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Abstract: As a by-product of citrus processing, ponkan (Citrus reticulata Blanco, cv. Ponkan) peel
residue is a source of high quality dietary fiber (DF). To make a full utilization of this resource
and give a better understanding on the probiotic function of its DF, soluble dietary fiber (SDF)
and insoluble dietary fiber (IDF) were extracted from ponkan peel residue (after flavonoids were
extracted) using an alkaline method, followed by modifications using a composite physical-enzymatic
treatment. The in vitro fermentation properties of the modified SDF and IDF (namely, MSDF and
MIDF) and their effects on short-chain fatty acids (SCFA) production and changes in the composition
of human gut microbiota were investigated. Results showed that MSDF and MIDF both significantly
lowered the pH value and enhanced total SCFA content in the broths after fermented for 24 h by fecal
inocula (p < 0.05) with better effects found in MSDF. Both MSDF and MIDF significantly reduced
the diversity, with more in the latter than the former, and influenced the composition of human gut
microbiota, especially increasing the relative abundance of Bacteroidetes and decreasing the ratio of
Firmicutes to Bacteroidetes (F/B) value. The more influential microbiota by MSDF were g-Collinsella,
p-Actinobacteria and g-Dialister, while those by MIDF were f -Veillonellaceae, c-Negativicutes and
f -Prevotellacese. These results suggested that the modified ponkan peel residue DF can be utilized by
specific bacteria in the human gut as a good source of fermentable fiber, providing a basis for the
exploitation of the citrus by-product.

Keywords: ponkan peel residue; dietary fiber; physical-enzymatic modification; short-chain fatty
acids; gut microbiota; microbial diversity

1. Introduction

Ponkan (Citrus reticulata Blanco) originated in Asia, and its production has increased
considerably since the early 21st century, with an increase of 63.73% between 2001 and
2018, which is concentrated mainly in China, Spain, Turkey, Morocco, Egypt and Brazil,
accounting for 75.42% of total global production in 2018 (25.94 million metric tons) [1].
Citrus fruits for processed products such as cans, juices and jellies account for about 35% to
40% of total amount of the fruit yield in the world, producing peel residues in around 50%
fresh weight of the fruits processed [2]. However, citrus by-products are often discarded,
causing serious resource waste and environmental issues, or only processed into animal
feed with low added value [3]. Citrus peel has many kinds of active ingredients, such as
dietary fiber (DF), essential oils, flavonoids and pigment, which have various physiological
effects such as anti-diabetic, anti-bacterial, anti-cancer and antioxidant effects [4,5]. DF, as a
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seventh nutrient, accounts for more than 50% of the weight of citrus peel residues, and has
good hypoglycaemic and adsorptive properties [6]. Therefore, the rational utilization of DF
resources in citrus peel residues will contribute to the sustainable development of citrus
industry and health management, as well as a relief of environmental problems.

DF is a polysaccharide that is not digested and absorbed by the mammalian gas-
trointestinal tract, and usually requires reaching the colon to be partially or completely
decomposed by colonic microorganisms, thus having advantages on improving intestinal
microecology [7]. Previous studies [7–9] have reported that gut microbes could use DF to
produce short-chain fatty acids (SCFA), including acetic, propionic and butyric acids, thus
regulating pH of the gut, promoting the growth of beneficial groups of bacteria in the gut
microbiota, and preventing potential colonization for pathogens through the competition
for nutrients and adhesion sites. Additionally, ingestion of DF could reduce the risk of
colon-related diseases and some metabolic syndromes such as obesity, diabetes, chronic
kidney disease and systemic inflammation. DF from brans of cereals have been reported to
modulate specific bacteria and promote the production of SCFA. For example, DF promoted
the growth of butyrate-producing bacteria, including Firmicutes, Dorea, Ruminococcus and
Lachnospiraceae; meanwhile, its metabolites stimulated the growth of related bacteria to
enhance the intestinal barrier and modulate the immune function [10]. Degradation of DF
from bagasse and passion fruit peels by human gut microbiota produced more SCFA and a
more diverse bacterial community, demonstrating that fruit by-products could be used for
selective regulation of human gut microbiota [11].

