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Abstract: An experiment was conducted on the polyphenol content, flavonoid content, anthocyanin
content, and antioxidant capacity of Furong plum (Prunus salicina Lindl. cv. “furong”) at different
maturity stages to determine the most suitable maturity stage. The inhibition of plum polyphenols on
xanthine oxidase (XOD) was measured, and its kinetics were studied to reveal the inhibitory mecha-
nism. The experimental results showed that the polyphenol, flavonoid and anthocyanin contents of
plums at the ripe stage were the highest, reaching 320.46 mg GAE/100 g FW, 204.21 mg/100 g FW,
and 66.24 mg/100 g FW, respectively, in comparison those of the plums at the immature and mid-ripe
stages. The antioxidant capacity of the ripe plums was stronger than it was during the other stages
of the plums growth. Among them, the total polyphenols of the ripe plums exhibited the strongest
antioxidant capacity (IC50 values against DPPH and hydroxyl radicals were 28.19 ± 0.67 µg/mL and
198.16 ± 7.55 µg/mL, respectively), which was between the antioxidant capacity of the free polyphe-
nols and bound polyphenols. The major phenolic monomer compounds of plum polyphenols were
flavan-3-ols (epicatechin, catechin, proanthocyanidin, and procyanidin B2), flavonols (myricetin),
and phenolic acids (chlorogenic acid, ferulic acid, and protocatechuic acid). Additionally, plum
polyphenols exhibited a strong inhibitory effect on XOD, with an IC50 value of 77.64 µg/mL. The
inhibition kinetics showed that plum polyphenols are mixed-type inhibitors that inhibit XOD activity
and that the inhibition process is reversible. The calculated values of Ki and α were 16.53 mmol/L
and 0.26, respectively.

Keywords: Furong plum; polyphenols; antioxidant; xanthine oxidase; inhibition kinetics

1. Introduction

Furong plums (Prunus salicina Lindl. cv. “furong”) are a fruit of the family Rosaceae
and is a red-fleshed fruit characteristic of Fujian, China; they have a water content exceeding
85% and are more than 90 percent edible [1]. It is worth noting that Furong plums have a
high content of polyphenol compounds, suggesting that they may have a strong antioxidant
potential [2,3]. Furong plums can serve as a source of dietary polyphenols and have broad
prospects for application [4]. The current research is focused on the effect of varieties
on polyphenol content and biological activity, such as those of different plum varieties,
including Carissa macrocarpa, Zarechnaya rannyaya, and Ximenia caffra [5–8]. Relatively
less research has been conducted on the effect of maturity stages on the composition and
activity of polyphenol compounds in plums. The research has shown that the antioxidant
capacity of plums from South Africa, such as ruby red and PR04-19 plums, increases as
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they ripen [9]. In Syzygium cumini, the content of myricetin-3-O-hexoside increases with
increasing maturity, while myricetin-3-O-pentoside and myricetin-3-O-rhamnoside show
the opposite trend [10]. However, there are currently no research reports available on the
composition of polyphenol compounds and antioxidant capacity at the different maturity
stages of Furong plums.

Xanthine oxidase (XOD) is a key enzyme in the body responsible for the production
of UA. It catalyzes the direct metabolic conversion of xanthine into UA or the conversion
of hypoxanthine into xanthine, which is then further catalyzed to produce UA [11,12].
Hyperuricemia (HUA) is diagnosed when the uric acid (UA) levels exceed 420 µmol/L for
males and 360 µmol/L for females [13,14]. HUA can cause acute or chronic gout, acute
or chronic nephropathy, hypertension, coronary heart disease, and other diseases [15,16].
Furong plums are rich in bioactive polyphenols. Extensive research has found that natural
polyphenol compounds can reduce the level of UA by inhibiting XOD activity and through
other pathways, thus demonstrating a strong potential for lowering the level of uric acid.
The examples include Camellia japonica bee pollen polyphenols, purple potato leaf polyphe-
nols, and green tea polyphenols [17–19]. Furthermore, natural polyphenols from different
plants will reduce the activity of XOD through different inhibition mechanisms. The in-
hibition mechanism of natural polyphenols on XOD can be analyzed through inhibition
kinetics, and the inhibition types may be uncompetitive inhibition, competitive inhibition,
and mixed-type inhibition [20,21]. However, there have been no research reports on the
inhibition effect and mechanism of action of Furong plum polyphenols on XOD, indicating
an urgent need for further study.

