors, and the average
spectra were obtained as the final result.

2.3. Data Analysis Methods
2.3.1. Quantitative Models and Evaluation

To quantitatively analyze the lead element and potassium sorbate in Tricholoma
matsutakes, three algorithms of partial least-squares regression (PLSR), deep forest (DF)
and convolutional neural networks (CNNs) were used to establish the regression model [19].
PLSR is a regression modeling method from multiple dependent variables to multiple
independent variables. Deep forest, as an ensemble method of decision trees, exhibits
strong competitiveness compared to deep neural networks (DNN) and is much easier
to train [20]. Convolutional neural networks (CNNs) are a class of feedforward neural
networks that incorporate convolutional computations with a deep structure.

To better evaluate the prediction performance, the determination coefficient (R2)
between the reference and predicted value, RMSE and mean absolute error (MAE) were
applied here:

R2 = 1−
n

∑
i=1

(
yi − ypredi

)2/
n

∑
i=1

(yi − ymean)
2 (1)

RMSE =

√
n

∑
i=1

(
ypredi − yi

)2/n (2)

MAE = 1/n×
n

∑
i=1

∣∣ypredi − yi
∣∣ (3)

where n is the number of fitting points, yi, ymean and ypredi are the actual value, average
value and the predicted value of the concentration, respectively.
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2.3.2. Data Processing and Feature Extraction

The original spectral data are usually unsuitable for direct modeling analysis due
to noise, background interference and experimental operating errors. In this study, the
collected SERS spectral data are standardized to correct errors caused by variations in the
focal distance during the data acquisition.

To increase the amount of useful information on the spectra, and improve the reso-
lution and signal-to-noise ratio of the spectra, Gramian angular field (GAF) [21], Markov
transition field (MTF) [22], relative position matrix (RPM) [23] and recurrence plots (RP)
transformation methods were used to transform the SERS and FLU spectra into 2D spectro-
grams [24]. The obtained 2D spectral data were subsequently used to develop 2D CNN
regression models. Converting spectra using GAF and MTF can fully retain the helpful
information in the spectrum and better characterize the spectrum through two-dimensional
images. RP and RPM transformation methods can interpret the intrinsic relationship be-
tween data, provide prior knowledge about similarity and predictability, and facilitate the
establishment of predictive models.

To address the issue of increased computational time due to data redundancy in
full-spectra analysis, the successive projections algorithm (SPA) [25,26], Boruta and com-
petitive adaptive reweighted sampling (CARS) algorithms were used to extract the feature
wavelengths [27–29]. SPA is a forward variable selection method that can minimize the
collinearity between spectral variables in this work. CARS is a feature variable selection
method that combines Monte Carlo sampling with the regression coefficients of the PLS
model [30]. It uses the percentage of the absolute value of the regression coefficient as
an important indicator to eliminate characteristic wavelength points with redundant in-
formation. The Boruta algorithm is a wrapper based on the random forest classification
algorithm [31]. The feature extraction method can adaptively handle missing values and
noise while reducing the dimensionality of the tube evaluation data, thereby enhancing the
robustness of the algorithm.

2.3.3. Data Fusion

According to the fusion structure of multispectral data, the fusion strategies can
be divided into three categories: full-spectra fusion, feature-level fusion and decision-
level fusion [32–34]. Herein, feature-level data fusion is to extract relevant features from
individual spectra data sources, respectively, and then combine them into a matrix for
processing through modeling methods. Decision-level fusion entails fusing outcomes of
classification or regression models from individual techniques to identify the best outcome.
Compared with other data fusion strategies, each technique is treated independently in
decision-level fusion. Poor performance from one technique does not worsen the overall
performance. However, this fusion strategy has not been widely explored. Based on model
fusion, decision-level data fusion makes a comprehensive decision on the final results
through a voting mechanism, which can be expressed as

ypred = k1 × ypredA + k2 × ypredB (4)

where ypredA and ypredB are the predictive results of model A and model B. k1 and k2 are the
weight coefficients of ypredA and ypredB determined by the voting mechanism. ypred is the
final comprehensive decision result.