However, DF from different sources has varied compositions, ratios of soluble DFs
(SDFs) to insoluble ones (IDFs) and functional properties. To enhance its some particular
functional activities, DF before (in raw material) or after extraction is usually subjected to
modification through chemical, physical or biological methods [12]. One common compos-
ite modification method is the combination of physical and enzymatic treatment, which
has been shown to be effective in disrupting cell wall structure, promoting the conversion
of IDF to SDF, and altering its physicochemical properties. Microwave plus enzymatic
modification of grapefruit peels resulted in increased SDF content and enhanced functional
properties, including water-holding, oil-holding, stability and adsorption properties [13].
Oats and wheat brans treated with superheated steam were reported to positively influence
gut microbiota composition, leading to a significant increase in the relative abundance of
lactic acid bacteria, Rumenococci and Actinomycetes, and a significant decrease in Shigella
compared to those untreated [14]. In addition, previous studies have demonstrated that
microwaves can be applied to improve the functional properties of DF. For example, the
use of microwaves to modify DF from sweet potato pulp, apple pomace and soya bean
residue resulted in increased SDF, enhanced SCFA production and significant changes
to gut microbial communities of healthy adults [15]. A modification with cellulase and
xylanase to DF from potato residues increased its SDF content, promoted the production of
SCFA, and increased the abundance and diversity of gut microbiota in mice [16].

In this study, ponkan peel residues after flavonoids extracted beforehand with an
ethanol solution were applied to extract DFs (SDF and IDF) using sodium hydroxide, which
were subsequently modified by physical-enzymatic treatment. Our previous study showed
the above method of extraction and modification increased the SDF content and improved
their physicochemical properties such as water-holding, oil-holding, adsorption properties,
etc. (submitted to a Chinese periodical). Therefore, to verify the regulation role of the
modified soluble dietary fiber (MSDF) and modified insoluble dietary fiber (MIDF) in
human gut microbiota, the pH, SCFA production and microbial community diversity in the
fermentation broths after fecal microbiota transplantation were determined and assessed.
The results would give a better understanding of the digestibility and fermentability of
modified ponkan peel DF and their gut microbiota regulatory ability, thus offering a basis
for exploiting ponkan peel residue or its modified DF as a potential functional ingredient
in food industry.
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2. Materials and Methods
2.1. Materials and Agents

Ponkan fruits were harvested in December 2022 in Quzhou city, Zhejiang province,
China. Metaphosphoric acid, crotonic acid, acetic acid, propionic acid, isobutyric acid,
butyric acid, isovaleric acid and valeric acid (all of chromatographic grade) were purchased
from Sigma-Aldrich Trading Co., Ltd. (Shanghai, China). Cellulase, xylanase and inulin
were obtained from Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China).

2.2. Preparation of MSDF and MIDF from Ponkan Peel Residue

Fruit skin was manually peeled off ponkan fruits and freeze-dried. Dried peel was
ground with a traditional Chinese medicine grinder (YD-150, Yongkan Sufeng Industry &
Trade Co., Ltd., Jinhua, China) and screened by a 40-mesh sieve. DF was extracted using an
alkali aqueous solution (pH 10.0) from the peel residue whose flavonoids were extracted in
advance using 60% ethanol [17]. The extracted DF was modified using a physical-enzymatic
method as described as follows [18]. The DF was mixed with PBS buffer (pH 5.9) in a ratio of
1:30 (w/v), and the suspension was run through a high-speed homogenizer (FSH-2A, New
Rui Instrument Factory, West Jintan District, Changzhou, China) at 40,000× g (20,000 r/min,
22 to 25 ◦C) for 10 min. Two percent complex enzymes (cellulase: xylanase = 2:1) of the DF
dry weight (m/m) was added directly to the homogenized suspension for hydrolysis at
50 ◦C for 1 h, and then the hydrolysis solution was centrifuged at 9600× g (4800 r/min,
MC-4/7S, Qun An Experimental Equipment Co., Ltd., Ningbo, China) at 4 ◦C for 20 min.
The precipitation was oven dried at 60 ◦C to obtain the modified IDF (namely, MIDF). The
supernatant was precipitated with 4 folds volume of 95% ethanol and then centrifuged
at 9600× g (4800 r/min) for 20 min. The precipitate was oven dried at 60 ◦C to obtain
the modified SDF (namely, MSDF). MTDF amount was calculated by adding MIDF and
MSDF together.

