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Abstract: Plant polyphenols with a catechol structure can form covalent adducts with meat proteins,
which affects the quality and processing of meat products. However, there is a lack of fast and
effective methods of characterizing these adducts and understanding their mechanisms. This study
aimed to investigate the covalent interaction between myofibrillar protein (MP) and caffeic acid (CA),
a plant polyphenol with a catechol structure, using molecular probe technology. The CA-MP adducts
were separated via sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and
detected via Western blot and LC-MS/MS analyses. The Western blot analysis revealed that various
specific adducts were successfully enriched and identified as bands around 220 kDa, 45 kDa, and
two distinct bands between 95 and 130 kDa. Combined with the LC-MS/MS analysis, a total of
51 peptides were identified to be CA-adducted, corresponding to 31 proteins. More than 80% of the
adducted peptides carried one adducted site, and the rest carried two adducted sites. The adducted
sites were located on cysteine (C/Cys), histidine (H/His), arginine (R/Arg), lysine (K/Lys), proline
(P/Pro), and N-terminal (N-Term) residues. Results showed that the covalent interaction of CA and
MP was highly selective for the R side chain of amino acids. Moreover, the adducts were more likely
to form via C-N bonding than C-S bonding. This study provides new insights into the covalent
interaction of plant polyphenols and meat proteins, which has important implications for the rational
use of plant polyphenols in the meat processing industry.

Keywords: myofibrillar protein; caffeic acid; molecular probe technology; phenol–protein adducts

1. Introduction

Plant polyphenols are natural antioxidants that can protect meat products from oxida-
tive deterioration by scavenging free radicals and inhibiting peroxidation [1,2]. However,
plant polyphenols with a catechol structure, such as caffeic acid (CA), can also undergo
oxidation to form quinones, which can react covalently with muscle proteins and form
phenol–protein adducts which can affect the structure and functional properties of meat
proteins [3,4], as well as the quality, nutritional, and digestive properties of meat prod-
ucts [5,6]. Therefore, it is important to understand the mechanism and characteristics of the
covalent interaction between plant polyphenols and meat proteins and its impact on meat
quality and processing.

Previous studies have shown that CA adduction can affect the structure and gel
properties of myofibrillar protein (MP) [2,4]. However, due to the complexity of meat
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protein systems, there is still a lack of analytical methods of accurately characterizing
phenol–protein adducts and their formation mechanisms. Most of the existing methods are
based on indirect measurements, such as colorimetric assays, spectrophotometric assays, or
gel electrophoresis, which have low sensitivity, specificity, and resolution [7,8]. Moreover,
these methods cannot provide information on the identity, location, and number of the
adducted sites on the protein molecules, which are crucial for understanding the molecular
basis of the phenol–protein interaction [2,9]. Furthermore, these methods cannot quantify
the extent of protein modification by plant polyphenols, which is essential for evaluating
their effect on meat quality and processing [2,4]. Therefore, there is a need for a fast and
effective method of characterizing phenol–protein adducts and their formation mechanisms
at the molecular level.

Molecular probe technology is a powerful method for identifying the modification
of proteins by natural active compounds (e.g., plant polyphenols) in complex systems.
This method involves labeling the active compound with a molecular probe that can bind
strongly to the target proteins and carry a detectable tag, such as fluorophores, isotopes,
biotin, or bio-orthogonal groups [10,11]. The molecular probe–protein complexes can then
be separated via intracellular imaging or SDS-PAGE in-gel fluorescence scanning for probes
with isotopes or fluorophores [12] or via streptavidin magnetic beads for probes with biotin
tags [13], which undergo a series of non-specific washing and specific elution operations
to obtain the purified proteins or proteomes modified by the active compound [14]. The
purified proteins or proteomes modified by the active compound can then be analyzed
using methods such as Western blot and mass spectrometry to identify the peptide se-
quences and the adducted sites on the protein molecules [15] so that the mechanisms of
interaction between the active compounds and proteins can be deeply explored. This
method can provide information on the identity, location, and number of the adducted
sites on the protein molecules, which are crucial for understanding the molecular basis
of the active compound–protein interaction. Moreover, this method can also quantify the
extent of protein modification by plant polyphenols by comparing the relative abundances
of modified and unmodified peptides or proteins. In this strategy, multiple controls are
required to exclude non-specific interacting proteins.

In this study, we synthesized a biotinylated derivative of caffeic acid (BioC) that can act
as a molecular probe to identify protein targets responsible for caffeic acid’s covalent modi-
fication. Based on the molecular probe technology, we aimed to identify protein–phenol
adducts in meat proteins. A method to enrich, isolate, and identify adducts was firstly es-
tablished and its feasibility was validated; it was then applied to identify and preliminarily
quantify specific phenol–protein adducts in the MP system. Combined with LC-MS/MS,
the adducted peptides and amino acid sites were also comprehensively identified and
quantified. Finally, the mechanism of the adduction reaction between CA and MP was
explored based on the adducted sites and their relative abundance. This study provides
new insights into the covalent interactions of plant polyphenols and meat proteins and
their implications for meat quality and processing.