This experiment analyzed the content of polyphenols, total flavonoids, and antho-
cyanin as well as the antioxidant capacity of Furong plums at three different maturity stages
to determine the most suitable maturity stage and polyphenolic compounds in Furong
plums. Subsequently, the major phenolic monomer compounds of the polyphenols were
analyzed, along with their inhibitory effect on the XOD enzyme activity and inhibition
kinetics. The research on the polyphenols in Furong plums provides a theoretical basis for
the medicinal value and food development of Furong plums.

2. Materials and Methods
2.1. Experimental Materials

Furong plums were collected from Yongtai, Fujian Province. To ensure similar growth
conditions, the plums were all harvested from the same area (a 5 m × 5 m planting area)
in the same orchard. The trees began bearing fruit on 1 March 2018, and the plums at
three different maturity stages were harvested from 1 July 2018 to 10 August 2018. The
experiment employed a random harvesting method, with three trees being harvested for
each replicate. The collected plums were transported to a laboratory and refrigerated within
4 h. Figure 1 shows pictures of the plums harvested at three different maturity stages.
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Immature stage: plums picked on 1 July 2018 (122 days after the fruit trees began to bear
fruit), with lime green skin, about 30% red flesh, a hard texture, and 84.92± 1.05% water content.

Mid-ripe stage: plums picked on 19 July 2018 (140 days after the fruit trees began to
bear fruit), with red skin, mostly red flesh, a hard texture, and 85.26 ± 1.86% water content.

Ripe stage: plums picked on 10 August 2018 (162 days after the fruit trees began to bear
fruit), with dark red skin, equally dark red flesh, a soft texture, and 85.66± 1.75% water content.

Test sample preparation and storage: After the plum fruits were transported to the
laboratory, selected fruits of uniform size, free from mechanical injuries and pests and
diseases, were washed with distilled water to remove surface impurities. The sample
surfaces were gently wiped clean with clean gauze, cut open, and de-nucleated; 250 g
samples were taken according to the sampling requirements. The diagonal partitioning
method was used, the diagonal part was taken, the tissue was quickly crushed, and then the
samples were studied using the quartering method and packed into polyethylene plastic
bottles. The processed fruits were rapidly frozen using liquid nitrogen, and then quickly
transferred to an ultra-low temperature (−80 ◦C) environment.

2.2. Main Reagents

Phenol, sulfuric acid, gallic acid, forinol, anhydrous ethanol, ethyl acetate, n-hexane,
potassium chloride, sodium acetate, hydrochloric acid, and acetone were analytically pure;
methanol, acetonitrile, and formic acid were chromatographically pure. All of them were
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China); xanthine oxidase, xanthine
(purity ≥ 98%), and allopurinol (purity ≥ 98%) were all from Yuanye Biotechnology Co.,
Ltd. (Shanghai, China).

2.3. Experimental Methods
2.3.1. Extraction of Free Polyphenols

The extraction method was conducted following the literature described by Adom et al. [22],
with certain modifications. A total of 20 g of Furong plum fruit samples were added
to a 100 mL centrifuge tube, 50 mL of 80% chilled ethanol solution was added, it was
homogenized for 3 min in a high-speed homogenizer (two times with an interval of
0.5 min), and then the supernatant was extracted three times via centrifugation (GL10MD,
Xiangyi Group, Changsha, China) at 3500 r/min. Next, it was filtered and evaporated with
a rotary evaporator (RE-301, Yuyao Xinbo Instrument Co., Ltd., Yuyao, China) at 45 ◦C
under reduced pressure, and then fixed to 25 mL with ultrapure water, passed through a
0.45 µm organic-phase microporous membrane, and stored in a refrigerator at −40 ◦C.

2.3.2. Extraction of Bound Polyphenols

The residue remaining after the extraction of free phenolics was collected; 20 mL
of 2 mol/L NaOH solution was added and digested via stirring for 1.5 h, acidified with
6 mol/L HCl solution to pH 2, the fat of samples were removed by adding hexane and
centrifugation, and the supernatant was collected three times by adding ethyl acetate and
centrifuging. The filtrate was combined and evaporated using a rotary evaporator at 45 ◦C
under reduced pressure, and then fixed with ultrapure water to 10 mL. The samples were
subsequently filtered and stored in a refrigerator at −40 ◦C.

