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Abstract: An intelligent indicator was developed by immobilizing bromocresol green (BCG) within
the polyacrylamide (PAAm) hydrogel matrix to monitor the total volatile basic nitrogen (TVB-N)
content of fish. The FTIR analysis indicated that BCG was effectively incorporated into the PAAm
through the formation of intermolecular hydrogen bonds. A thermogravimetric analysis (TGA)
showed that the PAAm/BCG indicator had a mere 0.0074% acrylamide monomer residue, meanwhile,
the addition of BCG improved the thermal stability of the indicator. In vapor tests with various
concentrations of trimethylamine, the indicator performed similarly at both 4 ◦C and 25 ◦C. The total
color difference values (∆E) exhibited a significant linear response to TVB-N levels ranging from
4.29 to 30.80 mg/100 g at 4 ◦C (R2 = 0.98). Therefore, the PAAm/BCG indicator demonstrated stable
and sensitive color changes based on pH variations and could be employed in smart packaging for
real-time assessment of fish freshness.

Keywords: TVB-N; polyacrylamide hydrogel; bromocresol green; colorimetric indicator; intelligent
packaging

1. Introduction

Affected by microorganisms and endogenous enzymes, fish are highly susceptible to
spoilage during storage, processing, and transportation. In order to ensure food safety and
avoid huge economic losses, real-time monitoring of fish freshness is crucial for consumers
and food production enterprises. Recently, the increasing demand to provide high-quality
fresh food has led to the emergence of intelligent packaging for monitoring food quality
or freshness (such as some small molecule metabolites) using responsive color-changing
indicators [1,2]. Freshness indicators work by monitoring or reacting with metabolites such
as organic acids, CO2, total volatile basic nitrogen (TVB-N) or sulfur derivatives produced
in fresh food [3–6].

The types of freshness indicators are roughly divided into pH-sensitive, microbial-
sensitive, hydrogen sulfide-sensitive, and ethylene-sensitive, of which, pH-sensitive in-
dicators are the most commonly studied. Generally speaking, the pH-sensitive indicator
consists of a solid substrate and one or more pH-sensitive pigments [7]. Previous studies
have shown that certain pH-sensitive pigments, such as anthocyanin, curcumin or alizarin,
perform well in colorimetric fish freshness indicators [8–11]. However, natural pigments
are often greatly affected by the environment, including poor antioxidant properties and
low melting points, which could cause the pigments to become inactive, thereby leading to
the malfunction of intelligent systems. Additionally, the extraction process of this particular
type of dye was complex, leading to a minimal overall economic advantage. Hence, as long
as the dosage of the synthetic dye was well controlled and overflowing from the matrix was
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prevented, it had a promising development prospect in large-scale production indicators.
Among them, one example of a synthetic pH dye was bromocresol green (BCG), which was
highly sensitive to alkaline substances. BCG underwent an immediate color change from
yellow to blue when the pH of the external environment slightly increased. In addition,
BCG has several advantages over natural colorants, including excellent stability, versatility,
and low cost.

Normally, pigments are developed by using hydrophilic membranes as the solid
matrix, since colorimetric indicators typically work through pH changes caused by the
dissolution of the target substance in water [12,13]. However, poor hygroscopicity of the
substrate or limited humidity within the package may result in a reduced sensitivity of the
indicator. Since the humidity can affect the sensitivity and effectiveness of the color change,
therefore highly hydrophilic or water-containing materials such as hydrogels are typically
recommended in indicator preparation to improve the color response of pH-sensitive
pigments to target substances generated during fish spoilage.