In this work, SERS and FLU spectral data of samples were used to build a quantitative
prediction model for potassium sorbate and lead in matsutake based on feature-level and
decision-level fusion strategies. The experimental and modeling process of quantitative
analysis is shown in Figure 1.
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Figure 1. The experimental and modeling process of quantitatively analyzing potassium sorbate and
lead in Tricholoma matsutakes.

3. Results and Discussion
3.1. Spectral Curve

Herein, we selected the SERS spectra of four different samples for display. The selected
samples are blank extract, extract with potassium sorbate added, extract with lead added
and extract with both added. It can be seen from Figure 2a that the Raman peaks at
381 cm−1, 903 cm−1, 2287 cm−1 and 2940 cm−1 can be attributed to the extract. The SERS
peak at 1049 cm−1 belongs to the lead element contained in the extract, and the SERS peak
at 883 cm−1 and 1651 cm−1 belongs to the potassium sorbate. It should be noted that the
intensity of the corresponding SERS peaks was independent of the content of the other
additive. Therefore, the spectral data at the SERS peaks belonging to the additive were
used to build quantitative prediction models. Due to the low intensity and poor spectral
discrimination of the SERS peak at 883 cm−1, only the SERS peak at 1651 cm−1 was used for
the quantitative analysis of potassium sorbate. The spectra of the SERS peaks at 1049 cm−1

and 1651 cm−1 in relation to the corresponding additives are shown in Figure 2b,c. Since
there is no interaction in the SERS peaks resulting from lead and the SERS peak belonging
to potassium sorbate, the quantitative detection of a binary mixture can be converted to the
detection of two one-component additives, which improves the accuracy of quantification.
However, when the concentration of potassium sorbate and lead is lower than 0.1 g·kg−1

and 0.1 mg·kg−1, the characteristic peaks belonging to additives have a high degree of
coincidence and are easily overwhelmed by noise, making it difficult for quantitative
analysis of low concentrations.
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Figure 2. Measured spectra of extracted matsutake and mixture with potassium sorbate and lead.
(a) The SERS spectra of the exemplary samples and the blank sample. The average spectra of SERS
peaks belong to lead (b) and potassium sorbate (c).

Considering the limitation of the SERS spectra for the detection of low-concentration
samples, we employed the FLU spectra. To perform a quantitative analysis of potassium
sorbate and lead separately, the samples were tested at different excitation wavelengths
according to the test process in the second paragraph. The emission spectra at excitation
wavelengths of 262 nm and 358 nm for the corresponding additives are shown in Figure 3a,b.
Contrary to the SERS spectra, the intensity of the corresponding FLU emission spectra is
negatively correlated with the concentrations of lead and potassium sorbate, respectively,
and the emission spectra of low-concentration samples are distinguishable. Similarly,
the errand was transformed into quantitative analysis of two one-component substances
through sample pre-processing and selection of excitation wavelength.
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3.2. Modeling and Analysis of the Individual Spectra

The SERS spectral dataset was selected to build quantitative prediction models for
potassium sorbate and lead. Due to the strong collinearity of the SERS spectra of the
samples, the spectral data of two SERS peaks were selected to establish the prediction
model. To avoid generalization errors, the training set and the prediction set were divided
into 4:1 by introducing a random function. We convert the detection of binary mixtures
into the quantitative analysis of two single substances through the selection of spectra
types and wavebands. The complex non-linear characterization errand was transformed
into a relatively concise linear characterization errand consequently. Therefore, PLSR was
used to establish prediction models. To address the issue of increased computational time
and reduced model performance due to data redundancy, we choose the SPA, CARS and
Boruta algorithms to further extract characteristic wavelength points within the selected
band. Considering the inadequacy of the model in predicting low concentrations where the
spectral crossover is severe, DF and 2D CNN models were adopted to further improve the
prediction accuracy. Before establishing the 2DCNN model, the extracted one-dimensional
spectrum is converted into a two-dimensional spectrum through GAF, MTF, RPM and
RP transformation methods to improve the signal-to-noise ratio further and expand the
extracted useful information. The performance of CNN is closely related to the appropriate
parameter selection. During the modeling process, the Bayes algorithm was introduced to
optimize three data-type parameters: mini-batch size, initial learning rate and L2 regular-
ization. The quantitative analysis results of lead element and potassium sorbate using the
SERS spectral datasets are given in Table 2.