2.3.3. Determination of Polyphenol Content

The experimental method was based on the procedure reported by Li et al. [23], with
slight modifications. The polyphenol content was determined using the Folin–Ciocalteu
colorimetric method. For the determination of the polyphenol content of plums, 200 µL
of the plum polyphenol sample was taken and mixed with 2.5 mL of a 10% (v/v) forlinol
solution. The polyphenol samples were shaken well and protected from light. Next, 2 mL
of Na2CO3 solution with a mass of 75 g/L was added and mixed thoroughly. The mixture
was allowed to stand in a water bath at 50 ◦C for 15 min after being made up to a specified
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volume. The absorbance of the samples were measured at 765 nm. Equation (1) represents
the standard curve.

y = 0.6185x+0.1679
(

R2 = 0.9909
)

(1)

2.3.4. Determination of Flavonoid Content

The different flavonoid contents were determined from free polyphenols, bound polyphe-
nols, and total polyphenols, according to the method described by Hassanpour et al. [24] with
some modifications. A total of 0.25 mL of the plum polyphenol sample and 0.3 mL of 10%
Al(NO3)3 solution were added to 0.3 mL of 5% mass concentration of NaNO2 solution in a
glass test tube. After allowing the mixture to stand, 4 mL of 1 mol/L NaOH solution was
immediately added, supplemented with 65% ethanol to 10 mL, shaken, and mixed. The
values of the samples were recorded at a wavelength of 510 nm. Equation (2) represents
the standard curve.

y = 0.002x + 0.0492
(

R2 = 0.9995
)

(2)

2.3.5. Determination of Anthocyanin Content

According to the method of Zia et al. [25], a 10 g sample of plum fruit was added to
100 mL of 60% ethanol (acidified with hydrochloric acid, pH 3.0) extraction solution in a
250 mL container and extracted via 200 W ultrasonic-assisted extraction for 30 min in a
40 ◦C water bath under light avoidance. The supernatant of the samples was collected
via centrifugation. The absorbance values were measured at wavelengths of 520 nm and
700 nm. The anthocyanin content of the extracts was calculated with Equations (3) and (4)
using cyaniding-3-glucoside as the equivalent amount.

Anthocyanins (mg/L) =
∆A
εL
× 103 ×M× n (3)

∆A = (A1 − A2)− (A3 − A4) (4)

A1 and A2: absorbance at 520 nm and 720 nm (pH 1.0 buffer), respectively.
A3 and A4: absorbance at 520 nm and 720 nm (pH 4.5 buffer), respectively.
L: cuvette optical path length.
ε: molar absorbance coefficient of centaureidin-3-glucoside, 26,900 L/(mol·cm).
M: the molar mass of cyaniding-3-glucoside, 449.2 g/mol.
n: Dilution multiple. The final results were converted to the amount of anthocyanin

contained in each mL.

2.3.6. Determination of DPPH-Clearance

The solution of plum polyphenols was mixed with 0.1 mmol/L solution of DPPH. It
was kept in the dark and allowed to stand for 30 min, followed by measurement at 517 nm.
Equation (5) represents the formula for calculation.

Clearance rate (%) =
ABlank − ASample

ABlank
× 100% (5)

2.3.7. Determination of Hydroxyl Radical Scavenging Rate

In a 10 mL screw-top test tube, a mixture of pure water, pH 7.4 phosphate buffer,
fenugreek solution, EDTA-Na2Fe2+, and different concentrations of plum polyphenols were
added. H2O2 was added to the samples at 40 ◦C and allowed to stand for 30 min. The
absorbance was measured at 520 nm. Equation (5) represents the formula for calculation.

Clearance rate (%) =
ASample − ABlank

AContrast − ABlank
× 100% (6)
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2.3.8. Identification of Phenolic Substance Components

The method of Jaiswal et al. [26] was used with slight modifications. For composition
identification, 1 mL of the plum total polyphenol sample was taken, filtered through a
0.45 µm organic membrane, and analyzed using an HPLC (e2695, Waters Co., Ltd., Milford,
MA, USA) instrument with a Sunfire C18 Chromatographic column (150 mm × 4.6 mm,
3.5 µm). The mobile phase consisted of 0.1% formic acid solution and 100% acetonitrile solu-
tion, with a flow rate of 0.7 mL/min. The Supplementary Materials reflects the experimental
parameters of HPLC (Table S1).