2. Materials and Methods
2.1. Materials

Caffeic acid and streptavidin magnetic beads were both obtained from Cell Signal-
ing Technology (#5947; Beverly, MA, USA). Bovine serum albumin, biotin, trypsin, and
polyvinylidene fluoride membranes were purchased from Sigma-Aldrich (Taufkirchen,
Germany). An anti-biotin antibody (abs153474) was obtained from Absin Bioscience Inc.
(Shanghai, China). Goat anti-rabbit IgG was purchased from Beijing Cowin Biotech Co., Ltd.
(Beijing, China). Skimmed milk powder was obtained from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). Other reagents were purchased from Genscript Biotech Co.,
Ltd. (Nanjing, China) unless otherwise specified.
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2.2. Sample Preparation

The synthesis of the BioC was carried out according to a published experimental proto-
col [16]. Briefly, CA and N-Boc-ethylenediamine were dissolved in N,N-dimethylformamide,
which was stirred at room temperature for 15 h in the presence of 1-(3-dimethylaminopropyl)-
3-ethylcarbodiimide hydrochloride and 4-dimethylaminopyridine. When the reaction was
then carried out with methyl tert-butyl ether, a yellow solid precipitated (intermediate 1).
It was purified using a silica column (methylene chloride/methanol = 20:1, v/v) and re-
crystallized with methylene chloride/petroleum ether. Next, intermediate 1 was dissolved
in dichloromethane, the treatment of which with methanolic hydrochloric acid solution
for 15 h in an ice bath and subsequent concentration generated the desired intermediate
2. Finally, the amidation of intermediate 2 with D-(+)-biotin in a similar way as above
afforded the BioC (Figure S1).

The extraction of the MP and the BioC solution’s oxidation treatment were carried
out following the methods of Park [17] and Yang [16]. The MP was stirred and dissolved
in phosphate buffer (PBS, 10 mM; 0.6 M NaCl; pH 6.2). For a concentration-dependent
experiment, the BioC was dispersed into MP suspensions (1 mg/mL) to reach final con-
centrations of 0, 10, 50, 250, and 1250 µmol/g MP which were then incubated on a shaker
(QB-210; Haimen Kylin-Bell Lab Instruments Co., Ltd., Nantong, China) at 4 ◦C for 12 h.
For competition inhibition experiments, different concentrations of CA (0×, 1×, 4×, 16× of
250 µmol), the competitive inhibitor of the BioC, were firstly added and incubated at 4 ◦C
for 12 h. The BioC was then added to obtain a final concentration of 250 µM with a final
MP concentration of 1 mg/mL, and the samples were incubated for another 12 h at 4 ◦C.

2.3. Identification Method for Phenol–Protein Adducts

The separation of the MP-BioC adducts was performed according to Yang [17] with
slight modifications. Streptavidin magnetic beads were gently mixed and moved (10 µL
for each sample) into 1.5 mL microcentrifugation tubes, which were then placed on the
magnetic rack so that they could be magnetically separated. The collected beads were
washed with 1 mL of PBST buffer three times. The beads then could be mixed and
incubated with 100 µL of the MP-BioC samples (1 mg/mL) at 4 ◦C for 40 min so that
the BioC-derivatized proteins fully bound to the beads. After incubation, the beads were
collected, and the supernatant was discarded. The beads were then subjected to non-specific
protein washing with 1 mL of a washing buffer at least five times, with as much supernatant
as possible removed and retained at the last moment. To release the MP-BioC adducts
from the beads, the beads were resuspended in PBS buffer and mixed with 5 × Sample
Buffer (125 mM Tris, 10% SDS, 0.25% BPB). The samples were boiled at 95 ◦C for 5 min,
followed by cooling and centrifugation at 14,000 rpm for 1 min to collect the adducts
in the supernatant, which were then subjected to SDS-PAGE or a Western blot analysis
(see Section 2.6) in order to accomplish the identification and initial quantification of the
polyphenol–protein adducts.

2.4. Validation of Method

Bovine serum albumin (BSA), as a model protein, has been widely studied in various
fields due to the diversity of its physiological functions [18]. Consequently, to verify the
validity of the above-mentioned method of identifying phenol–protein adducts, a BSA-BioC
reaction system was established by using BSA as the substrate protein. First, the BioC was
added to a BSA solution to obtain final concentrations of 50 and 250 µM with a final BSA
concentration of 1 mg/mL. Meanwhile, the BSA solution was supplemented with the same
concentration (50, 250 µM) of biotin or an equal volume of the solvent DMSO (1%, v/v) as
a control. All the samples were incubated at 4 ◦C for 12 h. Then, the BSA-BioC adducts in
the system were isolated and characterized using the method described in Section 2.3
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2.5. Gel Electrophoresis

Samples were loaded onto SDS-PAGE equipment according to the method of Liu [19]
with a 4–20% gradient gel. Small amounts of protein samples from Section 2.2 or Section 2.4
were first taken for SDS-PAGE to illustrate that there was no problem with the original
protein samples prior to incubation with the streptavidin magnetic beads. Then, two 20 µL
samples in Section 2.3 (i.e., enriched phenol–protein adducts) were subjected to SDS-PAGE.
After staining with Coomassie brilliant blue, one gel was used for a Western blot analysis for
the phenol–protein adducts’ identification and the other for a mass spectrometry analysis
after in-gel digestion.