Table 2. Results of lead element and potassium sorbate quantitative prediction models based on
SERS spectra datasets.

Methods Model
Lead Element Potassium Sorbate

R2 RMSE
(mg·kg−1) R2 RMSE

(g·kg−1)

none

PLSR

0.9604 0.1227 0.9668 0.1202
SPA 0.9681 0.1172 0.9724 0.1095

Boruta 0.9652 0.1191 0.9688 0.1143
CARS 0.9702 0.1125 0.9725 0.1090

none

DF

0.9677 0.1147 0.9714 0.1109
SPA 0.9714 0.1085 0.9783 0.1026

Boruta 0.9685 0.1097 0.9735 0.1078
CARS 0.9725 0.1066 0.9803 0.0997

SPA-GAF

CNN

0.9801 0.0894 0.9833 0.0841
Boruta-GAF 0.9782 0.0972 0.9781 0.0931
CARS-GAF 0.9812 0.0875 0.9829 0.0852
SPA-MTF 0.9741 0.1012 0.9779 0.0967

Boruta-MTF 0.9688 0.1097 0.9751 0.1002
CARS-MTF 0.9748 0.0962 0.9775 0.0972

SPA-RP 0.9785 0.0923 0.9812 0.0895
Boruta-RP 0.9698 0.1067 0.9766 0.1021
CARS-RP 0.9792 0.0901 0.9810 0.0899
SPA-RPB 0.9765 0.0992 0.9804 0.0907

Boruta-RPB 0.9724 0.1075 0.9789 0.0931
CARS-RPB 0.9766 0.0990 0.9799 0.0918

According to the results in Table 2, it can be found that compared with other pre-
diction models, the prediction results of the CNN-based quantitative prediction model
reach higher R2 and lower RMSE, which indicates that the prediction results achieve higher
fitting accuracy and more minor errors. Furthermore, the GAF was selected for spectral
transformation, which achieved the best performance of the CNN regression model. The
model based on the SERS spectra demonstrates relatively stable performance in predict-
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ing various kinds of concentrations and can achieve high upper limits of predictability.
However, the performance of detecting low-concentration samples was unsatisfactory.

To address the issue of insufficient sensitivity in models based on SERS spectral data,
FLU spectral data were used to develop the prediction model. The modeling details were
the same as the SERS spectroscopy-based prediction model. Considering the insufficient
performance of the MTF, RP and RPM algorithms in transforming 1D spectra into 2D
spectrograms to develop SERS spectroscopy-based prediction models, only GAF was used
for the establishment of prediction models based on FLU spectra. The modeling results
showed that the CNN model based on the CARS feature selection method and the GAF
spectral transformation method (CARS-GAF-CNN) was the best quantitative prediction
model of potassium sorbate and lead, in which the R2 were 0.9794 and 0.9743, and RMSE
were 0.1070 g·kg−1 and 0.1117 mg·kg−1, respectively. The optimal models for quantifying
potassium sorbate and lead elements based on single spectral data are shown in Table 3.

Table 3. The best prediction results based on each individual spectra.

Analyte Spectra Models R2 RMSE

Lead element
SERS

CARS-GAF-CNN 0.9812 0.0875
Potassium sorbate SPA-GAF-CNN 0.9833 0.0841

Lead element
FLU

CARS-GAF-CNN 0.9743 0.1117
Potassium sorbate CARS-GAF-CNN 0.9794 0.1070

The RMSE of the quantitative model for potassium sorbate and the quantitative model for the lead element is
expressed in g·kg−1 and mg·kg−1, respectively.