2.4. Inhibition Mechanism of XOD
2.4.1. XOD Activity Assay

The Furong plum polyphenols were dissolved in DMSO at different ratios, while
XOD and xanthine were dissolved in PBS buffer. The XOD and xanthine solutions were
reacted with polyphenol solutions of varying concentrations at room temperature, and the
inhibitory capacity against XOD was determined by the absorbance at 290 nm. Allopurinol
was the control sample. The inhibition rate of the sample on XOD can be calculated using
the following Formula (7).

Inhibition rate (%) =
VEnzyme −VSample

VEnzyme −VBlank
× 100% (7)

2.4.2. Inhibitory Kinetic Analysis of XOD

The experiment employed a Lineweaver–Burk plot to analyze the inhibition kinetics of
Furong plum polyphenols on XOD, and it is described using the following Equations (8)~(10):

1
v
=

Km

Vmax

(
1 +

[I]
Ki

)
1
[S]

+
1

Vmax

(
1 +

[I]
αKi

)
(8)

Slope =
Km

Vmax
+

Km[I]
VmaxKi

(9)

Intercept =
1

Vmax
+

1
αKiVmax

[I] (10)

In Equations (8)~(10), V: the rate of the enzymatic reaction; [S]: substrate concentration;
[I]: inhibitor concentration; Km: Michaelis–Menten constant; Vmax: maximum reaction rate;
Ki: inhibition constant; α: apparent coefficient.

2.5. Statistical Analysis

Statistical data were collected using Origin 2019 software, and the data were subjected
to one-way ANOVA using SPSS 21 software and significance analysis using Duncan’s
multiple comparisons. Three groups of samples were measured, and the average was taken.

3. Results and Discussion
3.1. Polyphenol Content

In terms of the different forms of polyphenols, the free polyphenols account for over
90% of the total polyphenols in plums, while the bound polyphenols account for 7.83~8.72%
of the total polyphenols. The bound polyphenols in plums are formed by a combination
of polyphenols with cell wall components, such as cellulose, sugars, and proteins. These
bound polyphenols mainly exist in the form of β-glycosides, where they are not subject to
digestion by human digestive enzymes. They can only be absorbed after reaching the colon
and have the potential for use in the treatment of colon cancer [27]. Other researchers have
found that the bound phenolics in bananas exhibit anti-proliferative activity against colon
cancer, with the activity of colon cancer cells decreasing as the concentration of bound
phenolics increases [28].
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According to Figure 2, the total polyphenol content of the immature plums was
214.25 mg GAE/100 g FW (fresh weight), with the lowest content of bound polyphe-
nols being only 15.69 mg GAE/100 g FW. The polyphenol content of the plums showed
a rapid increase with maturity, reaching its highest value in the ripe plums; the total
polyphenol content was 320.46 mg GAE/100 g FW, and the bound polyphenol content
was 25.69 mg GAE/100 g FW. According to the previous studies, it was demonstrated
that during the maturation stages of plums, there were significant changes observed in
their polyphenol content. For instance, the polyphenol content in plum peel exhibited an
increasing trend at different maturity stages [29], which is similar to the variation observed
in the polyphenol content of the plums.
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3.2. Flavonoid Content

Flavonoids are secondary metabolites and possess a polyphenolic structure. Extensive
research has demonstrated that flavonoid compounds extracted from natural plants possess
potent antioxidant capabilities and exhibit excellent inhibitory effects on XOD [30,31].
Figure 3 showed the trends in flavonoid content at different maturity stages. The total
flavonoid content of the plums ranged from 117.84 to 204.21 mg GAE/100 g FW. The
flavonoid content increased with increasing maturity (p < 0.05). At different maturity
stages, the free flavonoid content was significantly higher than the bound flavonoid content
(p < 0.05), constituting over 90% of the total flavonoid content.
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3.3. Anthocyanin Content