2.3. Analysis of Chemical Compositions of Ponkan Peel Residue and Its Modified Dietary Fibers

Moisture content was measured by the 105 ◦C oven method with reference to GB
5009.3 [19]. Ash content was determined by combustion method according to GB 5009.4 [20].
Protein and fat contents were tested by Kjeldahl and Soxhlet extraction method following
to GB 5009.5 [21] and GB 5009.6 [22], respectively. Dietary fiber content was determined
according to GB 5009.88 [23].

2.4. In Vitro Fermentation of Modified Dietary Fibers
2.4.1. Preparation of Fecal Inocula

Six healthy volunteers (three males and three females, aged between 22 and 26 years)
were selected to collect their fresh feces, and they had not taken therapeutic antibiotics
during the past three months. Fecal samples were collected and weighed, transferred to an
anaerobic chamber, diluted with PBS buffer (pH 5.9) containing 1% L-cysteine hydrochlo-
ride at a ratio of 1:5 (w/v), vortexed and left to stand for 5 min, then filtered through four
layers of sterile gauze to obtain the filtrate. Equal amounts of fecal filtrate from the six
volunteers were mixed.

2.4.2. Preparation of Fermentation Media

The basal medium was prepared according to the method described by Schwab et al. [24].
Briefly, 5.0 g peptone, 4.5 g yeast extract, 0.5 g bile salts, 0.1 g NaCl, 2.0 g NaHCO3, 0.5 g
L-cysteine hydrochloride, 0.04 g KH2PO4, 0.04 g K2HPO4, 0.01 g MgSO4-7H2O, 0.01 g
CaCl2-6H2O, 0.02 g hemoglobin chloride, 2.0 g Tween 80, 10 µL vitamin K1 and 1.0 mL
resazurin solution (1.0%, w/v) were mixed to form 1.0 L of fermentation medium using
sterile water as solvent. The pH was adjusted to 7.0 with 0.1 mol/L HCl, and the medium
was sterilized at 121 ◦C for 15 min for later use.
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2.4.3. In Vitro Fermentation Process

In an anaerobic environment, DF samples were sterilized by exposure to UV light for
2 h and their mass fraction added to the fermentation medium was 0.5% (m/v). The mixture
(5 mL) was put in a Hungate anaerobic tube sterilized beforehand and then transferred to an
anaerobic incubator (SW-II, Shengwei Electronic Technology Co., Shanghai, China). Mixed
fecal filtrate was added to the Hungate anaerobic tube at 2% (v/v) using a 1 mL syringe
and incubated in the anaerobic incubator at 37 ◦C with shaking at 600× g (300 r/min). At
the intervals of 0, 6, 12 and 24 h, 0.5 mL of the fermentation broth was taken out from the
anaerobic tube, rapidly transferred to a sterilized tube and stored in a −80 ◦C refrigerator.
Inulin was used as a positive control (AC) and no sample added was regarded as a blank
control (CK). The fermentation was divided into four groups, namely, MSDF, MIDF, AC
and CK groups. Three parallel experiments were performed in each group.

2.4.4. Determination of pH and SCFA Contents in Fermentation Broths

The pH of fermentation broth was measured using a pH meter (PHB-4, Shanghai
Oshitol Industrial Co., Shanghai, China). Fecal fermentation broth (1.5 mL) was centrifuged
(9000× g, 5 min, 4 ◦C) and 0.5 mL of the supernatant was taken out and put into a 1.5 mL
sterilized centrifuge tube and 0.1 mL of crotonic acid metaphosphate solution was added.
The resulting solution was frozen at −80 ◦C for 24 h, then thawed and centrifuged (9000× g,
5 min, 4 ◦C). The supernatant was collected and filtered through a 0.22 µm organic filtration
membrane. The filtrate (100 µL) was then added to the inner tube of the gas phase sampling
bottle. The contents of SCFA were determined by gas chromatography with a GC2010 plus
instrument (Shimadzu Corp., Kyoto, Japan). A flame ionization detector with nitrogen
carrier gas was employed for detection at injection volume, inlet temperature, detector
temperature and split ratio of 1.0 µL, 220 ◦C, 250 ◦C and 8:1, respectively [25]. The column
used was a DB-EEAP one (30.0 m × 0.32 mm × 0.50 µm, Agilent, Santa Clara, CA, USA).
Six SCFA standards were used for identification and quantification. After detection, the
SCFA content was calculated using the standard curve.