Compared with the potassium sorbate and lead concentration prediction models
based on SERS spectral data, the overall accuracy of the prediction model based on FLU
spectral data is lower. Because the fluorescence intensity of the sample changes slowly at
higher concentrations of potassium sorbate and lead. Moreover, the fluorescence spectra of
high-concentration samples are insufficiently stable, making the error in spectral collection
more considerable than that of low-concentration samples. These factors reduce the dis-
crimination of fluorescence spectra of high-concentration samples, thereby affecting the
predictive performance of the model. However, in the event of concentration lower than
0.1 g·kg−1 for the potassium sorbate and 0.1 mg·kg−1 for the lead content, respectively,
the MAE of the model established by the FLU technique is 19.5% and 16.7% lower than
that established by the SERS, which demonstrated the advantages of the FLU quantitative
model in the low-concentration detection.

The potassium sorbate and lead element content exhibited a linear relationship with
the variation of FLU intensity at 444 nm and 318 nm in the corresponding emission spectra,
respectively. A standard curve was constructed based on the relationship between the FLU
intensity change at each wavelength point on the Y-axis and the analyte concentration on
the X-axis. The standard curves of lead elements and potassium sorbate within the linear
concentration range are shown in Figure 4.

A linear relationship was observed between the concentration of potassium sorbate
in the range of 0.005 to 1 g·kg−1 and the change in FLU intensity at 444 nm in the corre-
sponding emission spectra. The standard curve of potassium sorbate can be expressed as

y = 44,737.6244× xps + 301.7523 (5)

where y is the FLU intensity change of the corresponding wavelength point and xps is
the concentration of potassium sorbate at the corresponding wavelength point. In the
field of lead concentrations from 0.01 to 0.8 mg·kg−1, a linear relationship exists between
the concentration of lead and the corresponding change in FLU intensity at 318 nm. The
standard curve of lead can be expressed as

y = 11,726.4395× xl − 220.1624 (6)



Foods 2023, 12, 4267 10 of 15

where xl is the concentration of lead at the corresponding wavelength point. The LOD in
this method can be calculated from the results of the linear fit and the standard deviation
of the blank sample measurement. The formula for LOD can be expressed as

LOD = 3σ/k (7)

where σ was the standard deviation of blank sample measurement, and k was the slope
of the standard calibration curve. According to the formula, the LOD in the potassium
sorbate and lead element prediction can reach 2.35 mg·kg−1 and 9.72 ug·kg−1, respectively.
Compared with other spectral-based detection methods, the method in this paper can
achieve lower detection limits, which is more conducive to the detection of zero-added
green agricultural products.
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3.3. Data Fusion
3.3.1. Modeling and Analysis of Feature-Level Data Fusion

Considering the unsatisfactory performance of the model based on FLU spectroscopy
in predicting high concentrations and the lack of precision in predicting low concentrations
by the model based on SERS spectroscopy, a fusion approach that combines SERS and
FLU spectroscopy was adopted to establish a prediction model. The fusion approach
takes advantage of the complementary synergistic advantages of SERS and FLU spectral
information to compensate for the shortcomings of a single spectral data source. The
full-spectra fusion strategy directly combines multiple low-level features or information
during data processing, thereby expanding the adequate information and improving the
accuracy of the model. But it will increase the dimension of input information. To avoid the
issue of data redundancy, this study has decided to employ feature-level and decision-level
data fusion. The relevant features were extracted from SERS and FLU spectra data sources,
respectively, and then combined into a matrix for processing through modeling methods.
Herein, SPA and CARS feature variable extraction methods were applied to the model
establishment due to their superior performance in the prediction models based on SERS
and FLU spectral data. Based on the excellent performance in establishing the single-spectra
prediction model, CNN was employed to build a feature-level fusion prediction model.
The modeling results of feature-level data fusion on FLU and SERS spectra datasets are
shown in Table 4.

Table 4. Results of quantitative prediction models based on feature-level fusion.