Hydrogels have interesting biological properties such as softness, wettability, respon-
siveness, as well as biocompatibility, which can be applied to sensors, actuators, coatings,
optics, electronics, and water harvesters [14]. Under the above circumstances, the hydrogel
can serve as an inert matrix to accommodate responsive elements that are physically encap-
sulated in or chemically anchored to the hydrogel matrix, which is permeable to chemical
input properties, thereby allowing coactions between external substances and targeting
elements [15]. Due to the polyacrylamide (PAAm) hydrogel structural unit containing
amide groups, which can easily form hydrogen bonds, it has good colloid stability and
hydrophilicity [16]. Currently, a variety of pH-sensitive indicators for the real-time moni-
toring of fish freshness have been reported, and the results have been encouraging [17–19].
However, most of these indicators rely on a complex preparation process, including extrac-
tion and purification by organic reagents, adjusting the pH of hydrosol, time-consuming
magnetic stirring and hot-air drying [5,9,20]. In contrast, the PAAm/BCG indicator is
based on a two-step molding and demolding method using polytetrafluoroethylene mold,
which can reduce the preparation cost, simplify the preparation process, and eliminate
interference from external factors. In addition, since the aqueous solution of acrylamide is
weakly acidic, there was no need to adjust the pH of the solution. Therefore, the PAAm
hydrogel has great potential as a solid matrix for pH-sensitive dyes to assess fish freshness.
However, few related studies have been reported so far.

Herein, the aim was to develop an indicator using the PAAm hydrogel, as a smart
packaging feature for monitoring the freshness of aquatic products. The PAAm hydrogel
serves as a carrier for the pH-sensitive pigment BCG, and an absorbent reservoir for
volatile amines, to improve the color-changing sensitivity of the indicator. The properties
of the PAAm hydrogel/BCG indicator include moisture sensitivity, temperature sensitivity,
structural properties, BCG release behavior, as well as evaluating the color response of
different pH values and trimethylamine (TMA) vapor. Furthermore, the indicator was also
tentatively applied to evaluate sea bass freshness.

2. Materials and Methods
2.1. Material

BCG was obtained from Sigma-Aldrich (St. Louis, MO, USA). Trimethylamine (TMA),
acrylamide and ammonium persulphate were purchased from Aladdin-Reagent Co. (Shang-
hai, China). Citric Acid, sodium citrate, potassium dihydrogen phosphate, sodium phos-
phate dibasic anhydrous, ethanol (99.9%), hydrochloric acid, potassium chloride (KCl),
magnesium oxide (MgO) and boric acid (H3BO3) were gained from Chemical Reagent Co.,
Ltd. (Shanghai, China). All chemicals were analytical grade.

2.2. UV-Vis Spectra Characterization of BCG Solution

Configuring several buffers with different pH values, including pH 3.0, 4.0 and 5.0
were created using a citric acid sodium citrate buffer solution and pH 6.0, 7.0 and 8.0 were
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created using a phosphate buffer solution. The light absorption spectra of BCG solutions
(2.0 g/L ethanol) at pH 3.0–8.0 were gained in the scope of 400–800 nm using a UV-vis
spectrophotometer (TU-1810, Ningbo OP Instrument Co., Ltd., Ningbo, China).

2.3. Preparation of the PAAm Hydrogel/BCG Indicator

The BCG ethanol solution (2.0 g/L) was prepared by dissolving 0.1 g of BCG powder in
50.0 mL of 99.9% ethanol. To prepare the PAAm hydrogel/BCG indicator, 1.0 g acrylamide,
0.02 g ammonium persulphate and 0.2 mL BCG ethanol solution were added to 2.0 mL
distilled water. After the solid was completely dissolved by an ultrasonic instrument, the
mixed solution was injected into the polytetrafluoroethylene mold and was heated for
25 min at 60 ◦C. After the indicator was gently peeled out of the mold, it was stored in an
airtight container overnight.

2.4. Characterization and Properties
2.4.1. Fourier-Transform Infrared (FT-IR) Spectroscopy

To study coactions between the functional groups of PAAm hydrogel and BCG in the
structure of the fabricated indicator, the FT-IR measurement of the PAAm hydrogel and
the PAAm/BCG indicator were performed on a Thermo Nicolet spectrometer (Nicolet 380,
Thermos Scientific Inc., Waltham, MA, USA) in the scope of 4000–500 cm−1.

