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Abstract: Gastrodia elata (G. elata) Blume is widely used as a health product with significant economic,
medicinal, and ecological values. Due to variations in the geographical origin, soil pH, and content
of organic matter, the levels of physiologically active ingredient contents in G. elata from different
origins may vary. Therefore, rapid methods for predicting the geographical origin and the contents of
these ingredients are important for the market. This paper proposes a visible–near-infrared (Vis-NIR)
spectroscopy technology combined with machine learning. A variety of machine learning models
were benchmarked against a one-dimensional convolutional neural network (1D-CNN) in terms of
accuracy. In the origin identification models, the 1D-CNN demonstrated excellent performance, with
the F1 score being 1.0000, correctly identifying the 11 origins. In the quantitative models, the 1D-
CNN outperformed the other three algorithms. For the prediction set of eight physiologically active
ingredients, namely, GA, HA, PE, PB, PC, PA, GA + HA, and total, the RMSEP values were 0.2881,
0.0871, 0.3387, 0.2485, 0.0761, 0.7027, 0.3664, and 1.2965, respectively. The R2

p values were 0.9278,
0.9321, 0.9433, 0.9094, 0.9454, 0.9282, 0.9173, and 0.9323, respectively. This study demonstrated that
the 1D-CNN showed highly accurate non-linear descriptive capability. The proposed combinations
of Vis-NIR spectroscopy with 1D-CNN models have significant potential in the quality evaluation of
G. elata.

Keywords: Gastrodia elata Blume; visible–near-infrared spectroscopy; geographical origin; physiologically
active ingredients; 1D-CNN

1. Introduction

In recent years, Gastrodia elata (G. elata) Blume has been used as a health product in
some countries. Because it has some remarkable and reliable benefits, it has received very
good attention. As one of the traditional food materials and a rare Chinese medicine, G.
elata is widely used in cooking, healthcare products, and cosmetics in China [1]. G. elata
was designated by the Chinese Health Commission as a pilot variety for the management
of “substances that are both food and Chinese herbal medicines according to tradition”
and represented a “medicine-food homology” in the legal sense [2,3]. Currently, most
G. elata are artificially cultivated. The quality of G. elata may vary significantly between
different geographical origins owing to the differences in the growing environment, climate,
and soil [4]. In China, G. elata has been cultivated in many provinces, including Guizhou,
Yunnan, Shaanxi, Hubei, and Henan. The World Health Organization (WHO) has indicated
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that origin certification is key to ensuring herbal medicines’ quality [5]. In pursuit of
commercial interests, some inferior products were disguised as a G. elata protected by
geographical indication (PGI). This not only affects the selling prices but also severely
harms the interests of consumers. Therefore, the accurate identification of the geographical
origin is essential to maintaining the good quality of the G. elata PGI.

Some research studies showed that there are many physiological active ingredients in
G. elata. Due to the various physiologically active ingredients with significant nourishing
and strengthening effects that contribute to the edible and medicinal values of G. elata, it
is used in beverages and foods [6]. Most of these ingredients are phenolic compounds,
such as gastrodin (GA), p-hydroxybenzyl alcohol (HA), parishin A (PA), parishin B (PB),
parishin C (PC), and parishin E (PE) [7]. Therefore, accurate content determination of these
physiologically active ingredients is of considerable importance.

Currently, high-performance liquid chromatography (HPLC) [8], elemental analy-
sis [9], deoxyribonucleic acid barcoding [10], and other techniques are generally used to
identify the origin of G. elata. Furthermore, HPLC [11,12], gas chromatography–mass
spectrometry (GC-MS) [13], and liquid chromatography–mass spectrometry (LC-MS) [14]
are used to determine the amounts of the physiologically active ingredients in G. elata.
However, these analytical methods are time-consuming and complex, the chemical reagents
used are subject to secondary contamination, and the required equipment is expensive.
Consequently, they do not meet the current requirements for the evaluation of G. elata
purchased at the geographical origin or on the open market. Therefore, the exploration of a
low-cost, simple, and environmentally friendly evaluation method for G. elata is crucial.

Spectral technology is a relatively simple and fast evaluation method. Near-infrared
spectroscopy (NIR) was applied to identify G. elata from four main geographical origins,
with accuracy rates of 0.9700 and 0.9900 for the calibration and validation sets, respectively.
When identifying samples from eight different cities, the accuracy rates for calibration
and validation sets were 0.9800 and 0.9900, respectively. The prediction of the content of
polyphenolic compounds yielded a determination coefficient of 0.9209 and a root-mean-
square error of 0.3380 for the prediction set [15]. Excitation–emission matrix (EEM) fluo-
rescence was successfully used to identify the geographical origin of G. elata from three
regions with a 1.0000 accuracy on the training and test sets [16]. Fourier-transform infrared
(FT-IR) spectroscopy was successfully used to identify G. elata from six geographical origins
with a classification accuracy rate of 1.0000 [4]. NIR technology combined with TQ software
was used to determine six effective components of G. elata. After the wavelength selection,
the optimal quantitative models were obtained. The calibration set correlation coefficients
for the quantification models of gastridin, p-hydroxybenzyl alcohol, parishin A, parishin B,
parishin C, and parishin E were 0.9841, 0.9063, 0.9858, 0.9857, 0.9852, and 0.9506, respec-
tively. The root-mean-square errors of calibration were 0.0427, 0.0170, 0.0749, 0.0269, and
0.0080, and the root-mean-square errors of prediction were 0.0837, 0.0116, 0.1380, 0.0699,
0.0145, and 0.1780, respectively [17]. In previous studies, there were no reports on the
use of visible–near-infrared (Vis-NIR) spectroscopy for the identification of G. elata from
different origins and the prediction of some physiologically active ingredients. Vis-NIR
spectroscopy is valued for its simplicity, convenience, rapidity, and wide wavelength range
for detection. It can be used to perform non-targeted spectroscopic chemical analysis for
determining spectral fingerprints that can be applied to identify the samples [18]. The
geographical origins of samples can be determined by assessing the spectral similarity,
and any outliers can be identified [19]. Furthermore, Vis-NIR spectroscopy can be used
to establish calibration models for the identification of components of interest, enabling
the reliable and rapid determination of compounds. In recent years, Vis-NIR spectroscopy
and machine learning algorithms have been closely tied in diverse fields, such as soil
science [20], food science [21], and marine algae science [22]. However, the classical partial
least squares regression (PLSR) and partial least squares discriminant analysis (PLS-DA)
methods are not ideal for modeling complex non-linear systems owing to their inability
to acquire non-linear features [23]. Comparatively, as a conventional machine learning
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algorithm, K-nearest neighbor (KNN) exhibits a high accuracy when it is used for classifica-
tion and regression. However, it is insensitive to outliers and has issues, such as difficult
feature band selection [24]. Meanwhile, support vector machine (SVM) and support vector
regression (SVR), as non-linear algorithms, are effective in reducing the model complexity
and prediction error for both classification and regression tasks. However, they require
the manual selection of suitable features and kernel functions [25]. As a deep learning
algorithm, the one-dimensional convolutional neural network (1D-CNN) can overcome the
aforementioned issues.

So far, the application of convolutional neural networks (CNNs) has produced sig-
nificant results in various fields. A 1D-CNN has a similar structure to conventional CNN;
however, the former is more powerful at model representation than the latter. It can be
trained effectively using limited data sets because it only requires simple pre-processing,
exhibits good information extraction efficiency, and has low computational requirements.
Therefore, optimal models can be obtained in real-life applications using a 1D-CNN [26–28].
Therefore, it was postulated that combining the excellent predictive performance of a 1D-
CNN with detailed Vis-NIR analysis would allow for the simplification of complex tasks,
such as the identification of the geographical origin and the prediction of the physiologically
active ingredient contents in herbal medicines.

The aim of this study was to establish an effective and industrially referable method
for the evaluation of G. elata to identify the origin of G. elata and predict its physiologically
active ingredient contents. Specifically, our objectives were (1) to evaluate the potential of
applying Vis-NIR spectroscopy for the identification of the geographical origin of G. elata
and prediction of the bioactive contents, (2) to compare the prediction efficacy of models
established using deep learning algorithms (1D-CNN) and conventional machine learning
methods (PLS-DA/PLSR, KNN, and SVM/SVR) and identify the ideal modeling method,
(3) to verify the feasibility of using a Vis-NIR discriminant model to identify the origin
of G. elata through spectral characterization, and (4) to establish a calibration model for
the bioactive components in G. elata using Vis-NIR analysis for predicting the contents of
multiple components simultaneously.