Analyte Potassium Sorbate Lead Element

Methods SPA-CNN CARS-CNN SPA-CNN CARS-CNN
R2 0.9881 0.9903 0.9852 0.9891

RMSE 0.0902 g·kg−1 0.0848 g·kg−1 0.0908 mg·kg−1 0.0872 mg·kg−1
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The results clearly showed CARS-GAF-CNN was the best regression quantitative
prediction model of potassium sorbate and lead, in which the R2 were 0.9903 and 0.9891, and
RMSE were 0.0848 g·kg−1 and 0.0872 mg·kg−1, respectively. Due to the fusion of effective
information from the two spectra, compared with the model based on a single spectral
data, the model based on feature-level data fusion exhibits higher prediction accuracy and
shows remarkable stability in predicting various kinds of concentrations. Compared with
the prediction model based on the full-spectra fusion strategy, the calculation time of the
corresponding model based on the feature-level fusion strategy is significantly reduced. The
method has achieved the purpose of efficient and simplified modeling. The RMSE of the
optimal feature-level fusion models using different feature extraction algorithms were all
lower than 0.1, which indicates that feature-level fusion achieved good prediction results.

3.3.2. Modeling and Analysis of Decision-Level Data Fusion

To further improve the predictive accuracy of the models, two spectral models were
optimized on the decision level. Decision-level fusion involves the computation of quanti-
tative regression models from each data source and the combination of the results of each
model to obtain the final decision. For comparison, two comprehensive evaluation methods,
the technique for order preference by similarity to ideal solution (TOPSIS) and the random
forest (RF) algorithm, were adopted as voting mechanisms for decision-level fusion [35].
TOPSIS and RF evaluation methods were selected for the establishment of decision-level
fusion models due to their fast calculation speed and low susceptibility to outliers. TOPSIS
method is a comprehensive decision-making method. The objective assignment of entropy
weights is used to calculate the information entropy of the index. The relative change
degree of index impact on the whole system determines its weight coefficient. At the same
time, the optimal and inferior solutions among the finite solutions can be obtained in the
normalized original data matrix. The distances between the evaluated subjects and the two
solutions are calculated separately, which can be used as a basis to evaluate the grades of
the samples. The RF algorithm can rank the importance by analyzing the magnitude of
the contribution made by each feature [36,37]. Variable importance measures (VIM) can
be expressed by the Gini index (GI). The GI(i)q and VIM(Gini)(i)

jq indicate the Gini index and
feature importance of the ith tree node q. The final normalized importance score for each
indicator can be expressed as

VIM(Gini)(i)
j =

VIM(Gini)(i)
j

∑J
j′ VIM(Gini)(i)

j′

(8)

Herein, SPA and CARS were applied to the model. Since the PLSR prediction model
based on FLU spectra was ineffective in quantitatively predicting high concentrations, a
very low weight coefficient was assigned to the predictions of this model in the decision-
level data fusion process. The prediction results of the PLSR-based decision-level data
fusion model were similar to those of the SERS spectra-based prediction model. Therefore,
the predictions of the model based on the PLSR algorithm were not used for advanced
fusion, and the best prediction results of the model based on the CNN algorithm were cho-
sen. The optimal results of the prediction model based on SERS and FLU spectral data are
recorded as ySERS and yFLU . When establishing the prediction model of potassium sorbate
content, the results of decision-level data fusion based on TOPSIS can be expressed as

ypred(TOPSIS) = 0.6272× ySERS + 0.3728× yFLU (9)

The results based on RF can be expressed as

ypred(RF) = 0.6683× ySERS + 0.3317× yFLU (10)
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When establishing the prediction model of lead, the results of decision-level data
fusion based on TOPSIS and RF can be expressed as

ypred(TOPSIS) = 0.6766× ySERS + 0.3234× yFLU (11)

ypred(RF) = 0.6683× ySERS + 0.3217× yFLU (12)

Since the prediction results of high-concentration samples have a more significant
impact on the overall accuracy of the prediction model, the results of the prediction model
based on SERS spectral data that perform better in predicting high concentrations are
assigned to higher weights. The modeling results of decision-level data fusion on FLU and
SERS spectra datasets are shown in Table 5.