2.4.2. Thermogravimetric Analysis (TGA)

The thermal stability of the indicator was determined using a thermogravimetric
analyzer (TGA 209F1, NETZSCH Instrument, Selb, Germany). Detection of TG was based
on the method of Roy et al. and had been appropriately modified [21]. We placed 5.0 mg
of hydrogel sample in a standard crucible. The samples were heated from 25 to 600 ◦C at
10 ◦C/min under nitrogen flow (20 cm3/min) with an empty cup as a reference.

2.4.3. Moisture Content (MC), Water Solubility (WS), and Water Absorption (WA)

Detection of MC, WS, and WA was based on the method of Ezati et al. [22] with
modification. The MC of the indicator was determined gravimetrically. For each PAAm
hydrogel sample and the PAAm/BCG indicator sample, three specimens (Φ 1.2 cm, δ
0.2 cm) were dried at 105 ◦C for 2 h with an Instrument for Moisture Determination. The
weight of the samples before drying (M1) and after drying (M2) was measured, respectively.
For the determination of WS, three dried samples (Φ 1.2 cm, δ 0.2 cm) were weighed (M2)
and then immersed in a beaker containing 50.0 mL distilled water for 2 h with mild stirring.
The samples were removed from the beaker and dried at 105 ◦C for 2 h and weighed (M3).
The indicator samples (Φ 1.2 cm, δ 0.2 cm) were immersed in distilled water at 25 ◦C for
1 h to measure the WA of the indicator. Collect the samples and remove surface water
with blotting paper. WA was calculated by measuring the percentage increase in indicator
weight before (M1) and after immersion (M4). The MC, WS, and WA of the samples were
calculated as follows:

MC(%) =
M1 − M2

M1
× 100 (1)

WS (%) =
M2 − M3

M2
× 100 (2)

WA (%) =
M4 − M1

M1
× 100 (3)

2.4.4. Release of BCG

The release of BCG from the indicator was determined using food simulators (95%,
50%, and 10% ethanol and water) [23]. Among them, the three food simulants containing
alcohol represent high-fat food, oil-in-water emulsion food, and water-containing food
respectively. For this, an indicator (Φ 1.2 cm, δ 0.2 cm) was added to a conical centrifuge
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tube containing 20.0 mL of the food simulant and kept at 25 °C with gentle shaking. The
releasing rate for the aforementioned indicator was determined by the absorbance at 615 nm
using a UV-vis spectrophotometer at time intervals of 0, 6, 12, 36, 48, and 72 h.

2.5. Color Response Efficiency

The color response efficiency detection of the PAAm hydrogel/BCG indicator was
modified based on the method of Ezati et al. [24]. The indicator (Φ 1.2 cm, δ 0.2 cm) was
soaked into the citric acid sodium citrate and phosphate buffer solution for 10 min at 25 ◦C.
The Chroma meter (NR110, Shenzhen 3NH Technology Co., Ltd., Shenzhen, China) was
used to determine tristimulus color values (standard white plate: L = 96.52, a = −0.24, and
b = 0.46). The total color difference (∆E) was calculated as follows:

∆E =

√
(∆L)2 + (∆a)2 + (∆b)2 (4)

where ∆L, ∆a, and ∆b are the difference between each value of the standard color plate and
indicator, respectively.

The indicator was hung over a sealed centrifuge tube with different concentrations of
TMA solution for 10 min at 25 ◦C and 4 ◦C, respectively, and we recorded the tristimulus
color values to assess the sensitivity of the indicator for alkaline gas and the influence of
temperature on the indicator.

2.6. Packaging Test

The PAAm hydrogel/BCG indicator was used in fish packaging to monitor freshness
change during storage. Live Japanese sea bass (Lateolabrax japonicus) were purchased from
a local market (Ningbo, China), slaughtered immediately after transport to the laboratory,
skinned, and deboned. We put 30.0 g of fish meat into each polypropylene container
(16.8 cm × 11.7 cm × 3.0 cm) for freshness monitoring. Since the indicator has a certain
adhesiveness, it can be directly attached to the headspace of the container. Experiments
were performed under refrigeration (4 ◦C), and from 0 d, TVB-N levels, pH, and tristimulus
color values of the indicator were recorded every other day.