2.6. Western Blot Analysis

A Western blot analysis was used to detect bands of the BioC-adducted proteins
according to Pi [20]. Briefly, after SDS-PAGE, an eBlot L1 fast wet protein transfer system
(GenScript, Nanjing, China) was used to transfer the proteins to polyvinylidene fluoride
(PVDF) membranes (0.45 mm) which were then blocked with 5% skimmed milk powder in
Tris-buffered saline with Tween-20 (TBST, pH 7.4) for 1.5 h. After blocking, the membranes
were washed with TBST three times (10 min/wash) and incubated with the anti-biotin
antibody diluted 1:1000 in TBST (20 mM Tris-base, 137 mM NaCl and 5 mM KCl, 0.05%
Tween-20) overnight at 4 ◦C, followed by incubation with goat anti-rabbit IgG (diluted
1:2000) for 2 h. A Chemiluminescence Imager (ImageQuant LAS 4000; General Electric
Company, Boston, MA, USA) was used to capture the membranes.

2.7. LC-MS/MS Analysis

Samples were prepared using a filter-aided sample preparation (FASP) workflow, as
described by Wiśniewski et al. [21]. The peptides digested by enzymes were subsequently
cleaned, concentrated, and enriched using the stop-and-go-extraction tips (StageTips)
method, as described by Rappsilber et al. [22]. The peptides were dissolved in a buffer
containing 2% acetonitrile and 0.1% trifluoroacetic acid (TFA) for MS analysis. The elute
was dried completely in a speedvac centrifuge. The peptides were suspended in a buffer
containing 2% acetonitrile and 0.1% TFA ready for MS analysis. The peptides were sep-
arated via LC–MS/MS, using an Easy-nLC1200 (Thermo Fisher Scientific, Altham, GA,
USA) coupled with an Orbitrap Exploris 480 Mass Spectrometer (Thermo Fisher Scientific,
USA). A trap column (100 µm × 2 cm) and an analytical column (75 µm × 25 cm) packed
with Reprosil-Pur C18 particles (Dr Maisch GmbH) were used to separate the peptides
with mobile phase A (0.1% formic acid (FA) in water) and mobile phase B (0.1% FA in
acetonitrile) in a 60 min gradient: 6 to 23% B in 38 min, 23 to 32% B in 12 min, and 32 to 80%
B in 5 min, and then B was kept at 80% for 5 min. The flow rate was set at 300 nL/min. The
Orbitrap Exploris 480 Mass Spectrometer was operated in a data-dependent acquisition
mode with a spray voltage of 2 kV and a heated capillary temperature of 320 ◦C. MS1 data
were collected at a high resolution of 60,000 with a mass range of 350 to 1500 m/z; the
precursor intensity threshold was set at 5.0e4, and a maximum injection time of 20 ms was
used. For each full MS scan, the top 10 most abundant precursor ions were selected for
MS2 with an isolation window of 1.6 m/z and a higher-energy collision dissociation with a
normalized collision energy of 30. MS2 spectra were collected at a resolution of 15,000. The
target value was 5.0e3 with a maximum fill time of 20 ms and a dynamic exclusion time of
30 s.

2.8. Data Search

Raw data were processed and analyzed using Proteome Discoverer (PD) 2.4 SP1
(Thermo Fisher Scientific, USA) with default settings. PD was set up to search the database
from NCBI. Human keratin and trypsin sequences were used as the contaminated database
for proteomic searching. Trypsin was used as the digestion enzyme. Carbamidomethyl
(C) was specified as the fixed modification. Oxidation (M), acetyl (Protein N-term), the
BioC (C21H28N4O5S) (C, K, R, H, P, N-term + 446.16239 Da) and the possible degradation
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product of the BioC (C9H8O4) (C, K, R, H, P, N-term + 162.03169 Da) were specified as
variable modifications. A q-value (FDR) cutoff for the precursor and protein level was
applied at 1%. The processed data output was then exported to Excel for further usage.

2.9. Statistical Analysis

All the experiments were carried out in triplicate. Differences were evaluated using a
one-way ANOVA, and means were compared using Duncan’s multiple comparison under
the SAS system (version 8.2); p < 0.05 was considered statistically significant.

3. Results
3.1. Experimental Strategy

We developed a novel method for the enrichment and separation of phenol–protein
adducts by using a BioC rather than CA in the reaction system to label proteins that can
adduct with CA. The BioC is a biotinylated derivative of CA which can be recognized and
captured by streptavidin magnetic beads with high specificity and affinity. However, to
avoid the possible adsorption of other molecules on the surface of the streptavidin magnetic
beads, non-specific washing steps are often required [23]. Therefore, four different washing
buffers were tested to evaluate their washing effects on MP-BioC (0 µM, control) samples,
including reagent 1, PBS buffer; reagent 2, PBS buffer (1% SDS); reagent 3, 25 mM Tris,
0.15 M NaCl, pH = 7.2; and reagent 4, 20 mM Tris-HCl, 2% SDS, pH 7.4. The non-specific
washing step was repeated five times, and the supernatant was retained after magnetic
separation (the fifth washing supernatant), which was then subjected to SDS-PAGE sample
preparation together with proteins eluted from the streptavidin magnetic beads (the fifth
elution solution).