2. Materials and Methods
2.1. Sample Collection and Pre-Treatment

The majority of the market’s G. elata comes from various geographical origins in
China (Figure 1). The samples for this study were collected from these cultivation bases
in December 2021 by the Bijie Institute of Traditional Chinese Medicine, Bijie, Guizhou
Province. The information on the samples is shown in Table 1. The G. elata samples from
different origins and batches were classified, cleaned, steamed for 30 min, and then dried
in a 50 ◦C oven (Shanghai Yetuo Technology Co., Ltd., Shanghai, China). Subsequently, in
order to have a homogeneous G. elata powder sample, each batch of dried G. elata samples
was crushed and sieved. A total of 240 powder samples of G. elata were obtained and stored
in a laboratory at room temperature (25 ± 1 ◦C) and a humidity of 45 ± 1%. These samples
were analyzed via HPLC after collecting the Vis-NIR spectral data.

Table 1. Geographical information of the G. elata samples.

City Province Number of
Batches

Region
(City)

Region
(Province)

Number of
Batches

Dejiang (DJ) Guizhou 25 Zhaotong
(ZT) Yunnan 5

Dafang (DAF) Guizhou 40 Yichang (YC) Hubei 20
Leishan (LS) Guizhou 40 Wufeng (WF) Hubei 5
Pu’an (PUA) Guizhou 25 Lueyang (LY) Shaanxi 30
Liping (LP) Guizhou 25 Danfeng (DF) Shaanxi 20
Lijiang (LJ) Yunnan 5
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2.2. Acquisition of Vis-NIR Spectral Data

A Vis-NIR spectrometer (XDS Rapid Content, Foss NIR SystemsInc., Hillerød, Den-
mark) with silicon (400–1100 nm) and lead sulfide (1100–2500 nm) detectors was used to
collect the spectra in the range of 400–2500 nm with a sampling interval of 2 nm. Vis-NIR
spectra of samples were collected in the laboratory at a room temperature of 25 ± 1 ◦C and
humidity of 45 ± 1%. The spectrum of each sample was measured three times, and the
average spectrum was used for further analysis.

2.3. Determination of the Contents of Bioactive Components via HPLC

A total of 2.0 g of each G. elata sample was weighed and transferred into a 50 mL conical
flask, and 25 mL of a 60% methanol solution was added. The mixture was weighed, and
the extraction was performed via ultrasonication for 1 h. The mixture was then weighed,
replenished, and centrifuged (Hunan Kaida Scientific Instrument Co., Ltd., Changsha,
China). Thereafter, 5 mL of the supernatant was added to 5 mL of the 60% methanol
solution and filtered through a 0.45 µm microporous membrane before analyzing via HPLC.

HPLC analysis was performed on an UltiMate 3000 HPLC system (Thermo Fisher
Scientific, Waltham, MA, USA) with a Phenomenex Luna C18 (250 mm × 4.6 mm, 5 µm)
column. The mobile phase consisted of acetonitrile (A) and 0.1% aqueous phosphate
solution (B). The flow rate was 1.0 mL/min, and the gradient elution conditions were as
follows: 0–5 min, 3.0% A; 5–15 min, 3.0–5.0% A; 15–22 min, 5.0% A; 22–25 min, 5.0–10.1%
A; 25–35 min, 10.1–10.2% A; 35–45 min, 10.2–14.0% A; 45–52 min, 14.0% A; 52–55 min,
14.0–16.5% A; 55–63 min, 16.5–17.5% A; 63–65 min, 17.5–20.0% A; 65–70 min, 20.0% A.
The column temperature was 35 ◦C, the injection volume was 4 µL, and the detection
wavelength was 220 nm. For the validation of the HPLC method, refer to [29]. Compared
with the method recorded in the Chinese Pharmacopoeia (2020) [30], this method allows
for the simultaneous determination of multiple physiologically active ingredient contents
of G. elata.

2.4. Chemometric Analysis
2.4.1. Partial Least Squares Regression (PLSR)/Partial Least Squares Discriminant
Analysis (PLS-DA)

PLSR is a multivariate statistical method commonly used in spectral analysis for
regression with linear features. PLSR operates well when processing predictor variables
with multicollinearity and considers both spectral and feature information. PLS-DA is
an extension of the classical PLS algorithm and is also based on a linear classification
technique [31,32]. In this study, the categorical variables of the calibration sample set were
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established first during the development of the PLS-DA discriminant model, followed by
the PLS analysis of the categorical variables and the spectral data to establish their PLS
model; the values of the categorical variable (ypredicted) of the testing set were calculated
based on this PLS model. The classification variables of the eleven different sample origins
were assigned as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11. When 0.5 < ypredicted < 1.5, the samples
were assigned to the first category. When 1.5 < ypredicted < 2.5, the samples were assigned
to the second category.

2.4.2. K-Nearest Neighbor (KNN)

KNN is a supervised-learning-based classification algorithm that can be used for
classification and regression tasks [24]. The basic concept of the KNN algorithm [33] is to
calculate the distance or similarity between the data of the sample to be classified and the
known training samples and determine the K-nearest neighbors to the sample data to be
classified according to the distance or similarity. Thereafter, the category of the sample
data can be determined based on the categories of the neighbors. When all the K neighbors
of the sample data belong to the same category, the sample is assigned to belong to that
category. Therefore, new data Y and some training sample X = (x1, x2, . . . , xn) is usually
calculated using the following Euclidean distance formula:

d(x, y) =

√
∑n

k = 1 (xk − yk)
2

(1)

where d(x, y) represents the Euclidean distance between Y and X. xk means the k feature
attribute value of X training sample. yk means the k feature attribute value of the Y
training sample.

2.4.3. Support Vector Machine (SVM)/Support Vector Regression (SVR)

An SVM is a data mining method for classification and regression based on the
structural risk minimization principle [25]. SVR is an application of SVM used to address
regression problems and can model high-dimensional data well. Therefore, the radial
basis function (RBF) kernel function was applied for SVM modeling in this research.
The two important parameters of the RBF kernel function are the penalty parameter c
and the kernel function parameter g. These factors are very important to the model,
especially the complexity, approximation error, and measurement accuracy. In addition,
their optimization is essential. Therefore, the grid search (GS) technique was used to select
the optimal parameters for this study [34]. For this purpose, all the values of the c–g
parameter pairs were tested, and the c–g pair with the highest accuracy was identified via
cross-validation and used as the optimal parameters.

2.4.4. One-Dimensional Convolutional Neural Network (1D-CNN)

The structure of a 1D-CNN is similar to that of a conventional CNN and consists of
input, convolutional, grouping, pooling, fully connected, and dense layers (Figure 2) for
feature extraction, learning, and providing numerical outputs for classification or regression
tasks [35,36]. However, it is more powerful in model representation than a conventional
CNN. The convolutional layer is composed of multiple convolutional kernels. Convolution
with these kernels on the original data is regarded as extracting features that contain the
characteristics represented by the convolutional kernels. The number of convolutional
kernels determines the number of generated features. Different activation functions are
used to show complex features. The dropout layer can temporarily discard a certain
percentage of neural network units from each fully connected layer during the training
process of a deep neural network. This means that different networks are trained for
each batch, reducing the occurrence of overfitting. The fully connected layer maps the
learned features to the sample label space. The flatten layer flattens the input data without
affecting the batch size, serving as a transformation between the convolutional and fully
connected layers.
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The structure of the 1D-CNN models was built based on the TensorFlow framework,
the structure and parameters of which are shown in Table 2. The default parameters in
TensorFlow are not specified in the table. The input spectral data are presented as different
origins. As Vis-NIR spectral data exhibits continuous changes in absorbance values with
wavelength, when the convolutional kernel has a small size, the kernel may extract features
on subintervals that are not near absorption peaks. Modeling with these features makes it
difficult for the model to capture distinctive and discriminative spectral patterns, resulting
in poor generalization performance. In addition, as shown in Figure 2, 8 kernels were used
to capture low-level local features in the first convolutional layer. The second convolutional
layer used 16 kernels to further combine and abstract these features, capturing higher-
level features. This hierarchical feature extraction helped the model to better understand
the structure of the data. Shallow networks have weaker modeling capabilities, and the
combination of two convolutional layers could improve the model’s representational power.
Therefore, a brief description of the layers is as follows:

Table 2. Network structural parameters of 1D-CNN.