2.6.1. TVB-N Measurement

An aliquot of 2 g homogenized fish muscle was weighed and placed into a centrifuge
tube with 20 mL of deionized water, and then treated with a homogenizer for 1 min to
homogenize the fish sample in the centrifuge tube. Then, 5.0 mL of MgO suspension
(10 g/L) was added to the distillation tube and mixed well with the homogenized sample in
the centrifuge tube. Finally, the distillation tube was connected to a K9840 fully automated
Kjeldahl analyzer (Shandong, China), and automatic analysis was performed. The analysis
was repeated in triplicate.

2.6.2. Determination of pH Values

For pH values determination, an aliquot of 2 g fish muscle and 20.0 mL of 0.1 mol/L
KCl were placed in a centrifuge tube and we homogenized the sample with a homogenizer
at 25 °C. The above mixture was analyzed using a pH meter (PHS-2F, Leici, China), which
was repeated in triplicate.

2.7. Statistical Analysis

All data were analyzed using analysis of variance (ANOVA) in SPSS v 25.0.0 (SPSS
Inc., Chicago, IL, USA) and expressed as mean ± standard deviation. All results were con-
sidered statistically significant at p-values < 0.05.Interventional studies involving animals
or humans, and other studies that require ethical approval, must list the authority that
provided approval and the corresponding ethical approval code.
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3. Results and Discussion
3.1. UV-Vis Spectra Analysis

As shown in Figure 1a, BCG was a sulfonphthalein pigment, with a pH transition
from 3.8 to 5.4. In its acidic form, this dye appears brightly yellow, and at alkaline pH, the
color becomes blue. Moreover, in the aqueous solution, BCG ionizes to the monoanionic
form (yellow), which was then deprotonated at a higher pH to a form resonance-stabilized
dianionic form (blue) [25].
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Figure 1. (a) Principle schematic diagram of color change of BCG dye at acid base conditions. (b) The
color of BCG solution at various pH from 3.0 to 8.0. (c) UV-vis spectra of BCG solution at various pH
from 3.0 to 8.0.

The discoloration properties and corresponding UV-vis absorption spectra of BCG
solution at different pH values were tested. Figure 1b shows the BCG solution was bright
yellow at pH 3.0 and became dark with the pH increased, turning blue at pH 5.0, and then
the blue deepeneds gradually. Accordingly, corresponding to the maximum absorbance
capacity also changed in the following analysis. The maximum absorption peak of BCG
shifted from 445 nm to 615 nm as pH was raised (Figure 1c), and the maximum peak
size increased with the increase in solution alkalinity [26]. The intense color change
indicates that BCG was very sensitive to basic compounds. Therefore, it was suitable for
manufacturing colorimetric sensing indicators for fish freshness monitoring.
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3.2. Properties of the Indicator
3.2.1. FTIR Characterization

The FTIR spectra of PAAm hydrogel and indicator samples are presented in Figure 2,
including the peaks at 3380 cm−1, 3194 cm−1, and 1613 cm−1 corresponding to the antisym-
metric stretching vibration, symmetric stretching vibration, and stretching vibration of N-H,
respectively. The C=O stretching vibration peak at 1665 cm−1 and the peaks at 2933 cm−1

and 2785 cm−1 corresponded to the stretching vibration of the methylene groups [27]. The
absorption peak at about 1416 cm−1 resulted from the stretching vibration of C-N in the
PAAm hydrogel, while the absorption bands at 1190 cm−1 and 1123 cm−1 corresponded to
the bending vibrations of C-H. Compared with the pure PAAm hydrogel, the chromogenic
indicator after BCG adsorption had similar infrared spectra, in which the enhancement of
the 1321 cm−1 absorption peak was due to the C-O of the phenol in BCG. Nevertheless, after
the adsorption of BCG, the C=O stretch peak observed at 1665 cm−1 of the PAAm hydrogel
shifted slightly to 1660 cm−1, and it might be caused by the hydrogen bond formation
between BCG and the PAAm hydrogel [28]. The FTIR spectra results indicated that BCG
was adsorbed on the PAAm hydrogel through physical interaction, neither changing the
chemical structure of the PAAm hydrogel nor forming chemical interactions between them.
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3.2.2. Thermal Stability