As shown in Figure 1a, there was no residual protein in the supernatant after five
non-specific washings regardless of which kind of washing buffer was used, indicating that
five non-specific washing steps were sufficient. At the same time, proteins remaining in the
fifth eluent were observed. It was also found that there were almost no protein bands in
the lane corresponding to reagent 4, indicating that it effectively removed a large number
of non-specific proteins adsorbed on the surface of the streptavidin magnetic beads after
washing. Therefore, the reagent 4, which had the best effect, was selected as the washing
buffer. In the follow-up tests, it was found that only a few specific phenol–protein adducts
were identified in the experimental group compared with the control group (as shown
in Figure 1b). We speculated that reagent 4, containing 2% SDS, may cause the loss of
specific adducts while washing away non-specific proteins. To achieve a comprehensive
identification of the formation mechanism of phenol–protein adducts, reagent 3 (25 mM
Tris, 0.15 M NaCl, pH = 7.2) was finally selected to carry out the next experiment, and the
identification of specific phenol–protein adducts was achieved based on both SDS-PAGE
and a Western blot analysis.
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3.2. Efficacy of the Identification Method of Phenol–Protein Adducts

Figure 2a shows a clear protein band around 66 kDa for BSA, which is consistent with
its molecular mass [24]. Protein bands in all lanes are well defined, indicating that the
protein samples were not degraded before incubation with streptavidin magnetic beads.
Compared to the control group (BSA, BSA-DMSO, and BSA-Biotin), the band intensity
at 66 kDa decreases and the bands near 95 kDa and above the separating gel increase
as the BioC concentration increases. It is speculated that the BSA-BioC adducts were
formed by a covalent reaction between the BioC and BSA which was proportional to the
concentration. A series of control groups in the experiment could eliminate the interference
of natural biotin-derived proteins in the samples. Previous studies have reported that
phenolic compounds such as chlorogenic acid, catechin, and epicatechin can form covalent
conjugates with BSA [25,26].
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Figure 2. SDS-PAGE analysis of samples (a); Western blot analysis of BSA-BioC adducts (b).

Figure 2b shows the immunoblotting result of BSA-BioC adducts enriched and isolated
by the biotin–streptavidin system. No bands were labeled in any of the control groups,
indicating that the streptavidin magnetic beads did not bind any non-specific proteins after
washing. In contrast, the experimental groups showed a specific band between 66 and
95 kDa, and its intensity increased significantly with an increase in the BioC concentration.
This confirmed that the BSA-BioC adducts were successfully enriched and isolated via the
method described in Section 2.3, which proved to be effective and reliable. It is worth noting
that increases in the protein band intensity of two bands were observed in the BSA-BioC
samples in Figure 2a, but only one band appears in the Western blot result, which could
be attributed to the S-S-mediated cross-linking of BSA rather than the covalent interaction
between the BioC and BSA [27].

3.3. Identification of BioC-MP Adducts
3.3.1. Concentration-Dependent Experiment

Figure 3a shows a typical electropherogram of the MP lane in which the main proteins
are myosin heavy chain (MHC) around 220 kDa and Actin around 45 kDa [28,29]. When
the BioC concentration increased, the MHC and Actin bands became weaker and moved
to a higher molecular mass. As the concentration of the BioC increased, the MHC and
Actin bands gradually weakened and shifted to a higher molecular mass. This suggests
that MP-BioC adducts were generated in the system. Tang et al. [30] also found more than
20 proteins modified by rosmarinic acid in MP family proteins, including myosin heavy
chain protein isoforms (MyHC1, MyHC2a, MyHC2x, and MyHC2b) and Actin. Since the
feasibility of the method of identifying phenol–protein adducts was verified in Section 3.2,
we carried out an enrichment of the adducts in the MP-BioC system following the same
method and identified the MP-BioC adducts subsequently via a Western blot.
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concentration-dependent experiment.

As shown in Figure 3b, the molecular probe, the BioC, marked out proteins at 220 kDa,
45 kDa, and 95–130 kDa as MP-BioC adducts, which depended on the concentration.
Considering the low molecular mass of the BioC (MW = 448.185 Da), the position of the
protein bands could hardly have shifted after the BioC modifications. Therefore, it was
presumed that the protein bands around 220 kDa and 45 kDa were MHC-BioC adducts
and Actin-BioC adducts respectively, and other the labeled bands were BioC covalent
conjugates of the corresponding proteins.