2.4.5. Analysis of Gut Microbiota

Genomic DNA was extracted from the fermentation broth sediment using the Tianan
Genetics Kit (Tiangen Biotech. Co., Ltd., Beijing, China) according to the kit’s instructions.
The V4 to V5 regions of the bacterial 16S rDNA gene were amplified by polymerase chain
reaction (PCR) using 515F and 907R primers for specific DNA fragments. PCR products
were examined on an agarose gel and purified by the AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, USA). Purified PCR products were collected and
aligned on the Illumina Miseq platform (Illumina Inc., San Diego, CA, USA). Using Silva
as the reference database, the feature sequences were taxonomically annotated using
a plain Bayesian classifier to obtain the species’ taxonomic information corresponding
to each feature, and then species’ abundance, alpha diversity and beta diversity were
computed and exhibited using Qiime2 software (Quantitative Insights into Microbial
Ecology, v1.8.0, https://qiime.org, accessed on 15 March 2023). The online platform
BMKCloud (https://www.biocloud.net, accessed on 15 March 2023) was used to analyze
the sequencing data.

2.5. Statistical Analysis

Data in triplicate experiments were presented as means ± standard error and analyzed
using SPSS 26.0 software (Chicago, IL, USA). The p < 0.05 was considered statistically
significant. Moreover, the figures were depicted by Origin 2021 software (OriginLab,
Northampton, MA, USA).

https://qiime.org
https://www.biocloud.net
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3. Results and Discussion
3.1. Chemical Compositions of Ponkan Peel Residue and Its Modified Dietary Fibers

The compositions of ponkan peel residue (PPR) and its modified dietary fiber (MDF)
are shown in Table 1. Compared to PPR, MDF possessed significantly increased total
dietary fiber (TDF) from 66.89 ± 2.60% to 89.59 ± 0.79% and SDF from 8.51 ± 0.65% to
28.72 ± 0.83% (p < 0.05). However, the variation in their IDF mass fractions was not signifi-
cant (p > 0.05). This phenomenon was due to the high speed homogenization involved in
shear and pressure disruption of the samples, resulting in looser spatial structure of dietary
fibers, thus allowing more binding sites for enzymatic processing and making enzymatic
hydrolysis more effective in disrupting the structure [26]. The changes in moisture, ash,
protein and crude fat mass fractions of MDF were significantly lower compared to those of
PPR (p < 0.05). This was because the purity of dietary fiber in MDF was increased as a result
of the physical enzymatic modification process, which broke down the large molecules into
smaller ones, and their loss in the solvent. The results indicated that physical-enzymatic
composite modification was significantly favorable in improving SDF content in ponkan
peel DF.

Table 1. Basic chemical compositions of PPR and MDF.

Basic Composition (%) PPR MDF

Moisture 2.27 ± 0.19 a 1.10 ± 0.10 b
Ash 8.41 ± 0.38 a 5.57 ± 0.22 b

Protein 6.89 ± 0.14 a 1.14 ± 0.09 b
Crude fat 2.20 ± 0.21 a 0.51 ± 0.09 b

TDF 66.89 ± 2.60 b 89.59 ± 0.79 a
IDF 58.38 ± 2.07 b 60.87 ± 0.85 b
SDF 8.51 ± 0.65 b 28.72 ± 0.83 a

Different lowercase letters after data in each row indicate significance at p < 0.05. PPR, ponkan peel residue;
MDF, modified dietary fiber; TDF, total dietary fiber; IDF, insoluble dietary fiber; SDF, soluble dietary fiber.