The TGA thermogram showed the weight loss rate (%), and the derivative thermo-
gravimetric (DTG) thermogram (a derived form of TGA) showed the maximum decom-
position temperature (Tmax) in each thermal decomposition [24]. Both the pure and the
BCG-adsorbed PAAm hydrogel showed three steps of thermal decomposition (Figure 3).
Firstly, the weight loss was observed at around 100 °C with a rate of about 2%, which was
due to the volatilization of small-molecule solvents, water that had not been removed from
the hydrogel system, and water adsorbed by the polymer to the outside [29]. The second
and most significant weight loss occurred around 210–310 ◦C due to cleavage of the PAAm
hydrogel matrix. In the third stage, owing to substituent (-NH2) decomposition, the weight
of the sample was reduced by about 34% at 350–500 ◦C, and the decomposition rate was
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rapid [30]. Finally, the residual char content at 600 ◦C was 45.8% for both samples. In
addition, at around 227 ◦C, BCG gradually fell off from the indicator and volatilized. After
that, some Tmax values were shifted to a higher temperature, which was due to the fact
that BCG was a heat-resistant hydrophobic compound that could improve the thermal
stability of the PAAm hydrogel. In addition, the weights of the PAAm hydrogel sample
and the PAAm/BCG indicator sample decreased by 0.0177% and 0.0074%, respectively,
from 124 ◦C to 126 ◦C, indicating that the amount of residual acrylamide monomer in the
samples was very low. The residual acrylamide monomer content in PAAm/BCG was less
than that in PAAm, which might be due to the polymerization reaction between the double
bond of the acrylamide molecule and BCG.
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3.2.3. MC, WS, and WA Analysis

The MC, WS, and WA of the indicator are presented in Table 1. The MC of pure
PAAm hydrogel was 50.26%. The appropriate MC indicated that the indicator had a certain
moisture resistance, meanwhile, it was conducive to the color reaction of the indicator.
Moreover, the addition of BCG decreased the MC of the indicator slightly. This was due to
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BCG being a polyphenolic compound, and the hydrophobic group of pigment decreased the
MC of the indicator structure. On the other hand, the bubble enlarged the size of the holes
inside the hydrogel and could be attributed to the higher MC, which facilitated the sensing
indicator to be more sensitive to volatile compounds [31]. It was worth noting that the 3D
network structure of the PAAm hydrogel could effectively inhibit the transformation of
fish from bound water to free water in the myofibrillar protein network, which contributed
to maintaining the freshness of fish [32].

Table 1. Moisture content, water solubility and water absorption of PAAm hydrogel samples and
PAAm hydrogel/BCG samples.

Samples MC (%) WS (%) WA (%)

PAAm hydrogel 50.26 ± 0.44 a 14.26 ± 0.43 a 132.38 ± 9.22 a

PAAm hydrogel/BCG 43.45 ± 1.08 b 9.6 ± 2.8 b 103.02 ± 13.21 b

The values are presented as a mean ± standard deviation. The values of the same column, followed by different
letters, are significantly different (p < 0.05).

The WS represented the physical barrier and water resistance properties of the indi-
cation indicator inside the package [33]. The WS of the neat PAAm hydrogel was only
14.26%, which showed that the PAAm hydrogel sample had good water holding capacity
and swell ability. This might be attributed to the relatively large crosslinking density of the
polymer matrix. In addition, the significant decrease in WS in the PAAm hydrogel/BCG
tag (p < 0.05) was also due to the hydrophobicity of BCG [34].