In Figure 4, a preliminary quantitative analysis of MP-BioC adduct bands at 220 kDa,
95–130 kDa, and 45 kDa shows that the relative intensity of these adduct bands at a con-
centration of 1250 µM was significantly higher than that at other concentrations (p < 0.05).
Specifically, the Actin-BioC and band-2-BioC adducts were firstly observed at a low BioC
concentration (50 µM). MHC-BioC and band-1-BioC were observed at a BioC concentration
of 250 µM. With an increasing BioC concentration, the intensity of all of adducts was signif-
icantly increased (p < 0.05). The results illustrate that the formation of MP-BioC adducts
has concentration-dependent characteristics.
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3.3.2. Competition Suppression Experiment

The characteristic protein bands identified in the concentration-dependent experiments
decreased gradually when we added different concentrations of highly active ligands. This
was an effective way to confirm specific protein bands. In our study, we further tested the
covalent interaction between molecule probes and highly active ligands that were added
simultaneously to establish a competition control which could prevent the molecule probes
from binding to target proteins via competition from highly active ligands. The addition
of different concentrations of highly active ligands may lead to a gradual fading of the
characteristic protein bands identified in concentration-dependent experiments, which was
an effective method of determining specific protein bands. In this study, to further validate
the covalent interaction between the BioC and MP, we allowed the BioC or CA to compete
for binding to MP with or without an excess of the competitive inhibitor CA, and the
BioC concentration was kept at 250 µM. Figure 5a shows that the MP-BioC samples in the
competitive suppression experiment were normal. Figures 5b and 6 show that the MP-BioC
adducts decreased significantly (p < 0.05) when the CA concentration increased. When the
CA concentration was 16 times higher than the BioC concentration (4 × 103 µmol/g MP),
the binding of the BioC to MP was almost completely blocked.
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The protein bands at 220 kDa and 45 kDa, as well as two strong protein bands between
95 and 130 kDa, depended on the concentration and could be stopped by the competitive
inhibitor CA. This indicated that all these protein bands were specific MP-BioC adducts.
More importantly, the results showed that the BioC and MP interacted in the same way as
the CA and MP. Since the BioC was modified from CA and had the same biological activity
as CA (Figure S2), it was considered that adducts labeled by BioC such as MHC-BioC and
Actin-BioC labeled were equivalent to adducts generated by the covalent interaction of CA
and MP.

3.4. LC-MS/MS of BioC-MP Adducts
3.4.1. Identification of Adducted Proteins and Peptides

To further explore the formation mechanism of MP-BioC adducts, the BioC-adducted
proteins in the MP sample (1250 µM) were identified using an Orbitrap Exploris 480 mass
spectrometer. After filtering data with a score > 10, a total of 31 BioC-adducted proteins
were found, including myosin, actin, troponin, and tropomyosin (Table 1). Six BioC-
modified myosin isoforms were identified near 220 kDa, which included myosin-4 isoform
X1 (223.1 kDa), myosin heavy chain 2x (223 kDa), myosin-2 isoform X1 (223 kDa), myosin-8
isoform X1 (222.9 kDa), embryonic skeletal myosin heavy chain 3 partial (222.8 kDa), and
myosin-7B isoform X5 (223.8 kDa). Among them, the first five proteins had a BioC modi-
fication at the R site and the common adducted peptide was FIR*IHFGTTGK (* denotes
the adducted site). BioC modifications at the N-Term site were also identified. At the
same time, skeletal myosin heavy chain 3 had BioC modifications at the H and N-Term
sites (IEDMAMLTH*LNEPAVLYNLK) and myosin 7b isomer X5 at the K site (LLGSL-
DIDHSQYQFGHTK*). At around 45 kDa, skeletal alpha actin (42 kDa), actin aortic smooth
muscle (42 kDa), cardiac α actin 1 (pdb 5NOL B Chain B Cardiac muscle alpha actin 1,
40.7 kDa), and actin-partial (27.4 kDa) were modified with BioC at the R-site (EIVR*DIK)
and N-Term site (MQKEITALAPSTMK). Three BioC-adducted peptides were identified in
cytoskeletal beta actin partial (44.8 kDa), two of which were the same as above, and the
other was DLYANTVLSGGTTMYPGIADR, with the N-Term as the adducted site.

Table 1. BioC-adducted proteins in MP.