Network Layer
G. elata

Input Shape Output Shape Hyperparameters

Gaussian noise (None, 1030) (None, 1030) t = 0.05
Reshape (None, 1030) (None, 1030, 1)

1D convolution (None, 1030, 1) (None, 999, 8) K = 8, s = 32, a = “ReLU”
1D convolution (None, 999, 8) (None, 968, 16) K = 16, s = 32, a = “ReLU”

Dropout (None, 968, 16) (None, 968, 16) r = 0.5
Flatten (None, 968, 16) (None, 15,488)
Dense (None, 15,488) (None, 128) d = 128, a = “ReLU”

Output (None, 128) (None, 11) d =11, a = “Softmax”
t: standard deviation of the generated Gaussian noise, k: number of the convolution kernels, s: size of each kernel,
a: activation function, r: dropout rate of the input units, d: output spatial dimensions, ReLU: rectified linear unit.

(1) The Gaussian noise layer assisted in the regularization of the model by noising the
pre-processed data with a Gaussian noise filter and was only valid during training. The
value 1030 in the input shape of the Gaussian noise layer represented the feature dimension
of each sample. In this study, the spectral data of each sample was obtained from the
Vis-NIR spectra after spectral pre-processing and consisted of 1030 wavelength points. The
Gaussian noise layer only added noise to the data without changing its shape, and thus,
the output feature sequence remained 1030.
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(2) In deep neural networks, the dimensionality of the input data is altered using the
reshape layer. The reshape layer adapts the two-dimensional (2D) Vis-NIR spectroscopy
data to three-dimensional (3D) data, with the third dimension having a fixed value of 1.

(3) There were two convolutional layers. The rectified linear unit (ReLU) function was
regarded as the activation function of both convolutional layers. The convolutional layer 1
achieved convolution in 1D with 8 convolution kernels with a size of 32, with a stride of
1. Therefore, when data with 1030 features underwent convolution with a size of 32, the
resulting number of features was (1030–32) + 1, which is 999 features. The third parameter,
namely, 8, represented the number of convolutional kernels, each of which learned different
features and generated an output sequence.

(4) The second convolutional layer further enhanced the model’s ability to learn
feature representations and capture more feature information. Similarly, 16 convolutional
kernels with a size of 32 were used in this layer. When data with 999 features underwent
convolution with a size of 32, the resulting number of features was (999–32) + 1, which is 968
features. The third parameter, namely, 16, represented the number of convolutional kernels.

(5) The dropout layer generalized the model by randomly dropping out neurons to
prevent overfitting, with the dropout rate of the input units represented by r.

(6) The flattening layer flattened the features extracted by the convolutional layers.
During this process, it sequentially unfolded all the elements and transformed the output
data shape to (None, 15,488).

(7) The dense layer, also known as the fully connected layer, further compressed the
nodes in the network. It took an input dimension of 15488. This layer was configured with
128 neurons, each of which performed a weighted sum and processed the 15,488 input
features, resulting in an output value.

(8) The output layer operated on the same principles as the previous fully connected
layer. It was configured with 11 neurons, each of which performed a weighted sum and pro-
cessed the 128 input features, resulting in an output value. It mapped the 128-dimensional
features of the input to an 11-dimensional features space, where each neuron corresponded
to a category, and the output value represents the probability of that category. Additionally,
L1 and L2 losses were set in this layer to achieve weight regularization.

A 1D-CNN is more flexible in extracting key features and more expressive than
conventional machine learning algorithms, enabling a better extraction of patterns and
features. Furthermore, compared with conventional neural networks, 1D-CNN has fewer
parameters and is easier to train.

2.5. Statistical Analysis

HPLC analysis requires known standards to identify the peaks representing GA, HA,
PA, PB, PC, and PE. Based on the calibration curves, the content of each physiologically
active ingredient can be calculated. The results of the PLS-DA, the principal component
analysis (PCA), and a clustered heatmap were plotted to analyze the physiologically
active ingredients.

For the model analysis, a total of 240 samples, as shown in Table 3, were divided in a
3:1 ratio between the training and testing sets using the sample set portioning based on
the joint x–y distance (SPXY) algorithm. The SPXY method is a sample split method based
on the Kennard–Stone (KS) method that can be used for the qualitative and quantitative
analyses of spectra [37].
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Table 3. Classification statistics of the G. elata samples.

Samples SPXY Divided
the Sample Set

Number of
Samples

Min
(mg/g)

Max
(mg/g)

Mean
(mg/g)

Std
(mg/g)

Gastrodin (GA)
Training set 180 0.4172 8.7501 2.0922 1.6732
Testing set 60 0.4172 6.1368 1.6160 1.0809

p-Hydroxybenzyl
alcohol (HA)

Training set 180 0.2654 2.1445 0.8901 0.4285
Testing set 60 0.2654 1.6148 0.7957 0.3369

Parishin E (PE)
Training set 180 1.3070 7.0529 3.3809 1.3630
Testing set 60 1.3070 6.2551 3.5147 1.4350

Parishin B (PB)
Training set 180 0.9511 5.1121 2.9258 0.9635
Testing set 60 0.9511 4.9068 2.6958 0.8327

Parishin C (PC)
Training set 180 0.2227 1.9953 0.7953 0.3920
Testing set 60 0.2227 1.8459 0.7049 0.3285

Parishin A (PA)
Training set 180 0.9179 15.9855 6.4430 3.3290
Testing set 60 0.9179 12.1205 5.3990 2.6437

GA + HA
Training set 180 1.0952 10.4906 2.9512 1.9493
Testing set 60 1.0952 7.4369 2.4284 1.2823

Total
Training set 180 5.2818 33.2749 16.4603 6.3342
Testing set 60 5.2818 29.5875 14.5303 5.0405

GA + HA: the sum of gastrodin and p-hydroxybenzyl alcohol; total: the sum of gastrodin, p-hydroxybenzyl
alcohol, parishin E, parishin B, parishin C, and parishin A; SPXY: sample set portioning based on joint x–y distance;
Min: minimum value; Max: maximum value; Mean: mean value; Std: standard deviation.

In this research, PLS, KNN, and SVM algorithm codes were produced using Python
(ver.3.8.5, Python Software Foundation, Beaverton, OR, USA);scikit-learn package (ver.
1.0.2, https://github.com/scikit-learn/scikit-learn) (accessed on 22 October2023);keras
(ver. 2.8.0, Google, Menlo Park, CA, USA); tensorflow (ver. 2.8.0, Google, Menlo Park, CA,
USA). The 1D-CNN was performed using Python ver. 3.8.5 with the Keras library ver. 2.8.0
and the TensorFlow ver. 2.8.0 backend. All computations were carried out on a desktop PC
with an Intel Xeon(R) Platinum 8124M 3.00 GHz processor, 64 GB RAM, and the NVIDIA
GeForce RTX 3060.

Accuracy, precision, recall rate, and F1 score were used in this study; these are the
evaluation indicators of the origin discrimination models. By comparing these indicators,
the optimal Vis-NIR spectral discrimination model was selected to classify and validate the
respective origins of the G. elata samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2TP

2TP + FP + FN
(5)

where the numbers of true positive (TP), true negative (TN), false negative (FN), and
false positive (FP) results were counted, respectively. The predictions also are shown in a
confusion matrix for convenience [38].

The final optimal calibration model was chosen based on the minimum root-mean-
square error of prediction (RMSEP), the highest coefficients of determination of the training
set (R2

v)and the prediction set (R2
p), and the lowest mean relative errors for cross-validation

(MRECV) and prediction (MREP). The regression model has a better fit when the coefficient
of determination is closer to one. Moreover, numerically closer values of RMSECV and
RMSEP suggest a better generalization ability of the model. When the results fulfilled

https://github.com/scikit-learn/scikit-learn
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these criteria, it could be concluded that the model was well suited for the prediction of
physiologically active ingredient contents in G. elata from different origins.