3.2. Effect of Modified Dietary Fibers on pH of In Vitro Fermentation Broths

During the fermentation of substrates by the human intestinal microbiota, a number
of acidic products can be formed, including lactic acid and SCFA, which therefore affect
the pH and microbial diversity in intestinal tract [27]. Therefore, pH is a very important
indicator to reflect the in vitro fermentation process. Figure 1 shows the change in pH
during the in vitro fermentation of MDF and the controls. The pH of the fermentation
broths in CK, AC, MSDF and MIDF groups all decreased gradually from the initial 7.0 as
the fermentation time prolonged. At the beginning of fermentation (0–6 h), the pH of all
groups dropped significantly (p < 0.05), with the most in the AC and the least in the CK, and
more in MSDF than MIDF. After 24 h of fermentation, the pH of CK, AC, MSDF and MIDF
groups were 5.07, 4.32, 4.79 and 4.87, respectively. The decrease in pH of broths might be
due to the consumption of carbohydrates in the medium by intestinal microorganisms,
leading to fermentation and subsequent formation of SCFA, thus lowering the pH [28]. The
result suggested that additions of MSDF and MIDF both help lower the pH in colon to
some extent and maintain a balanced and acidic intestinal environment. A lower pH in
colon helps promote the growth of probiotics and prevent the growth of harmful bacteria,
thus ensuring a good intestinal microecology.
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Figure 1. Changes in pH during in vitro fermentation of ponkan peel residue MDF. Different lower-
case letters on value curves of groups at each sampling time represent significance at p < 0.05. CK,
blank control; AC, positive control; MSDF, modified soluble dietary fiber; MIDF, modified insoluble
dietary fiber.

3.3. Effect of Modified Dietary Fibers on the SCFA Contents of In Vitro Fermentation Broths

Indigestible DF can act as a major source of energy and carbon for the gut microbiota,
stimulating their growth while producing SCFA [29]. The concentration of SCFA is one
of the most important indicators to assess the prebiotic activity of DF. Figure 2 shows the
contents of acetic acid, propionic acid, butyric acid and total SCFA in broths among groups
at the end of fermentation (24 h), with acetic acid being the highest, followed successively
by propionic acid and butyric acid. Isobutyric acid, valeric acid and isovaleric acid were
present at low levels and their contents were not directly displayed in the figure. The
acetic acid concentrations in MSDF and MIDF treated groups (23.85 and 21.52 mmol/L)
were significantly higher than that in the CK (p < 0.05). Propionic acid and butyric acid
concentrations (6.17 mmol/L and 1.30 mmol/L in MSDF treated group and 5.20 mmol/L
and 1.27 mmol/L in MIDF group) were also significantly higher than those in the CK
(p < 0.05), but showed no significant difference compared to those in the AC. Previous
studies have found that acetic acid helps inhibit the growth of intestinal pathogens, while
propionic acid may affect the liver and cholesterol metabolism, and butyric acid may be
used as a fuel for intestinal cells [29]. At the same time, acetic and propionic acids not only
provide energy to the liver and surrounding tissues, but also play an important role in
gluconeogenesis and lipogenesis [30]. Total SCFA concentrations were 31.45 mmol/L and
28.10 mmol/L in MSDF and MIDF treated groups, respectively, both higher than that in the
CK (23.34 mmol/L, p < 0.05), but there was no significant difference between MSDF group
and the AC (32.71 mmol/L), which was similar to the results of previous studies [9]. Our
results indicated that both ponkan peel residue MSDF and MIDF as fermentation substrates
well promoted the production of SCFA by human intestinal flora, with better performance
found in MSDF.
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3.4. Effect of Modified Dietary Fibers on Gut Microbiota of In Vitro Fermentation Broths
3.4.1. Alpha Diversity and β Diversity