Gene Protein Coverage (%) MW (kD) Calc. pI Score

XP 020931560.1 LOW QUALITY PROTEIN titin 59 3816 6.27 17,031.96
XP 020921695.1 myosin-4 isoform X1 75 223.1 5.76 7827.33
BAA82146.1 myosin heavy chain 2x 73 223 5.77 6990.96
XP 020921876.1 myosin-2 isoform X1 72 223 5.81 5401.78
XP 020921928.1 myosin-8 isoform X1 50 222.9 5.8 4251.75
XP 020931125.1 LOW QUALITY PROTEIN nebulin 67 856.7 9.07 4104.53
AAC48692.1 skeletal alpha actin 76 42 5.39 2977.1
/ pdb 5NOL B Chain B Cardiac muscle alpha actin 1 77 40.7 5.57 2436.99
NP 001158122.1 actin aortic smooth muscle 76 42 5.39 2145.94
ART85712.1 embryonic skeletal myosin heavy chain 3 partial 28 222.8 5.86 1905.26
AAS55927.1 cytoskeletal beta actin partial 51 44.8 5.83 1595.71
XP 003122540.1 alpha-actinin-3 isoform X2 69 103.2 5.45 1384.5
ACD13863.1 actin partial 81 27.4 5.05 1298.08
XP 020946026.1 plectin isoform X4 34 532.3 6.09 799.32
JAA53758.1 Plectin partial 37 402.7 5.68 673.79
XP 013840744.1 myosin-7B isoform X5 6 223.8 6 505.58
XP 003122636.2 glycogen phosphorylase muscle form 58 97.2 7.11 370.28
ABF81978.1 muscle glycogen phosphorylase partial 63 84 6.52 370.18
NP 001123421.1 creatine kinase M-type 68 43 7.09 251
ACE80199.1 troponin I 47 21.3 8.91 200.06
XP 001928934.3 C- U-editing enzyme APOBEC-2 57 25.8 4.81 89.24
XP 020949729.1 FH1/FH2 domain-containing protein 1 isoform X1 13 129.2 6.32 35.59
XP 003356007.1 EH domain-containing protein 2 20 61.2 6.37 35.33
NP 001008689.1 GTP-binding protein SAR1b 34 22.4 6.11 32.56
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Table 1. Cont.

Gene Protein Coverage (%) MW (kD) Calc. pI Score

BAX02569.1 alpha2 chain of type I collagen 9 129.1 9.07 31.72
NP 001231230.1 importin-5 12 123.6 4.94 29.83
XP 020922659.1 keratin type I cytoskeletal 14 7 51.6 5.16 27.27
NP 001258644.1 laminin subunit gamma-1 precursor 8 177.5 5.15 22.28
NP 001231936.1 eIF5-mimic protein 1 13 48.1 6.68 18.44

XP 013849669.2 LOW QUALITY PROTEIN neuroblast
differentiation-associated protein AHNAK 12 654.3 6.05 13.91

XP 020939127.1 regulator of nonsense transcripts 1 isoform X1 6 125.5 6.7 13.08

In the molecular mass range of 95–130 kDa, the BioC modification of alpha-actinin-3
isoform X2 (103.2 kDa), glycogen phosphorylase muscle form (97.2 kDa), and muscle
glycogen phosphorylase partial (84 kDa, adducted peptide FSAYLER) occurred at the N-
Term site (DGLALCALIHR, FSAYLER, and FSAYLER, respectively), and that of FH1/FH2
domain-containing protein 1 isoform X1 (129.2 kDa) was located at two P sites (SPFPPPPP-
PAAP*LP*PSAPDGLALPTK). In addition, the alpha2 chain of type I collagen (129.1 kDa)
had two adducted sites P and R (GEVGPAGPNGFAGPAGAAGQP*GAKGER*GTK). Fur-
thermore, lower-molecular-mass adducts were identified, such as C-U-editing enzyme
APOBEC-2 (25.8 kDa), GTP-binding protein SAR1b (22.4 kDa), and troponin I (21.3 kDa).
BioC modifications of them occurred at the C or N-Term sites, and the adducted peptides in-
volved were TFLC*YVIEAQSK, ELNARPLEVFMC*SVLK, and MSADAMLK, respectively.

Myosin, an important component of MP, has a molecular structure rich in charged
amino acids and cysteines [31], which are susceptible to be attacked by the reactive elec-
trophilic intermediate o-benzoquinone, leading to a Michael addition reaction. Tang et al. [32]
investigated the interaction of RosA and meat proteins under the Fenton oxidizing system
and showed that a diversity of myosins were involved in RosA modifications at K, R, and
C sites. The difference was that the CA in our study mainly interacted with myosin at the
alkaline amino acid (R, K, H) and N-Term sites of myosin but did not involve the C site.
Instead, modifications at the C site were identified in low-molecular-mass proteins such as
C-U-editing enzyme APOBEC-2 and GTP-binding protein SAR1b. Nikolantonaki et al. [33]
noted that there was an adducted formation between caffeic acid and 3-sulfanylhexan-1-ol.
It was speculated that oxidation conditions affect the covalent interaction of phenols and
proteins to some extent. B-actin is a major component of cytoskeleton [34], and polyphe-
nol modifications to it can have an effect on gel properties during meat processing [28].
Meanwhile, muscle glycogen phosphorylase is a key enzyme for glycogen degradation and
affects the differentiation of skeletal muscle cells. Therefore, it is hypothesized that BioC
modification may regulate energy metabolism.

3.4.2. Identification of Adducted Amino Acid Sites

Altogether, 51 BioC-adducted peptides were identified among 31 MP-BioC-adducted
proteins (Table 2). BioC adduction occurred at six different amino acid sites, including the
C, H, R, K, P, and N-Term sites. Secondary mass spectra of peptides with the BioC adducted
on the C, H, R, K, and P sites, respectively, are shown in Figure 7a–e.