3. Results
3.1. Statistical Analysis of Physiologically Active Ingredients Content Determined via the
HPLC Method

The contents of the physiologically active ingredients (GA, HA, PA, PB, PC, and PE)
in the G. elata samples from different origins were determined via HPLC. The sum of the
contents of GA and HA [12], the sum of all component contents (total), and the coefficient
of variation (CV) of each content were calculated (Table 4). Considering the CV values, the
amounts and types of the G. elata samples from the eleven origins varied considerably. The
GA content had the highest variation, with a CV of 61.06%, whereas the PB content had
the lowest CV of 22.05%. The samples with a PGI indicating they were from DJ had the
highest GA content of 4.7047 mg/g, whereas the samples with a PGI indicating that they
were from YC had the lowest GA content of 1.0361 mg/g. The highest content of HA was
1.2674 mg/g in the samples with a PGI indicating that they were from LS, and the lowest
HA content of 0.3898 mg/g was observed for samples from DAF. The highest content
of PE was 5.8001 mg/g, which was detected for the samples from LP, and the lowest PE
content of 1.9492 mg/g was observed for the samples from LY. The highest content of PB
was 3.9674 mg/g in the samples with a PGI indicating that they were from DJ, and the
lowest PB content was 2.0601 mg/g, which was detected for the samples from DF. The
highest content of PC was 1.5170 mg/g in the samples with a PGI indicating that they
were from DJ, and the lowest PC content was 0.4814 mg/g, which was detected in the
samples from YC. The highest PA content was 10.3782 mg/g, which was determined in
the samples with a PGI indicating that they were from DJ, and the lowest PA content was
2.6593 mg/g, which was detected in samples from ZT. The highest sum of the contents
of GA and HA was 5.8882 mg/g and was detected in samples with a PGI indicating that
they were from DJ, and the lowest value was 1.7200 mg/g obtained for samples from LP.
The total contents ranged from a maximum of 24.4433 mg/g observed for samples with a
PGI indicating that they were from DJ to a minimum of 12.0235 mg/g detected in samples
from DAF. The reason for this phenomenon was that different regions lead to differences
in soil pH, organic matter content, and microbial populations [39]. As the contents of the
physiologically active ingredients in the G. elata are correlated with these influencing factors,
the levels of physiologically active ingredients in the G. elata from different regions varied.

The results of the comparison show that the G. elata samples with a PGI indicating that
they were from DJ had the highest physiologically active ingredients content, which may
be attributed to the fact that this region has a humid climate, sufficient sunlight, average
temperatures of 13–17 ◦C throughout the year, and frost-free weather up to 295 days a
year [40]. The G. elata samples with a PGI indicating that they were from LS had lower
physiologically active ingredient contents than the samples from PUA without a PGI. The
total contents in the G. elata samples collected from DAF and ZT with PGIs were lower
than those in samples collected from PUA, LP, and WF without PGIs. The season of
collection and the grade of the collected G. elata may have both contributed to the poor
quality of samples collected from DAF and ZT. This finding indicates that sourcing G. elata
from a region with a PGI does not ensure high physiologically active ingredient contents.
Furthermore, the quality of G. elata should be determined based on a combination of the
origin and physiologically active ingredient contents of the sample.
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Table 4. Bioactive component contents of G. elata samples from different origins (mg/g).

Region of
Origin

Gastrodin
(GA)

p-Hydroxybenzyl
Alcohol

(HA)

Parishin E
(PE)

Parishin B
(PB)

Parishin C
(PC)

Parishin A
(PA) GA + HA Total

Dafang
(DaF) 1.5117 0.3898 3.7303 2.2392 0.6245 3.5280 1.9015 12.0235

Pu’an (PA) 3.5800 1.1643 2.9929 3.9372 1.1369 9.7448 4.7443 22.5561
Yingchang

(YC) 1.0361 0.9661 3.8818 2.4010 0.4814 4.7407 2.0021 13.5071

Wufeng
(WF) 1.2197 0.8885 4.2984 2.7102 0.5647 6.0205 2.1082 15.7020

Lijiang (LJ) 2.0826 1.2167 2.7562 3.0411 0.6751 3.3120 3.2993 13.0837
Zhaotong

(ZT) 1.3222 1.1378 4.9121 2.5771 0.5723 2.6593 2.4600 13.1809

Lueyang
(LY) 1.5378 0.6945 1.9492 2.6026 0.7956 6.7290 2.2323 14.3087

Liping (LP) 1.1844 0.5356 5.8001 2.6807 0.4926 5.8463 1.7200 16.5397
Leishan

(LS) 1.5864 1.2674 3.7008 3.1863 0.7102 6.3293 2.8538 16.7804

Danfeng
(DF) 1.2382 0.5367 2.7307 2.0601 0.5670 3.4004 1.7749 10.5331

Dejiang
(DJ) 4.7040 1.1842 2.6924 3.9674 1.5170 10.3782 5.8882 24.4433

Mean 1.9094 0.9074 3.5859 2.8548 0.7398 5.6989 2.8168 15.6962
CV% 61.06 35.09 31.23 22.05 42.74 44.98 47.8204 27.4375

Mean: mean value; CV: coefficient of variation; GA + HA: the sum of gastrodin and p-hydroxybenzyl alcohol;
total: the sum of gastrodin, p-hydroxybenzyl alcohol, parishin E, parishin B, parishin C, and parishin A.

For a more intuitive study, we combined the analysis of the physiologically active
ingredient contents in G. elata with chemometrics to identify the clusters of origins. The
2D PCA score plot for the origin classification (Figure 3a) showed that the sum of PC1 and
PC2 accounted for 96.65% of the explained total variance (PC1 = 92.01%, PC2 = 4.65%) and
could explain most of the variability. However, no significant clustering of the samples from
the eleven origins was observed, and the data points were dispersed and had overlapping
distributions. Based on the results of the PLS-DA classification (Figure 3b), the samples
from several origins showed indications of classification, but ultimately, they could not be
completely separated owing to the extensive overlaps. In addition, to examine whether
certain components were indicative of certain origins, a clustered heatmap analysis of
the physiologically active ingredients content (x-axis) and sample origin (y-axis) was
performed (Figure 3c). The results showed that the samples from the same origin were
not distinguished, indicating that the physiologically active ingredient contents varied
in samples from the same origin. This may have been because the G. elata samples had
different quality grades [41]. The results of the aforementioned analysis indicate that it is not
currently possible to identify the origin of G. elata by solely considering the physiologically
active ingredient contents. Therefore, efficient methods should be developed to rapidly
and accurately identify the origin of G. elata.
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3.2. Analysis Based on the Vis-NIR Method
3.2.1. Spectral Analysis of the G. elata Samples

Figure 4a shows that there were some average raw spectra of the G. elata samples that
represented different origins, and there were eight distinct peaks and seven valleys. These
average spectra that represent different origins were consistent in trends and overlapped
tightly; however, subtle differences were observed in the absorption intensities, particularly
in the Vis detection range (400–780 nm). The absorption peaks at approximately 980 nm
referred to the second harmonic generation (SHG) of O–H in the phenolic acids and water.
The absorption peaks at ~1180 nm referred to the SHG of C–H in the phenolic acids and
polysaccharides in G. elata. The absorption peaks in the range of 1420–1440 nm referred to
the first harmonic generation (FHG) of O–H in the phenolic acids and polysaccharides in G.
elata, as well as in water. The absorption peaks in the range of 1500–1600 nm referred to the
FHG of C–H in the phenolic acid and polysaccharides in G. elata and the SHG of N–H in
amino acids. The absorption peaks at 1940 nm referred to the sum frequency generation
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(SFG) of O–H in water, and those at 2150 and 2350 nm referred to the SFG of N–H in amino
acids and C–H in phenolic acids in G. elata, respectively.
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To reduce noise, the Vis-NIR spectra were pre-treated with a second-order derivative
(SD) in this study, which significantly changed the shapes of the spectra (Figure 4b). The
intensities of certain peaks, such as those at 1400 and 1900 nm, were enhanced. However,
distinguishing the origin of G. elata using the averaged spectrum remains difficult.

3.2.2. Visual Analysis of Spectral Characteristics

To understand the similarities and differences in the Vis-NIR spectral datasets of G.
elata samples obtained from 11 different origins more intuitively and fully, three methods
were used to map the Vis-NIR spectral datasets pre-processed with SD to a 2D space. As
shown in Figure 5a–c, where each point represents an individual sample, visualization
analysis was performed on the 11 datasets.