Alpha (α) diversity can reflect the abundance and diversity of the microbial community
within a specific ecosystem, including Chao, Ace, Shannon and Simpson indices. The
Chao and Ace indices are commonly used in ecology to estimate the total numbers of
species and can be used to reflect community richness, with a higher index indicating a
richer microbial community [31]. The Shannon and Simpson indices are used to assess
the diversity of microbial communities, with higher values indicating higher and lower
community diversity, respectively [32]. The differences in Chao and Ace indices among the
CK, AC, MSDF and MIDF groups were not statistically significant (Figure 3a,b), suggesting
that the addition of substrate has little effect on the abundance of the microbial community
after fermentation. As seen from Figure 3c,d, the Shannon and Simpson indexes of microbial
communities in the MSDF and MIDF groups were significantly lower and higher than those
of the CK and AC (p < 0.05), respectively, indicating that the diversity of the gut microbiota
was reduced after in vitro fermentation with the addition of MSDF and MIDF as substrates.
This could be attributed to the presence of MDF, which potentially inhibited the growth of
specific harmful microorganisms during the fermentation process. Moreover, the reduction
in diversity of gut microbiota was significant between MSDF and MIDF groups with more
in the latter than the former (p < 0.05).
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Beta (β) diversity is often used to highlight variation in diversity of gut microbiota
between samples, and the closer the samples to each other, the more similar the composition
of the gut microbes [33]. In order to assess and determine the differences in taxonomic
operational units (OTU) in the samples, principal coordinate analysis (PCoA) and non-
metric multidimensional scaling analysis (NMDS) were performed. The results of PCoA
are shown in Figure 4a, with principal component (PC) 1 and 2 accounting for 63.71%
and 28.99% of the variance, respectively. It was seen that the data from the same sample
(r = 3) were close to each other, indicating that the data were relatively uniform within
the same group. However, the distance between the CK and AC groups and the MSDF
and MIDF groups was relatively long, indicating great difference in their effects on gut
microbial species, but a very close distance was found between MSDF and MIDF groups,
suggesting their high similarity in affecting gut microbiota. NMDS focused on assessing
the similarity in gut microbiota diversity among different groups, and its results showed
that the MSDF and MIDF groups were far from the CK and AC groups, and the MSDF
group was very close to MIDF one, indicating their higher similarity in influencing gut
microbiota diversity (Figure 4b). This was consistent with the PCoA results. The above
results suggested that MSDF and MIDF have significant but similar influence on diversity
of human gut microbiota.
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3.4.2. Composition of Gut Microbiota

Figure 5a shows that after in vitro fermentation, 95% of the gut microbiota at the
phylum level consist of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria. The CK
group contained a small number of Fusobacteria, under which the survival of Clostridium in
the human intestine would lead to an abnormally active state in colon cancer cells and was
associated with a high incidence of colon cancer [34]. In contrast, the relative abundance of
Fusobacteria in the sample groups was extremely low, which suggested that the addition of
MSDF or MIDF or AC potentially inhibit the incidence of colon cancer. As seen in Figure 5a,
the fermentation after addition of MSDF and MIDF resulted in a decrease in the relative
abundance of Firmicutes and an increase in that of Bacteroidetes compared to CK, which
might have led to a decrease in energy intake. It has been made known that the ratio
of relative abundance in Firmicutes to Bacteroidetes (F/B) is an important index of weight
loss, and a lower F/B value indicates that the fermentation substrate has a weight loss
function [35]. One of the main producers of propionic acid in the colon is Bacteroidetes,
which regulates blood lipids synthesis and cholesterol level rise. The decreased F/B value
corresponded to significantly increased propionic acid levels in the MSDF and MIDF groups
compared to the CK. In addition, the addition of MSDF and MIDF to gut microbiota reduced
the relative abundance of Proteobacteria. It has been shown that ecological dysregulation
of microbiota during metabolic disorders usually includes an increase in the relative
abundance of the Proteobacteria [36]. The results suggested that MSDF and MIDF can help
maintain gut ecological balance and exert potential wholesome function. Furthermore,
MDF (especially MSDF) significantly increased the relative abundance of Actinobacteria, a
group of microorganisms producing antibiotics and enzymes and playing an important
role in maintaining intestinal health. Such conclusion had also been demonstrated by
Dominianni et al. [37], who found that DFs from soy, vegetables and fruits all increased
the relative abundance of actinomycetes, which was essential for health of gastrointestinal
tract and wellness of whole organism.
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among in vitro fermentation broths of different samples. CK, blank control; AC, positive control;
MSDF, modified soluble dietary fiber; MIDF, modified insoluble dietary fiber.