Distribution of adducted sites: Figure 8a shows that 59 BioC-adducted sites were
identified in the BioC-adducted peptides, including 2 sites at C, 2 sites at H, 12 sites at R, 3
sites at K, 8 sites at P, and 32 sites at the N-term. Among them, alkaline amino acids (K, R,
and H) accounted for 28.81% of the adducted sites. The proportions of C, P, and N-Term
were 3.39%, 13.56%, and 54.24%, respectively. The result indicates that the BioC mainly
modified the N-Term, followed by the alkaline amino acids P and C. In Figure 8b, a total
of 43 BioC-adducted peptides (84.31%) contained one adducted site, and the remaining 8
(15.69%) carried two adducted sites, which suggests that the BioC preferred to react with
MP at a single site. This result was similar to that of Tang et al. [2], who reported that RosA
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had the highest frequency of single-site addition reactions, followed by two-site addition
reactions, and a low frequency of three or more site addition reactions (p < 0.05).

Table 2. BioC-adducted peptides and amino acid sites.

Gene Protein Adducted Peptide Adducted Amino
Acid Site

XP 020931560.1 LOW QUALITY PROTEIN titin [K].NAAGVISK.[G] [N-Term]
[K].VDGTPEIR.[I] [P5]

XP 020921695.1 myosin-4 isoform X1

[K].FIRIHFGTTGK.[L] [R3]
[K].QAFTQQIEELKR.[Q] [N-Term]
[R].VIQYFATIAVTGEK.[K] [N-Term]
[R].IEAQNKPFDAK.[T] [N-Term]

BAA82146.1 myosin heavy chain 2x

[K].FIRIHFGTTGK.[L] [R3]
[K].QAFTQQIEELKR.[Q] [N-Term]
[R].VIQYFATIAVTGEK.[K] [N-Term]
[R].IEAQNKPFDAK.[T] [N-Term]

XP 020921876.1 myosin-2 isoform X1 [K].FIRIHFGTTGK.[L] [R3]
[R].VIQYFATIAVTGEK.[K] [N-Term]

XP 020921928.1 myosin-8 isoform X1
[K].FIRIHFGTTGK.[L] [R3]
[R].VIQYFATIAVTGEK.[K] [N-Term]
[R].IEAQNKPFDAK.[T] [N-Term]

ART85712.1
embryonic skeletal myosin heavy chain
3 partial

[K].FIRIHFGTTGK.[L] [R3]
[K].QAFTQQIEELKR.[Q] [N-Term]
[R].IEDMAMLTHLNEPAVLYNLK.[D] [H9]; [N-Term]

XP 003122540.1 alpha-actinin-3 isoform X2 [K].DGLALCALIHR.[H] [N-Term]
XP 003122636.2 glycogen phosphorylase muscle form [K].FSAYLER.[E] [N-Term]
ABF81978.1 muscle glycogen phosphorylase partial [K].FSAYLER.[E] [N-Term]
NP 001123421.1 creatine kinase M-type [R].SIKGYTLPPHCSR.[G] [K3]; [N-Term]
ACE80199.1 troponin I [R].MSADAMLK.[A] [N-Term]
XP 001928934.3 C- U-editing enzyme APOBEC-2 [K].TFLCYVIEAQSK.[G] [C4]; [N-Term]
XP 003356007.1 EH domain-containing protein 2 [R].TVTSALK.[E] [N-Term]
NP 001008689.1 GTP-binding protein SAR1b [K].ELNARPLEVFMCSVLK.[R] 1xBioC [C12]
NP 001231936.1 eIF5-mimic protein 1 [R].VQQSLGTR.[K] [N-Term]

XP 020931125.1 LOW QUALITY PROTEIN nebulin
[R].KQLGHHVGAR.[N] [H5]
[K].VHIMPDIPQIILAK.[A] [P5]

AAC48692.1 skeletal alpha actin [R].EIVRDIK.[E] [R4]
[R].MQKEITALAPSTMK.[I] [N-Term]

NP 001158122.1 actin aortic smooth muscle
[R].EIVRDIK.[E] [R4]
[R].MQKEITALAPSTMK.[I] [N-Term]

/ pdb 5NOL B Chain B Cardiac muscle alpha
actin 1

[R].EIVRDIK.[E] [R4]
[R].MQKEITALAPSTMK.[I] [N-Term]

ACD13863.1 actin partial [R].EIVRDIK.[E] [R4]
[R].MQKEITALAPSTMK.[I] [N-Term]

AAS55927.1 cytoskeletal beta actin partial
[R].EIVRDIK.[E] [R4]
[R].MQKEITALAPSTMK.[I] [N-Term]
[K].DLYANTVLSGGTTMYPGIADR.[M] [N-Term]

XP 020946026.1 plectin isoform X4 [R].SMVEEGTGLR.[L] [N-Term]
JAA53758.1 plectin partial [R].SMVEEGTGLR.[L] [N-Term]
XP 013840744.1 myosin-7B isoform X5 [K].LLGSLDIDHSQYQFGHTK.[V] [K]

XP 020949729.1 FH1/FH2 domain-containing protein 1
isoform X1 [K].SPFPPPPPPAAPLPPSAPDGLALPTK.[R] [P12]; [P14]