The 2D score plot obtained from PCA can cluster samples with similar spectral charac-
teristics together [31,32]. The results show that the sum of PC1 and PC2 for origin classi-
fication accounted for 66.3% of the explained total variance (PC1 = 41.2%, PC2 = 25.1%).
Figure 5a presents that except for the samples from DJ, the samples from other regions
overlapped to a large extent, indicating poor separation. The t-distributed stochastic neigh-
bor embedding (t-SNE) visualization results (Figure 5b) show that the samples from DF, DJ,
LJ, and WF formed distinct clusters, while samples from other regions exhibited significant
overlap, indicating poor classification. The difference between the uniform manifold ap-
proximation and projection (UMAP) and t-SNE was minimal (Figure 5c). Although PCA
is an effective method for extracting data information, it was not able to visualize a large
amount of information. Comparatively, as a non-linear dimensionality reduction method,
the t-SNE visualization method visualized the data significantly better than PCA [42]. The
UMAP approach and computation were largely similar to t-SNE [43]. Compared with
previous research, the results of PCA are consistent with those of the literature [15], but the
results of t-SNE and UMAP are superior to the previous research. The visualization results
validate the fact that the identification of G. elata origin cannot be accomplished by solely
considering the clustering of spectra. At the same time, it was shown that G. elata from
different origins had similar chemical compositions. Therefore, the combined application
of Vis-NIR spectroscopy and chemometrics is required for further analysis.
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3.2.3. Identification of the Origin of G. elata Based on the Vis-NIR Data

The Vis-NIR spectral data were analyzed using 1D-CNN and other learning algorithms
(PLS-DA, KNN, and SVM), employing the eleven origins as labels. The results are shown
in Table 5. To enhance the stability of the model and avoid overfitting, the original spectral
data sets were expanded by adding random offsets and applying multiplication and slope
effects. The random offset of the spectral data was set to 0.1 times the mean value, and the
slope was offset by 0.05 times, that is, the slope was randomly adjusted between 0.95 and
1.05 to augment the spectrum. The data augmentation method was used to obtain a total of
1440 spectra for the training set. The training set was then used to train the neural network
and to avoid the risk of developing models with poor generalization ability. The same
expanded training and validation sets were also applied to other chemometric methods to
compare the advantages and disadvantages of models developed using 1D-CNN and other
chemometric methods before and after the data augmentation.

When analyzing the models developed with unexpanded data, it was found that
the results of the raw spectra performed the worst. A comparison of the other spectral
pre-processing methods for the models developed with unexpanded data showed that the
classification outcomes of all four models were improved after the spectral data were pre-
processed via a combination of SD and normalization methods. Specifically, the training
set accuracy (Acc_train) and the testing set accuracy (Acc_test) of the PLS-DA model
improved by 6.07% and 4.24%, respectively, after SD processing. Meanwhile, the precision
improved by 4.37%, and the recall rate and the F1 score improved by 2.98% and 4.57%,
respectively. Although the Acc_train of the KNN model was reduced, the Acc_test of the
KNN model improved from 0.5167 to 0.9667, the precision improved from 0.5060 to 0.9542,
the recall rate improved from 0.5167 to 0.9667, and the F1 score improved from 0.5062 to
0.9583. Additionally, the model performance of SVM improved considerably after the SD
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processing of the spectra. Acc_train improved from 0.8278 to 0.9611, Acc_test improved
from 0.6500 to 0.9833, the precision improved from 0.7211 to 0.9847, the recall rate improved
from 0.6500 to 0.9833, and the F1 score improved from 0.6579 to 0.9828. Similarly, the 1D-
CNN model performance improved after SD processing, obtaining a value of 1.0000 for each
of Acc_train, Acc_test, precision, recall rate, and F1 score when using processed data. As a
result of a comprehensive comparison of the models established with unexpended data, the
optimal model of G. elata origin discrimination could be established by pre-processing the
Vis-NIR spectra using SD and normalization combined with the application of 1D-CNN.

Table 5. Comparison of G. elata origin discrimination models based on different modeling methods.

Data
Augmentation Pre-Processing Modeling Method Acc_Train Acc_Test Precision Recall Rate F1 Score

No

Raw

PLS-DA 0.7833 0.8167 0.7995 0.8167 0.8031
KNN 0.7555 0.8167 0.8417 0.8167 0.8064
SVM 0.4167 0.4500 0.4366 0.4500 0.3750

1D-CNN 0.2611 0.2500 0.1131 0.2500 0.1392

Normalization

PLS-DA 0.8889 0.9167 0.9102 0.9167 0.9085
KNN 1.0000 0.5167 0.5060 0.5167 0.5062
SVM 0.8278 0.6500 0.7211 0.6500 0.6579

1D-CNN 1.0000 0.9167 0.9142 0.9167 0.9067

SD +
Normalization

PLS-DA 0.9429 0.9556 0.9500 0.9440 0.9500
KNN 0.9944 0.9667 0.9542 0.9667 0.9583
SVM 0.9611 0.9833 0.9847 0.9833 0.9828

1D-CNN 1.0000 1.0000 1.0000 1.0000 1.0000

Yes

Raw

PLS-DA 0.7125 0.7167 0.6845 0.7167 0.6706
KNN 0.8292 0.7167 0.8539 0.7167 0.7170
SVM 0.3833 0.4500 0.2933 0.4500 0.3241

1D-CNN 0.3951 0.4667 0.3495 0.4667 0.3641

Normalization

PLS-DA 0.9667 0.9167 0.9117 0.9167 0.9096
KNN 1.0000 0.7167 0.7409 0.7167 0.7121
SVM 0.8625 0.8833 0.9012 0.8833 0.8718

1D-CNN 1.0000 0.9833 0.9847 0.9833 0.9833

SD +
Normalization

PLS-DA 0.9764 0.9833 0.9701 0.9833 0.9759
KNN 1.0000 0.9833 0.9861 0.9833 0.9829
SVM 1.0000 0.9833 0.9917 0.9833 0.9849

1D-CNN 1.0000 1.0000 1.0000 1.0000 1.0000

Bolded font indicates the optimal modeling results; SD: second-order derivative; Acc_train: training set accuracy;
Acc_test: testing set accuracy.

Analyzing the models established based on expanded data, it was found that the
results of the raw spectra performed the worst. A comparison of the two spectral pre-
processing methods for the models established based on expanded data suggested that
the classification results of all four models were improved after the spectral data was
pre-processed with both SD and normalization. Specifically, after pre-processing, for the
PLS-DA model, Acc_train and Acc_test improved by 1.00% and 7.27%, respectively; the
precision improved by 6.41%, and the recall rate and F1 score improved by 7.27% and
7.29%, respectively. In the case of the KNN model, Acc_test improved from 0.7167 to
0.9833, precision improved from 0.7409 to 0.9861, the recall rate improved from 0.7167
to 0.9833, and the F1 score improved from 0.7121 to 0.9829. The SVM model exhibited a
significant improvement in parameters, with Acc_train improving from 0.8625 to 1.0000,
Acc_test improving from 0.8833 to 0.9833, precision improving from 0.9012 to 0.9917, the
recall rate improving from 0.8833 to 0.9833, and the F1 score improving from 0.8718 to
0.9849. Finally, the performance of the 1D-CNN model was improved, with the values of
Acc_train, Acc_test, precision, recall rate, and F1 score equal to 1.0000. A comprehensive
comparison of all the models developed with expanded data revealed that the optimal
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model for discriminating the origin of G. elata was the combined application of Vis-NIR
spectra pre-processed using both SD and normalization and the 1D-CNN method.

The performances of the models established before and after data augmentation were
compared after the spectral data were pre-treated via normalization. The identification
results of the PLS-DA, KNN, SVM, and 1D-CNN models were improved after the augmen-
tation of the Vis-NIR spectral data. The 1D-CNN model exhibited the highest performance,
with an Acc_train of 1.0000, an Acc_test of 0.9833, a precision of 0.9847, a recall rate of
0.9833, and an F1 score of 0.9833. Thereafter, the performances of the models developed
before and after data augmentation after the spectral data were pre-processed using both
SD and normalization were compared. The classification results of the PLS-DA, KNN, SVM,
and 1D-CNN models were also improved after the Vis-NIR spectral data augmentation.
The 1D-CNN model showed the optimal results, with the values of the Acc_train, Acc_test,
precision, recall rate, and F1 score equal to 1.0000. These results of 1D-CNN models also
showed the presence of more inherent nonlinear correlations between spectral data and
the original labels. Therefore, data augmentation is a viable Vis-NIR spectral data set
augmentation technology. It improves the robustness of the 1D-CNN model.