The relative abundance of microbial composition at the genus level in each group of
fermentation broths (Figure 5b) indicated that Escherichia-Shigella, Megasphaera, Prevotella,
Lactobacillus, Collinsella, Megamonas, Bacteroides, Streptococcus and Enterococcus were the
dominant genera of the gut microbiota. Prevotella helps to break down proteins and
carbohydrates, and intake propionic acid from arabinoxylan and oligofructose, which
lowers serum cholesterol and reduces liver fat production [38]. Megamonas also ferments
various carbohydrates, with the end products being acetic acid, propionic acid and lactic
acid. Lactobacillus is a beneficial microorganism that ferments polysaccharides to produce
lactic acid and is now widely recognized for its role in maintaining human health and
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regulating immune function [39]. However, Enterococcus is by far one of the most important
pathogens of hospital-acquired infections and most often causes urinary tract infections. As
seen in Figure 5b, MSDF and MIDF promoted the growth of beneficial intestinal bacteria
such as Prevotella, Megamonas and Lactobacillus in enhanced abundance. In addition, the
relative abundance of Bacteroides, Escherichia-Shigella and Enterococcus in the MSDF and
MIDF groups decreased after fermentation, suggesting that the addition of MSDF and
MIDF inhibit the growth of some of the harmful bacteria.

Linear discriminant analysis effect size (LEfSe) and latent Dirichlet allocation (LDA)
can be combined for more specific identification of microbial community members. The
results of LEfSe analysis on gut microbiota affected by MDF are shown in Figure 6a, with
each level of taxonomy from phylum to genus presenting separately from the inside to
outside, and the size of the nodes and area representing the average relative abundance
of species. Yellow nodes indicate species that are not significantly different, and colorful
ones in each group represent those having a significant effect on differences between
groups. A bar chart of the LDA discrimination of the gut microbiota, based on LDA > 2
and p < 0.05, is shown in Figure 6b, demonstrating species with significant differences
in abundance among different groups and the bar lengths reflecting the influence size of
species with statistical differences. The analysis results indicated that four genera, including
o-Clostridiales, f-Peptostreptococcaceae, f-Bacteroidaceae and g-Peptoniphilus, in the CK had a
greater influence on the gut microbiota. The more influential microbiota in the MSDF group
were o-Coriobacteriales, g-Collinsella, p-Actinobacteria and g-Dialister, while those in the MIDF
group were f-Veillonellaceae, c-Negativicutes, and f-Prevotellacese. In the AC group, c-Bacilli,
o-Lactobacillales, and f-Streptococcaceae were found to be more influential.
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4. Conclusions

This study investigated the in vitro fermentation characteristics of ponkan peel residue’s
modified dietary fibers (MSDF and MIDF) prepared with physical-enzymatic method and
their effects on human gut microbiota. The DF was extracted from the peel residue whose
flavonoids were extracted first. The results indicated that the addition of MSDF and MIDF
both increased the production of acids, especially for MSDF, significantly lowering the pH
in the fermentation broth, while increasing the production of SCFA (p < 0.05). In addition,
MSDF and MIDF were fermented by specific microorganisms that regulated the composi-
tion of human intestinal microbiota to varying degrees. Of these, both MSDF and MIDF
promoted the growth of beneficial bacteria, such as Megasphaera, Prevotella and Collinsella,
and reduced the relative abundance of Bacteroidetes, Escherichia-Shigella and Enterococcus.
The more influential microbiota by MSDF were g-Collinsella, p-Actinobacteria and g-Dialister,
while those by MIDF were f -Veillonellaceae, c-Negativicutes and f-Prevotellacese. The results
might draw the public’s attention to DF’s regulation role on intestinal microbiota, which
will still need further validation on its probiotic functions through in vivo test. The study
also provokes the thought of progressive utilization of citrus peel through sequential
extraction or modification for developing wholesome dietary supplements.
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