The WA reflected the ability of the indicator to absorb water during storage and
distribution of the packaged product, and had a significant effect on the efficiency of the
color response. That is, the higher the WA value, the faster the pigment was released [35].
The WA of the PAAm hydrogel was 132.38%, and adding BCG to the PAAm hydrogel
dropped the WA to 103.02%, owing to the hydrophobic properties of BCG. Another reason
might be due to the reduction of crosslinking density, reducing the porosity and water
retention capacity of the indicator [36].

3.2.4. Release of BCG

In general, the release rate of reactive pigments depends on a variety of factors,
including the solubility of the internal pigment, the WA of the polymer, and the rate of
diffusion of the pigment through the hydrogel matrix [37], As shown in Figure 4, the
release of BCG was highly dependent on the type of food simulant solutions used. Among
them, the largest amount in pure water, followed by 10%, 50%, and 95% alcohol solutions.
The absorbance in the food simulant solution with moderate alcohol content (10% and
50%) showed a downward trend, which was due to the dissolution of the PAAm hydrogel
making the simulant solution tend to be acidic, and the maximum absorbance value shifted
from 615 nm to 445 nm, as confirmed by the UV-vis spectra analysis results. Furthermore,
the absorbance of the 95% alcohol food simulant was essentially unchanged, possibly due
to the increase in crosslink density when the hydrogel matrix was exposed to high alcohol
concentrations. Therefore, although BCG was an alcohol-soluble pigment with fast release
in high-concentration alcohol solutions, it made up for the deficiencies in the application of
indicators in fish products, owing to the properties of the hydrogel matrix.

3.3. Color Response Efficiency

As shown in Table 2, the PAAm/BCG indicator revealed a significant color change at
pH 3.0–8.0. Specifically, the indicator acted as a visual sensing means of yellow, light green,
and dark green in turn at pH 3.0–5.0. With the pH raised to 6.0, the indicator exhibited an
aquamarine color, and it showed a blue color when exposed to pH 7.0–8.0. This was similar
to the result of Figure 5b, indicating that the PAAm hydrogel matrix had little effect on the
color response of BCG. In addition, the color change of the PAAm/BCG indicator was also
observed in the tristimulus color values. The L-value (lightness) was the highest at pH 3.0
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and lowest at pH 8.0, showing that the indicator was the brightest and darkest in acidic
and basic environments, respectively. The a-value (greenness/redness) decreased to pH
5.0, then increased slightly as the pH increased to 8.0, signifying that the indicator turned
greenness overall with increasing pH values. Similarly, the b-value (blueness/yellowness)
decreased obviously as the pH increased to 8.0, demonstrating a high intensity of blueness
of the indicator in alkaline conditions. The total color difference (∆E) increased with pH
and was generally inversely proportional to a- and b- values. Markedly higher ∆E values
of the indicator at pH 3.0–5.0 and then ∆E stabilized at pH 6.0–8.0 meant that the indicator
showed clear color changes when encountering basic compounds.
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During the storage, processing, and transportation of fish, free amino acids and tri-
methylamine-N-oxide underwent conversion into biogenic amines; the adenine nucleo-
tides gradually degraded to form inosine and xanthine, and sugars and lactate salts were 
metabolized to generate various other organic acids [40,41]. Moreover, the specific 

Foods 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 

effects of indicators at room temperature (25 °C) and refrigerated (4 °C) were not signifi-
cantly different. 