In conclusion, the optimal spectral pre-processing method combined pre-processing
with SD and normalization. Furthermore, the robustness of the model could be improved
using data augmentation, and the optimal modeling algorithm was the 1D-CNN. To further
verify the performances and effectiveness of the classification models in this study, the opti-
mal model of each of the four algorithms was selected for plotting their confusion matrices,
aiming to apply different discriminant models to each sample to obtain further details
(Figure 6). The confusion matrices indicate that one sample from WF was misclassified as
being from YC in the PLS-DA model, one sample from YC was misclassified as being from
PA in the KNN model, and one sample from YC was misclassified as being from WF in
the SVM model. Notably, all samples were correctly classified when using the 1D-CNN
model. These results indicate that the PLS-DA, SVM, and KNN algorithms confused the
data of the G. elata samples collected from YC, WF, and PA during classification, which may
have been because of the characteristic spectral bands that suggest the differences in the
origin and the bioactive component contents of G. elata. The 1D-CNN algorithm effectively
addressed these issues. Therefore, the optimal model was established by pre-processing
the Vis-NIR spectra using both SD and normalization, expanding the data, and modeling
with the 1D-CNN algorithm. The results confirmed that the 1D-CNN model had strong
automatic learning characteristics and was better suited for the origin identification of
G. elata than the other models considered in this research, providing a rapid method for
distinguishing samples of different origins with PGI.
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1D-CNN 1.0000 0.9833 0.9847 0.9833 0.9833 

SD + 
Normalization 

PLS-DA 0.9764 0.9833 0.9701 0.9833 0.9759 
KNN 1.0000 0.9833 0.9861 0.9833 0.9829 
SVM 1.0000 0.9833 0.9917 0.9833 0.9849 

1D-CNN 1.0000 1.0000 1.0000 1.0000 1.0000 
Bolded font indicates the optimal modeling results; SD: second-order derivative; Acc_train: training 
set accuracy; Acc_test: testing set accuracy. 

In conclusion, the optimal spectral pre-processing method combined pre-processing 
with SD and normalization. Furthermore, the robustness of the model could be improved 
using data augmentation, and the optimal modeling algorithm was the 1D-CNN. To 
further verify the performances and effectiveness of the classification models in this study, 
the optimal model of each of the four algorithms was selected for plotting their confusion 
matrices, aiming to apply different discriminant models to each sample to obtain further 
details (Figure 6). The confusion matrices indicate that one sample from WF was 
misclassified as being from YC in the PLS-DA model, one sample from YC was 
misclassified as being from PA in the KNN model, and one sample from YC was 
misclassified as being from WF in the SVM model. Notably, all samples were correctly 
classified when using the 1D-CNN model. These results indicate that the PLS-DA, SVM, 
and KNN algorithms confused the data of the G. elata samples collected from YC, WF, and 
PA during classification, which may have been because of the characteristic spectral bands 
that suggest the differences in the origin and the bioactive component contents of G. elata. 
The 1D-CNN algorithm effectively addressed these issues. Therefore, the optimal model 
was established by pre-processing the Vis-NIR spectra using both SD and normalization, 
expanding the data, and modeling with the 1D-CNN algorithm. The results confirmed 
that the 1D-CNN model had strong automatic learning characteristics and was better 
suited for the origin identification of G. elata than the other models considered in this 
research, providing a rapid method for distinguishing samples of different origins with 
PGI. 
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The loss and accuracy curves of the training set and testing set can diagnose any issues
that could be causing underfit or overfit models during the learning process [44]. If the
model is overfitting, the loss curve will gradually decrease on the training set, but it may
stabilize or start to increase on the testing set. The accuracy of the model on the training set
may approach 100%, while it may decrease or stabilize on the testing set. If the model is
underfitting, both the loss curve on the training set and the testing set may fail to reach
a low level, and the difference between them may be small. The accuracy of the model
on both the training set and the testing set may be low, with a small difference between
them. As a result, the 1D-CNN model was trained with an initial learning rate of 0.01,
50 iterations (epoch = 50), and a batch size of 32 (batch_size = 32) in this study. From
Figure 7a, it can be observed that as the number of training iterations increased, the loss
function of the 1D-CNN model for both the training set and testing set gradually decreased,
indicating that the model was finding spectral features related to the origin of G. elata.
When the loss function was very low, the loss curve decreased significantly and became
flat as it approached zero. At this point, the 1D-CNN model became more stable, and the
losses of the training set and testing set both converged, with a small difference between
them, indicating successful fitting. Figure 7b shows that the accuracy curve of the 1D-CNN
model on both the training set and testing set approached 1 (or 100%), indicating optimal
model performance.
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In terms of origin identification, the relevant literature has identified G. elata from
up to eight different regions [15]. In this study, successful identification of G. elata from
11 different regions was achieved. From the perspective of the algorithm performance, the
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identification accuracy of the 1D-CNN model was comparable to the accuracy reported in
the literature for three or six different regions of G. elata [4,16].

In addition, the evaluation indicators of the 1D-CNN model in this study were consis-
tent with those in the relevant literature, and the F1 score was 1 [45]. The main reason for
this was that 1D-CNN has advantages, such as local feature extraction, parameter sharing,
multi-level abstraction, and non-linear activation functions, which enable it to capture the
correlations between data more effectively. In this study, although the G. elata samples
were sourced from different regions, they were harvested during the same period and
under the same cultivation techniques. With fewer confounding factors in the experiment,
the 1D-CNN model was able to capture the correlations between the data more easily,
resulting in an F1 score value of 1.0000. Therefore, future research should collect more
G. elata samples from different regions that are harvested at different times, in order to
enhance the reliability and applicability of the 1D-CNN model.

3.2.4. Prediction of Physiologically Active Ingredient Contents in G. elata Based on the
Vis-NIR Method

Considering the intrinsic association between the origins of G. elata samples and their
contents of physiologically active ingredients, it was investigated whether the Vis-NIR
technique could be used to predict the contents of ingredients in G. elata. In this study,
the SPXY method was applied to divide the training and testing sets (Table 3). The X
variable was the Vis-NIR spectra after pre-processing using both SD and normalization and
the Y variable was the content of each component in the samples determined via HPLC.
The X variable was set to 180 samples × 1050 variables before the data augmentation and
1440 samples × 1050 variables after the data augmentation.

The parameters of the model for determining the physiologically active ingredients
content of G. elata based on the Vis-NIR full-wavelength spectra are listed in Table 6. When
the data augmentation was not performed, the GA content was most effectively predicted
by the SVR and 1D-CNN models, as both models had high R2

v (higher than 0.9800) and
R2

p values (higher than 0.8800). After the data augmentation, the predictive performance
of PLSR and SVR did not improve significantly. However, the performances of the KNN
and 1D-CNN models improved, yielding R2

v and R2
p values higher than 0.9900 and 0.9200,

respectively. This indicates that the KNN and 1D-CNN models were more precise in
predicting GA content after the data augmentation than the other models. Comparing
the performance parameters of the models, the optimal method was determined to be the
combined application of the 1D-CNN algorithm and the expanded Vis-NIR spectral data
pre-processed using SD (Figure 8a). The optimal model had the highest R2

v and R2
p values

(0.9974 and 0.9278, respectively) and lower RMSECV, RMSEP, MRECV, and MREP values
(0.0843, 0.2881, 0.0328, and 0.1396, respectively) than the other models, suggesting that it
was the optimal model for predicting the GA content.

Table 6. Results of the calibration models for predicting the contents of bioactive components in G.
elata based on different algorithms.

Number Components Spectral
Pre-Processing

Modeling
Method R2

v MRECV RMSECV R2
p MREP RMSEP

1
Gastrodin

(GA)

SD

PLSR 0.9770 0.1277 0.2530 0.6794 0.3868 0.6069
KNN 0.8835 0.1968 0.5696 0.8995 0.1964 0.3398
SVR 0.9974 0.0549 0.0851 0.8869 0.2360 0.3604

1D-CNN 0.9867 0.0707 0.1924 0.8913 0.1920 0.3535

SD +
augmentation

PLSR 0.9749 0.1323 0.2642 0.6775 0.3864 0.6086
KNN 0.9247 0.1722 0.4577 0.9202 0.1714 0.3027
SVR 0.9985 0.0385 0.0644 0.8863 0.2243 0.3615

1D-CNN 0.9974 0.0328 0.0843 0.9278 0.1396 0.2881
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Table 6. Cont.