BAX02569.1 alpha2 chain of type I collagen [R].GEVGPAGPNGFAGPAGAAGQPGAKGER
GTK.[G] [P21]; [R27]

NP 001231230.1 importin-5 [K].FLFDSVSSQNMGLR.[E] [N-Term]
XP 020922659.1 keratin type I cytoskeletal 14 [R].TKYETELNLR.[M] [K2]; [N-Term]

NP 001258644.1 laminin subunit gamma-1 precursor [R].KTLPSGCFNTPSIEKP.[-] [P11]

XP 013849669.2
LOW QUALITY PROTEIN neuroblast
differentiation-associated protein AHNAK

[K].AEGGGAEVQLPSLEGGLSMPDVK.[L] [P11]; [N-Term]
[K].GPGIDVKAPK.[M] [P2]; [N-Term]

XP 020939127.1 regulator of nonsense transcripts 1 isoform X1 [R].MHPALSAFPSNIFYEGSLQNGVTAADRVK.[K] [R27]
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In unoxidized phenolic compounds, hydroxyl groups are excellent hydrogen donors,
which do not directly form irreversible covalent bonds with amino acids but allow for the
formation of hydrogen bonds between phenols and carboxyl groups in proteins. Under
alkaline conditions, hydroxyl groups are oxidized and converted into the active deriva-
tive quinone. The latter then undergoes irreversible covalent addition reactions with the
sulfhydryl or amino groups of susceptible amino acid residues in proteins [35,36]. Some
studies have found that the N-Term of protein is thought to be strongly related to the
stability of protein structure [37]. Based on this, the high proportion of N-Term modifica-
tions might correspond to changes in protein structure. It has been reported that peptides
containing alkaline amino acid are mostly located inside protein [2], so it could be inferred
that the presence of steric hindrance made them less reactive with the BioC. It should also
be noted that the oxidation level, type, and dose of phenolic compounds will also affect the
extent of their interaction with proteins [38].

The sequence motif of adducted sites: The full-length sequence of the different ad-
ducted peptides was searched in the NCBI according to the gene number before selecting
the adducted site and 10 amino acids on each side of it to form a polypeptide with 21 amino
acids. The sequence logo (seqlogo) was drawn using Weblogo (Version 2.8.2) to further
explore the sequence motif of the adducted sites. The height (%) of each letter in the seqlogo
corresponds to the frequency of the occurrence of amino acid residues at that location,
and that letters in each position are arranged in order of conservatism from the largest
to smallest, which makes it easy to identify conserved sequences from the top letters. As
shown in Figure 9, the most frequent amino acids at the BioC-adducted site (coordinate: 0)
were R, P, K, C, and H, in decreasing order. About 85% of them were X-R/P/K-X motifs,
and the rest were X-C/H-X motifs (X = any amino acid). This result suggests that R had
the highest conservation. In addition, it was speculated that the sequence motif of the
BioC-adducted peptide was DNSSAEGEFIRDIKGKLGKLA, which has implications for the
future study of meat protein.
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4. Conclusions

In this study, we developed and validated a novel method based on molecular probe
technology to accurately identify phenol–protein adducts in meat protein systems, using
BSA as a model protein. Our method involves the use of a BioC, a biotinylated derivative
of CA which can covalently bind to MP in the same manner as CA. It was demonstrated
that the BioC, a biotinylated derivative of CA, can interact with MP in the same way as
CA, forming covalent bonds with specific amino acid residues. By using an LC-MS/MS
analysis, 31 CA-adducted proteins, 51 CA-adducted peptides, and 6 kinds of CA-adducted
sites were identified. Furthermore, it was revealed that CA prefers to react with the -NH2
group (H, R, K, P, and N-term adducted sites) rather than the -SH group (C adducted site)
of MP, resulting in various phenol–protein adducts. Our method provides a powerful tool
for the isolation and identification of phenol–protein adducts in meat protein systems as
well as the comprehensive analysis of the types and numbers of adducted sites, which
reveal the mechanism of the covalent binding of phenols to proteins.

Although phenolic compounds have many beneficial effects on the quality, safety, and
functionality of meat and meat products, there are some potential drawbacks and risks
that need to be considered. One of the major challenges of using phenolic compounds in
the meat industry is the oxidation of phenolic compounds with the formation of quinones,
which could affect the quality, safety, and functionality of meat and meat products. The
oxidation of phenolic compounds and the formation of quinones are influenced by many
factors, such as the type, concentration, source of phenolic compounds, pH, temperature,
oxygen, metal ions, enzymes, and other food components of the meat system, and the
processing and storage conditions of the meat products. In this study, covalent interactions
between plant polyphenols and meat proteins were investigated. However, only low-
molecular-weight polyphenols were used, which may differ from high-molecular-weight
polyphenols, such as proanthocyanidins and more complex tannins, in their interaction
patterns and biological effects. High-molecular-weight polyphenols might form more
stable covalent complexes with proteins. A future investigation is therefore required to take
into account the molecular characteristics of polyphenols and the environmental factors
that may influence the interactions between polyphenols and proteins and their effects on
meat quality.
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