Anthocyanins are unique natural polyphenols and water-soluble pigments that pos-
sess excellent anti-inflammatory, anticancer, and antioxidant properties [32]. They are
one of the main pigments found in dark-colored plants and plant parts, such as petals,
berries, and vegetables [33]. As shown in Figure 4, the anthocyanin content of plums
gradually increases as they ripen, reaching its highest level at full ripeness, with a content
of 66.24 mg/100 g FW. The accumulation of anthocyanins caused the change in color of
the plums, which was also the reason why the plums gradually turn red during different
maturity stages [34].
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3.4. Antioxidant Capacity

The scavenging ability of the polyphenols on DPPH were shown in Table 1. With
the increase in ripeness, the DPPH scavenging ability of plum polyphenols was gradually
enhanced, and the IC50 (half-maximal inhibitory concentration) of the free, bound, and total
polyphenols for DPPH scavenging was the highest for both the ripe plums, 38.57 µg/mL,
22.69 µg/mL and 28.19 µg/mL, respectively. It can be seen that with the ripening of
the fruits, the increase in polyphenols made the fruits have a higher antioxidant activity
level. This indicated that with an increase in polyphenol concentration, the DPPH radical
scavenging ability also increased [35].

Table 1. IC50 for scavenging DPPH radicals by Furong plum polyphenols at three maturity stages.

Maturity Stages
IC50 of the DPPH Scavenging (µg/mL)

Free Polyphenols Bound Polyphenols Total Polyphenols

Immature stage 98.48 ± 1.57 a 39.14 ± 1.02 a 59.63 ± 1.28 a
Mid-ripe stage 45.99 ± 1.02 b 29.67 ± 0.48 b 34.28 ± 0.54 b

Ripe stage 38.57 ± 0.84 c 22.69 ± 0.58 c 28.19 ± 0.67 c
Note: Different letters indicate significant differences in IC50 of the DPPH scavenging with different maturity
stages (p < 0.05).

Hydroxyl radical (·OH) in the body can cause oxidative damage, reducing the cellular
activity, and leading to cell injury and death, thereby affecting the normal physiological
functions of the organism [36]. According to Table 2, the scavenging level of the bound
polyphenols on hydroxyl radicals was about twice as high as that of the free polyphenols;
this could be because the bound polyphenols were obtained using the base hydrolysis
extraction method, and other research has shown that a higher polyphenol content can
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be obtained using the base hydrolysis method, thus resulting in stronger antioxidant
capabilities [37]. The total polyphenols exhibited excellent antioxidant activity, which
was found to be stronger than that of the free polyphenols. The IC50 values of the total
polyphenols had a range of 188.57~198.16 µg/mL. Additionally, the ripeness of the plums
did not affect the scavenging ability of the hydroxyl radicals.

Table 2. IC50 for ·OH scavenging by Furong plum polyphenols with three maturity stages.

Maturity Stages
IC50 of ·OH Scavenging (µg/mL)

Free Polyphenols Bound Polyphenols Total Polyphenols

Immature stage 249.63 ± 7.40 a 121.42 ± 6.92 a 192.69 ± 5.48 a
Mid-ripe stage 246.81 ± 7.42 a 126.65 ± 3.68 a 188.57 ± 6.81 a

Ripe stage 253.66 ± 8.96 a 116.78 ± 4.54 a 198.16 ± 7.55 a
Note: Different letters indicate significant differences in IC50 of hydroxyl radical scavenging with different
maturity stages (p < 0.05).

Compared with the immature plums and mid-ripe plums, the antioxidant capacity of
the ripe plums was the strongest. Among them, the total polyphenols in the ripe plums
exhibited a stronger antioxidant capacity (with IC50 values of 28.19± 0.67 µg/mL for DPPH
and 198.16 ± 7.55 µg/mL for the hydroxyl radicals), which was between the antioxidant
capacity of the free and bound polyphenols of the ripe plums. Bound polyphenols are
polyphenol compounds that are closely linked to the food matrix, and their low extrac-
tion rate limits their application in food and subsequent bioaccessibility [38,39]. On the
other hand, the extraction rate of total polyphenols was higher than that of the free and
bound polyphenols, and they exhibited excellent antioxidant capabilities. In short, plum
polyphenols demonstrate a strong overall antioxidant capacity, and the reason for their
potent antioxidant ability can be further elucidated by analyzing the composition of the
plum’s phenolic monomer compounds. Taking into consideration both the extraction rate
and antioxidant activity, we selected the total polyphenols extract from the ripe plums
for studying the major phenolic monomer compounds and their inhibition mechanism
on XOD.