Number Components Spectral
Pre-Processing

Modeling
Method R2

v MRECV RMSECV R2
p MREP RMSEP

2

p-
Hydroxybenzyl

alcohol
(HA)

SD

PLSR 0.9179 0.1463 0.1224 0.6796 0.2459 0.1918
KNN 0.941 0.0952 0.1038 0.89 0.1207 0.1108
SVR 0.9644 0.1094 0.0806 0.8749 0.1596 0.1182

1D-CNN 0.9744 0.072 0.0684 0.919 0.1184 0.0951

SD +
augmentation

PLSR 0.9346 0.1270 0.1093 0.6715 0.2602 0.1915
KNN 0.8761 0.1143 0.1505 0.9274 0.0891 0.09
SVR 0.9746 0.0926 0.0681 0.8972 0.1412 0.1071

1D-CNN 0.9976 0.0201 0.021 0.9321 0.0884 0.0871

3
Parishin E

(PE)

SD

PLSR 0.856 0.1468 0.5158 0.8862 0.1196 0.4801
KNN 0.8810 0.1153 0.4689 0.8858 0.1143 0.4810
SVR 0.8499 0.1183 0.5267 0.8800 0.1228 0.4930

1D-CNN 0.9971 0.018 0.0735 0.8963 0.1166 0.4583

SD +
augmentation

PLSR 0.8522 0.1479 0.5226 0.885 0.1197 0.4825
KNN 0.9381 0.0763 0.3382 0.9241 0.0902 0.3919
SVR 0.9972 0.0218 0.0725 0.9405 0.0831 0.3471

1D-CNN 0.9978 0.0164 0.0634 0.9433 0.0839 0.3387

4
Parishin B

(PB)

SD

PLSR 0.801 0.1409 0.4286 0.6413 0.1704 0.4945
KNN 0.9166 0.0867 0.2775 0.8345 0.1139 0.3359
SVR 0.9907 0.0328 0.0925 0.9066 0.0849 0.2523

1D-CNN 0.9788 0.0388 0.1396 0.8978 0.0812 0.2639

SD +
augmentation

PLSR 0.7998 0.141 0.4299 0.6408 0.1710 0.4949
KNN 0.826 0.1021 0.4008 0.8623 0.0776 0.3064
SVR 0.9951 0.0228 0.0670 0.9243 0.0752 0.2271

1D-CNN 0.9969 0.0151 0.0528 0.9094 0.0788 0.2485

5
Parishin C

(PC)

SD

PLSR 0.8844 0.164 0.1329 0.7178 0.2076 0.1731
KNN 0.9589 0.0926 0.0792 0.9087 0.1216 0.0984
SVR 0.9572 0.1219 0.0808 0.8514 0.1901 0.1256

1D-CNN 0.985 0.0601 0.0478 0.9304 0.1176 0.0859

SD +
augmentation

PLSR 0.8709 0.1762 0.1405 0.7201 0.2141 0.1723
KNN 0.9119 0.1031 0.116 0.9373 0.0885 0.0816
SVR 0.9691 0.1001 0.0688 0.8691 0.1712 0.1179

1D-CNN 0.9941 0.0335 0.0299 0.9454 0.0887 0.0761

6
Parishin A

(PA)

SD

PLSR 0.8934 0.2027 1.0839 0.6216 0.3181 1.6127
KNN 0.9359 0.1334 0.8402 0.8439 0.2031 1.0358
SVR 0.9904 0.0494 0.3244 0.8955 0.1967 0.8474

1D-CNN 0.9950 0.0379 0.2358 0.9448 0.1215 0.6159

SD +
augmentation

PLSR 0.8985 0.1922 1.0577 0.6228 0.3160 1.6101
KNN 0.9089 0.1362 1.0018 0.9269 0.1079 0.7086
SVR 0.9990 0.0204 0.1032 0.9078 0.1690 0.7959

1D-CNN 0.9985 0.0247 0.1274 0.9282 0.1329 0.7027

7 GA + HA

SD

PLSR 0.9741 0.1089 0.3129 0.6699 0.2989 0.7321
KNN 0.9191 0.1465 0.5530 0.8946 0.1486 0.4136
SVR 0.9976 0.0351 0.0942 0.9037 0.1618 0.3954

1D-CNN 0.9970 0.0298 0.1047 0.9015 0.1216 0.3999

SD +
augmentation

PLSR 0.9704 0.1132 0.3344 0.6718 0.2994 0.7300
KNN 0.9483 0.1202 0.4420 0.9141 0.1331 0.3733
SVR 0.9988 0.0251 0.0667 0.8990 0.1584 0.4048

1D-CNN 0.9976 0.0254 0.0958 0.9173 0.1006 0.3664
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Table 6. Cont.

Number Components Spectral
Pre-Processing

Modeling
Method R2

v MRECV RMSECV R2
p MREP RMSEP

8 Total

SD

PLSR 0.8928 0.1257 2.0679 0.6419 0.1830 2.9827
KNN 0.9388 0.0872 1.5628 0.8649 0.1156 1.8318
SVR 0.9370 0.0863 1.5851 0.8485 0.1314 1.9400

1D-CNN 0.9991 0.0097 0.1926 0.9136 0.0861 1.4653

SD +
augmentation

PLSR 0.8897 0.1272 2.0975 0.6435 0.1826 2.9757
KNN 0.9789 0.0375 0.9175 0.9261 0.0775 1.3547
SVR 0.9983 0.0137 0.2580 0.9301 0.0864 1.3180

1D-CNN 0.9962 0.0202 0.3912 0.9323 0.0794 1.2965

GA + HA: the sum of gastrodin and p-hydroxybenzyl alcohol; total: the sum of gastrodin, p-hydroxybenzyl
alcohol, parishin E, parishin B, parishin C, and parishin A; bolded font indicates the optimal modelling result; R2

v
is the coefficient of determination of the training set; MRECV: mean relative error for cross-validation; RMSECV:
root-mean-standard error for cross-validation; R2

p is the coefficient of determination of the testing set; MREP:
mean relative error for prediction; RMSEP: root mean standard error for prediction.
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Among the values of the models used to predict the HA content, the R2 values of
the PLSR, KNN, SVR, and 1D-CNN models were higher than 0.9100 when the training
data was used without data augmentation, and the values of the KNN, SVR, and 1D-CNN
models were particularly high (all values higher than 0.8700). After the data augmentation,
the R2 values of the PLSR model improved significantly, and the R2

v values of the KNN
model decreased. However, the R2

v values of the SVR and 1D-CNN models improved and
were higher than 0.9700. Meanwhile, their R2

p values were higher than 0.8900, indicating
that the SVR and 1D-CNN models were more accurate in predicting the HA content than
the other models. Comparing the performance parameters of the models, the optimal
model involved the combined application of the 1D-CNN algorithm and the expanded
Vis-NIR spectral data pre-processed using SD (Figure 8b). This optimal model had the
highest R2

v and R2
p values (0.9976 and 0.9321, respectively) and lower RMSECV, RMSEP,

MRECV, and MREP values (0.0210, 0.0871, 0.0201, and 0.0884, respectively) compared with
the other models, suggesting it was the best model for predicting the HA content.

Among the models used for predicting the PE content, only the 1D-CNN model had
high R2

v (0.9971) and R2
p (>0.8963) values when no data augmentation was performed. After

the data augmentation, the performance of the PLSR model was not improved significantly,
whereas the KNN, SVR, and 1D-CNN models exhibited R2

v and R2
p values higher than

0.9300 and 0.9200, respectively. This indicates that the KNN, SVR, and 1D-CNN models
were more accurate in predicting the PE content than PLSR. Comparing the performance
parameters of the models, the optimal model involved the combined application of the 1D-
CNN algorithm and the expanded Vis-NIR spectral data pre-processed using SD (Figure 8c).
The optimal model had the highest R2

v and R2
p values (0.9978 and 0.9433, respectively) and

lower RMSECV, RMSEP, MRECV, and MREP values (0.0634, 0.3387, 0.0164, and 0.0839,
respectively) compared with other models, suggesting it was the best model for predicting
the PE content.

Among the models used for predicting the PB content, the KNN, SVR, and 1D-CNN
models had high values of R2

v (all greater than 0.9100) and R2
p (all greater than 0.8300) when

no data augmentation was performed. After the data augmentation, the performances of
the PLSR and KNN models were worse than before the augmentation, while the SVR and
1D-CNN models both had R2

v values greater than 0.9900 and R2
p values greater than 0.9000.

This indicates that the SVR and 1D-CNN models had higher accuracy in predicting the
PB content after the data augmentation. By comparing the performance parameters of the
models, it was concluded that the optimal model comprised the combined use of the 1D-
CNN algorithm and the expanded Vis-NIR spectra data pre-processed with SD (Figure 8d).
The optimal model had the highest R2

v and test R2 values (0.9969 and 0.9094, respectively)
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and lower RMSECV, RMSEP, MRECV, and MREP values (0.0528, 0.2485, 0.0151, and 0.0788,
respectively) than the other models, suggesting it was the best model for predicting the
PB content.