Table 5. Results of quantitative prediction models based on decision-level fusion.

Analyte Potassium Sorbate Lead Element

Methods TOPSIS-CNN RF-CNN TOPSIS-CNN RF-CNN
R2 0.9963 0.9952 0.9932 0.9934

RMSE 0.0712 g·kg−1 0.0741 g·kg−1 0.0803 mg·kg−1 0.0795 mg·kg−1

Table 4 clearly showed that the CARS-GAF-CNN model based on the TOPSIS voting
mechanism was the best quantitative prediction model of potassium sorbate, in which
the R2 and RMSE were 0.9963 and 0.0712 g·kg−1. The CARS-GAF-CNN model based on
the RF voting mechanism, in which the R2 and RMSE were 0.9934 and 0.0795 mg·kg−1,
exhibited the best performance in quantitatively analyzing the lead element. Compared
with other detection methods of heavy metals in agricultural and sideline products based on
spectroscopy and microwave technology, the method in this study improves the detection
accuracy [13,38,39]. It can be found that decision-level fusion reduces the impact of weak
sensors on the overall model performance by adjusting the weight of results obtained from
different sources. It takes advantage of the complementary advantages of quantitative
results based on SERS and FLU spectral prediction models to further improve the prediction
accuracy of the model. Compared with using the feature-level fusion strategy, the decision-
level fusion strategy has little impact on model calculation time and does not violate the
original intention of efficient modeling.

To visually compare the models established based on single spectral data with those
developed using the data fusion technique, the results of the best models obtained from
each approach are presented in Figure 5.
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In the quantitative analysis of potassium sorbate and lead, the predictive models
achieved optimal results in decision-level data fusion. Compared to the prediction models
for potassium sorbate and lead elements based on single-spectra data, the R2 improves to
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0.9963 and 0.9934, and the RMSE has decreased by 21.9% and 13.7%, respectively. Overall,
the results of the fusion model are better than those of the single spectral model.

4. Conclusions

This work focuses on data fusion strategies to improve the prediction accuracy of low-
concentration potassium sorbate and lead elements in Tricholoma matsutakes. SERS and
FLU spectroscopy were used to quantitatively analyze the potassium sorbate and lead ele-
ments simultaneously. By selecting the appropriate waveband and excitation wavelength,
we convert the mixed detection of potassium sorbate and lead into the quantitative detec-
tion of a single additive to improve the prediction accuracy. Among all the quantitative
models, the GAF-CNN model based on decision-level data fusion technology exhibited the
best predictive performance, in which the R2 increased to 0.9963 and 0.9934, and the RMSE
reduced to 0.0712 g·kg−1 and 0.0795 mg·kg−1, respectively. It was revealed that decision-
level data fusion enormously improved the R2 and reduced the RMSE values. Moreover,
the LOD of potassium sorbate and lead element can reach 2.35 mg·kg−1 and 9.72 ug·kg−1,
respectively, which can meet the practical applications. The results of this study confirm
that building a predictive model based on SERS and FLU spectral data using a decision-
level fusion strategy and CNN is an efficient approach for the practical, stable and accurate
detection of the quality of Tricholoma matsutakes. However, the method proposed in this
study also has limitations. When the analyte concentration is too high, even prediction
models based on decision-level data fusion cannot provide accurate quantification due to
the instability of the fluorescence spectrum. In addition, the sample pretreatment method
used in this study needs to be improved, and the efficiency of detection can be enhanced by
simplifying the steps. An online real-time detection system can be developed considering
the timeliness of fresh Tricholoma matsutakes samples. In general, the methodology in this
study offers rapid and precise detection of the quality of Tricholoma matsutakes based on
spectral fusion technology. In the future, this study could be extended to detect and analyze
the content of preservatives and heavy metal elements in other precious food ingredients.
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