3.5. Major Phenolic Monomer Compounds

As shown in Figure 5, HLPC detected nine phenolic substances in plums, primarily
in the form of flavan-3-ols (epicatechin, catechin, proanthocyanidin, and procyanidin B2),
and phenolic acids (chlorogenic acid, ferulic acid, and protocatechuic acid). Additionally,
flavonols (myricetin) were also present.

Epicatechin was the most abundant phenolic substance in the plums, with a content of
55.96~56.85 mg/100 g FW, and ripeness had no significant effect on the epicatechin content,
indicating that Furong plums can maintain a higher level of catechin content during the
ripening process. Catechin and epicatechin are isomers of each other, and both belong to
catechins. As the ripeness increased, the content of catechin in plums decreased, and the
lowest catechin content was 10.68 mg/100 g FW in the ripe plums.

The proanthocyanidin and procyanidin B2 contents of the plums were 13.83~26.11 mg/100 g
FW and 0.48~1.24 mg/100 g FW, respectively. The content of proanthocyanidin in the ripe
plums significantly decreased (p < 0.05). The research indicated that the immature fruits
contained higher levels of proanthocyanidins because proanthocyanidin had a bitter and
astringent taste, which can protect immature fruits. As the fruits matured, there was a
redirection of the flavonoid biosynthetic pathway from proanthocyanidin production to
anthocyanin production. This resulted in a decrease in the content of proanthocyanidin
and an increase in the anthocyanin content, leading to a noticeable change in the color
of the plums [40,41]. This conclusion was consistent with that of measurements of the
anthocyanin content (Section 3.3).
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Myricetin is a flavonol compound, and the content of myricetin in the plums signif-
icantly increased with maturity (p < 0.05) to 2.35~5.49 mg/100 g FW. The trend was the
same as the trend of increasing flavonoid content in the plums.

The chlorogenic acid, protocatechuic acid, and ferulic acid contents in the plums
decreased significantly with the increase in maturity (p < 0.05). The contents of chlorogenic
acid, protocatechuic acid, and ferulic acid in the plums were 11.23~23.71 mg/100 g FW,
10.87~14.67 mg/100 g FW, and 5.59~8.66 mg/100 g FW, respectively. This research has
indicated that the decrease in phenolic compounds is associated with a reduction in primary
metabolism in ripe fruits, leading to a scarcity of substrates required for the biosynthesis of
phenolic compounds. Thereby, ripe fruits have low levels of phenolic acids [42].

The composition, content, and structure of phenolic monomer compounds can affect
the antioxidant capacity of plum polyphenols. In our previous antioxidant experiment, we
discovered the strong antioxidant capability of plum polyphenols. The strong antioxidant
ability of flavan-3-ol is achieved through hydroxyl substitution, where the number of OH
groups and their positions on the phenyl ring are crucial factors. The strong antioxidant
capability of plum polyphenols is primarily due to the high content of epicatechins, which
is achieved through the ortho-dihydroxy group substitution in the B-ring [43]. Proantho-
cyanidin is also the main component of plum phenolic compounds, possessing a strong an-
tioxidant capability. Interestingly, the content of proanthocyanidin significantly decreased
during the ripening process. However, the antioxidant ability of plum polyphenols showed
an upward trend. This could be attributed to the increase in anthocyanin content, which
replaced proanthocyanidin in the antioxidant process [44,45]. The content of myricetin
significantly increased during the ripening process. It has been reported that myricetin
exhibits a stronger antioxidant capability than epicatechins. This is attributed to myricetin’s
ability to chelate transition metal ions, which is far superior to that of epicatechins. This
indicates that although myricetin has a lower content, it still contributes significantly to the
antioxidant capability of plum polyphenols [46,47]. In short, the Furong plum polyphenols
represent a complex mixture, and the dose–response relationship and structure–activity
relationship between its different phenolic compounds and their antioxidant capacities are
highly intricate.