Among the models used for predicting the PC content, the KNN, SVR, and 1D-CNN
models had R2

v and R2
p values higher than 0.9500 and 0.8500, respectively, when no data

augmentation was performed. After data augmentation, the property of the PLSR model
was decreased, and the R2

v value of the KNN model was reduced. However, the R2
v values of

the SVR and 1D-CNN models were higher than 0.9600, and the R2
p values were higher than

0.8600, indicating that the SVR and 1D-CNN models were more accurate in predicting the
PC content after the data augmentation than the other models. Comparing the performance
parameters of the models, the optimal model involved the combined application of the 1D-
CNN algorithm and the expanded Vis-NIR spectral data pre-processed using SD (Figure 8e).
The optimal model had the highest R2

v and R2
p values (0.9941 and 0.9454, respectively), as

well as lower RMSECV, RMSEP, MRECV, and MREP values (0.0299, 0.0761, 0.0335, and
0.0887, respectively), compared with the other models, suggesting that it was the best
model for predicting the PC content.

Among the models used for predicting the PA content, the R2
v and R2

p values of the
KNN, SVR, and 1D-CNN models were higher than 0.9300 and 0.8400, respectively, when
no data augmentation was performed. After the data augmentation, the performance of
the PLSR model was not significantly improved, and the R2

v value of the KNN model
decreased. However, the R2

v values of the SVR and 1D-CNN models increased and were
higher than 0.9900, whereas the R2

p values were higher than 0.9000. This indicates that
the SVR and 1D-CNN models were more accurate than the other models in predicting the
PA content after the data augmentation. Comparing the performance parameters of the
models, the optimal model involved the combined application of the 1D-CNN algorithm
and the expanded Vis-NIR spectral data pre-processed using SD (Figure 8f). This optimal
model possessed the highest R2

v and R2
p values (0.9985 and 0.9282, respectively) and lower

RMSECV, RMSEP, MRECV, and MREP values (0.1274, 0.7027, and 0.0027, respectively) than
the other models, suggesting it was the best model for predicting the PA content.

Among the models used to predict the GA + HA content, the KNN, SVR, and 1D-CNN
models all had R2

v values greater than 0.9100 and R2
p values greater than 0.8900 when no

data augmentation was performed. After the data augmentation, the performance of all
three models was improved; however, as with the PLSR model, none of the improvements
were significant. By comparing the performance parameters of the models, it was concluded
that the optimal model comprised the combined use of the 1D-CNN algorithm and the
expanded Vis-NIR spectra data pre-processed with SD (Figure 8g). This model had the
highest values of R2

v and R2
p (0.9976 and 0.9173, respectively) and lower RMSECV, RMSEP,

MRECV, and MREP values (0.0958, 0.3664, and 0.3664, respectively) compared with the
other models, suggesting it was the best model for predicting GA + HA content.

Among the models used for predicting the total content of physiologically active
ingredients, the KNN, SVR, and 1D-CNN models exhibited R2

v and R2
p values higher than

0.9300 and 0.8400, respectively, when no data augmentation was performed. After the
data augmentation, the performance of all three models improved, with R2

p and R2
p values

higher than 0.9700 and 0.9200, respectively. This suggests that these three models were
more accurate than the other models in predicting the total content of physiologically
active ingredients after data augmentation. However, the performance of the PLSR model
did not improve after the data augmentation. Comparing the performance parameters
of the models, the optimal model involved the combined application of the 1D-CNN
algorithm and the expanded Vis-NIR spectral data pre-processed using SD (Figure 8h).
This optimal model had the highest R2

v and R2
p values (0.9962 and 0.9323, respectively) and

lower RMSECV, RMSEP, MRECV, and MREP values (0.3912, 1.2965, and 0.065, respectively)
compared with the other models, suggesting that it was the best model for predicting the
total content of physiologically active ingredients.
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In summary, based on the holistic nature of Vis-NIR spectra, combined with the ef-
fectiveness in extracting the feature structure and strong modeling ability of 1D-CNN,
multiple physiologically active ingredient contents in G. elata from different origins can
be rapidly and simultaneously predicted. (1) By comparing different algorithms, it was
concluded that the model built using the SD-pre-processed Vis-NIR spectra, data augmenta-
tion, and 1D-CNN algorithm had the highest predictive ability. This further demonstrated
that the 1D-CNN model was capable of describing non-linear relationships better than
the other models. (2) Without the data augmentation, the optimal quantitative model-
ing algorithms for predicting the contents of PB and GA + HA were SVR and 1D-CNN,
whereas the optimal quantitative modeling algorithm for predicting the contents of other
physiologically active ingredients was 1D-CNN. (3) After the data augmentation, the opti-
mal quantitative modeling algorithm for predicting the contents of all the physiologically
active ingredients was 1D-CNN, which demonstrates that data augmentation can improve
the generalization ability of the 1D-CNN model. The relevant literature predicted the
content of up to six physiologically active ingredients from G. elata [17]. In this study,
successful prediction of the content of up to eight physiologically active ingredients was
achieved. Moreover, the 1D-CNN model outperformed the methods presented in the
literature regarding predicting ingredients.

4. Discussion

The main factors that affect the quality of G. elata are its origin and physiologically
active ingredients. There are marked differences in the content of physiologically active
ingredients in G. elata from 11 geographical origins, which confirms the importance of
origin identification and PGI. Compared with the time-consuming HPLC method, Vis-NIR
spectroscopy could predict the origin of G. elata and the contents of eight physiologically
active ingredients in a single scan within seconds, thereby evaluating the quality of G. elata.
This method is rapid, simple, non-polluting, and has lower instrument costs compared
with HPLC instruments, demonstrating the necessity of adopting Vis-NIR spectroscopy for
the rapid quality assessment of G. elata. However, to achieve the rapid quality inspection of
G. elata in different scenarios, it is necessary to develop corresponding portable devices for
Vis-NIR spectroscopy.

The Vis-NIR models that were established using the 1D-CNN nonlinear method out-
performed other tested conventional models, indicating that there were more inherent
nonlinear correlations between spectral data and origin labels or content. In particular,
the 1D-CNN method based on deep learning had advantages, such as automatic feature
extraction, hierarchical feature learning, parameter sharing and local perception, data
augmentation, and generalization ability. If applied to portable devices for Vis-NIR spec-
troscopy, it could better handle local features in the data, make the model more adaptable,
simplify the model construction process, and further the generalization ability of the model.

The phenolics in G. elata have neuroprotective, anti-inflammatory, and antioxidant
effects. Therefore, besides being used as a health supplement, G. elata is also applied as
a drug in clinical applications [46]. For instance, Tianma injection was applied to cure
a patient who had vertebrobasilar insufficiency [47]. Tianmasu injection was applied to
cure a patient who had dizziness [48]. G. elata as a vegetable medicine is more and more
welcome in some countries. In future research, more G. elata samples will be collected from
different origins to expand the application range and improve the reliability of the proposed
models. Additionally, in order to produce various high-quality end products, including
food supplements and medications, economical and portable Vis-NIR equipment combined
with the advantages of a 1D-CNN will be developed, which will meet the demand for rapid
quality inspection of G. elata products for industry use.

5. Conclusions

In this study, Vis-NIR spectroscopy combined with chemometric methods (PLS-DA,
KNN, SVM, 1D-CNN) was applied to correctly and rapidly identify the geographical origin
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of G. elata and predict the contents of its physiologically active ingredients. First, identi-
fication models using the four algorithms were applied to differentiate between origins.
The 1D-CNN had a good performance that could correctly identify all the origins, with the
F1 score being 1.0000. Second, Vis-NIR spectroscopy was applied to quantify the contents
of eight physiologically active ingredients in G. elata from different origins. Four quanti-
tative models were constructed, and their prediction performances were compared. The
1D-CNN performed better than the other three models. In the prediction sets, the RMSEP
values for GA, HA, PE, PB, PC, PA, GA + HA, and total were 0.2881, 0.0871, 0.3387, 0.2485,
0.0761, 0.7027, 0.3664, and 1.2965, respectively. The R2

p values were 0.9278, 0.9321, 0.9433,
0.9094, 0.9454, 0.9282, 0.9173, and 0.9323, respectively. These results confirm the potential
of combining Vis-NIR technology with a 1D-CNN for G. elata quality evaluation. In future
research, more G. elata samples from different production regions and harvesting times will
be collected to enhance the reliability and applicability of the models. Additionally, taking
advantage of a 1D-CNN, more affordable and portable Vis-NIR devices will be developed
for the quality assessment of G. elata in the market.
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