3.6. The Effect of Polyphenols from Furong Plums on the Inhibition Rate of XOD

According to Figure 6, as the mass concentration of plum polyphenols increased,
the inhibition rate of XOD continuously increased. The polyphenols exhibited a certain
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concentration-dependent relationship with their inhibition of XOD. The IC50 values for the
plum polyphenols and the positive control (allopurinol) were 77.64 µg/mL and 4.95 µg/mL,
respectively, indicating that Furong plum polyphenols had a certain inhibitory effect on
XOD. According to the literature, Mo-pterin is reported to be the critical active site for
inhibiting XOD, and its interaction with polyphenol compounds is specific [48]. Moreover,
this may be attributed to the fact that Furong plum polyphenols are primarily composed of
monomeric phenolic compounds, such as catechin and epicatechin. The hydroxyl groups
at positions three, five, and seven of the chroman ring in catechin and epicatechin readily
form hydrogen bonds to inhibit XOD activity [49].
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3.7. Reversibility Analysis of XOD Inhibition by Furong Plum Polyphenols

Figure 7 shows a relationship graph between the reaction rate and XOD concentration
under the influence of different concentration of polyphenol inhibitors. Each line passes
through the origin; while the polyphenol content increased, the slope gradually decreased.
This indicates that the inhibition of XOD by plum polyphenols is a reversible process [50].
This may be attributed to the abundance of -OH functional groups present in the structure
of polyphenols from the plums, which reversibly bound to the essential groups of XOD
through non-covalent bonds, resulting in the inhibition of enzyme activity, rather than by
reducing the effective amount of XOD to inhibit enzyme activity [51].
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3.8. Inhibitory Mechanism of Furong Plum Polyphenols on XOD

There are many XOD inhibitors extracted from plants, but the different extracts ex-
hibit different types of XOD inhibition. For example, in the total flavonoid extract from
Ginkgo biloba leaves, kaempferol is a competitive XOD inhibitor, while the other flavonoid
compounds were anticompetitive inhibitors. The water extract from Perilla frutescens leaves
exhibited mixed inhibition properties [52,53]. Plum polyphenols have a significant in-
hibitory effect on XOD. The inhibition kinetics of plum polyphenols were studied using a
Lineweaver–Burk double reciprocal plot (Figure 8) to analyze the changes in Km and Vmax.
The slope represents the ratio of Km to Vmax, while the y intercept represents the value of
1/Vmax.
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From Figure 8, it can be seen that all the lines with different slopes and intercepts
corresponding to different concentrations of plum polyphenols intersecting in the second
quadrant. However, the slopes and intercepts of all the lines are not the same. Moreover,
as the concentration of the plum polyphenols inhibitor increased, both the slope and
Y axis intercept increased. This indicated that Km gradually increased and Vmax gradually
decreased. Based on this observation, we inferred that plum polyphenols acted as a
mixed-type inhibitor to inhibit XOD. This suggested that plum polyphenols could compete
with xanthine at the active site of XOD and also bind to other sites of XOD to inhibit the
formation of the enzyme–substrate complex [54].

In addition, the concentration of plum polyphenols are linearly fitted with the slopes
and intercepts in a secondary replot, showing a good linear relationship, with r2 values of
0.9841 and 0.9838, respectively. This indicated that the inhibitory effect of Furong plum
polyphenols on XOD was accomplished through a single inhibition site or a single class of
inhibition site. The calculated values of Ki and α were 16.53 mmol/L and 0.26, respectively.

4. Conclusions

This experiment was concluded at different maturity stages (immature stage, mid-ripe
stage, and ripe stage) and with different polyphenol compositions (total polyphenols, free
polyphenols and bound polyphenols) of Furong plums to determine the most suitable
processing parameters and to study the major phenolic monomer compounds of Furong
plum polyphenols as well as their inhibition mechanism on XOD. The experimental results
indicated that the total polyphenols of plums at the ripe stage were the most suitable object
for study, as they had the highest polyphenol, flavonoid, and anthocyanin contents and
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demonstrated an excellent antioxidant capacity. The composition of total polyphenols of the
plums primarily consisted of flavan-3-ols (epicatechin, catechin, proanthocyanidin, and pro-
cyanidin B2), flavonols (myricetin), and phenolic acids (chlorogenic acid, ferulic acid, and
protocatechuic acid). Furthermore, the plum polyphenols acted as a mixed-type inhibitor in
the XOD inhibition kinetics experiment, and the inhibition process was a reversible process,
with only one inhibitory binding site. In conclusion, the total polyphenols of Furong plum
at the ripe stage exhibit an excellent research value, but further investigation was needed
to understand their antioxidant effect and potential mechanism in vivo.
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