Table 2. The color change of the PAAm/BCG indicator in response to different pH buffer solutions 
and variations in color parameters. 

pH        
 Control 3 4 5 6 7 8 

L 96.52 36.32 ± 1.46 c 35.69 ± 0.82 bc 33.37 ± 0.24 
ab 31.57 ± 2.47 a 31.48 ± 0.47 a 31.23 ± 0.28 a 

a −0.24 1.42 ± 0.10 e −0.48 ± 0.19 d −3.46 ± 0.31 a −2.38 ± 0.17 b −2.01 ± 0.29 
bc −1.73 ± 0.11 c 

b 0.46 7.27 ± 1.07 c 6.75 ± 0.39 c −0.61 ± 0.38 b −1.06 ± 0.64 b −4.81 ± 0.69 a −5.59 ± 0.42 a 

ΔE 0 60.59 ± 1.56 a 61.13 ± 0.85 a 63.21 ± 0.24 
ab 64.98 ± 2.4 b 65.25 ± 0.44 b 65.56 ± 0.2 b 

Color 
changes 

 

  
 

  
 

The values are presented as a mean ± standard deviation. The values of the same column, followed 
by different letters, are significantly different (p < 0.05). 

 
Figure 5. (a) L, a, and b, (b) ΔE values, and (c) color responsive styles in different concentrations of 
TMA solutions at 25 °C and 4 °C. 

3.4. Packaging Test 
3.4.1. Monitoring Freshness of Japanese Sea Bass (Lateolabrax japonicus) 

During the storage, processing, and transportation of fish, free amino acids and tri-
methylamine-N-oxide underwent conversion into biogenic amines; the adenine nucleo-
tides gradually degraded to form inosine and xanthine, and sugars and lactate salts were 
metabolized to generate various other organic acids [40,41]. Moreover, the specific 

Foods 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 

effects of indicators at room temperature (25 °C) and refrigerated (4 °C) were not signifi-
cantly different. 

Table 2. The color change of the PAAm/BCG indicator in response to different pH buffer solutions 
and variations in color parameters. 

pH        
 Control 3 4 5 6 7 8 

L 96.52 36.32 ± 1.46 c 35.69 ± 0.82 bc 33.37 ± 0.24 
ab 31.57 ± 2.47 a 31.48 ± 0.47 a 31.23 ± 0.28 a 

a −0.24 1.42 ± 0.10 e −0.48 ± 0.19 d −3.46 ± 0.31 a −2.38 ± 0.17 b −2.01 ± 0.29 
bc −1.73 ± 0.11 c 

b 0.46 7.27 ± 1.07 c 6.75 ± 0.39 c −0.61 ± 0.38 b −1.06 ± 0.64 b −4.81 ± 0.69 a −5.59 ± 0.42 a 

ΔE 0 60.59 ± 1.56 a 61.13 ± 0.85 a 63.21 ± 0.24 
ab 64.98 ± 2.4 b 65.25 ± 0.44 b 65.56 ± 0.2 b 

Color 
changes 

 

  
 

  
 

The values are presented as a mean ± standard deviation. The values of the same column, followed 
by different letters, are significantly different (p < 0.05). 

 
Figure 5. (a) L, a, and b, (b) ΔE values, and (c) color responsive styles in different concentrations of 
TMA solutions at 25 °C and 4 °C. 

3.4. Packaging Test 
3.4.1. Monitoring Freshness of Japanese Sea Bass (Lateolabrax japonicus) 

During the storage, processing, and transportation of fish, free amino acids and tri-
methylamine-N-oxide underwent conversion into biogenic amines; the adenine nucleo-
tides gradually degraded to form inosine and xanthine, and sugars and lactate salts were 
metabolized to generate various other organic acids [40,41]. Moreover, the specific 

Foods 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 

effects of indicators at room temperature (25 °C) and refrigerated (4 °C) were not signifi-
cantly different. 

Table 2. The color change of the PAAm/BCG indicator in response to different pH buffer solutions 
and variations in color parameters. 

pH        
 Control 3 4 5 6 7 8 

L 96.52 36.32 ± 1.46 c 35.69 ± 0.82 bc 33.37 ± 0.24 
ab 31.57 ± 2.47 a 31.48 ± 0.47 a 31.23 ± 0.28 a 

a −0.24 1.42 ± 0.10 e −0.48 ± 0.19 d −3.46 ± 0.31 a −2.38 ± 0.17 b −2.01 ± 0.29 
bc −1.73 ± 0.11 c 

b 0.46 7.27 ± 1.07 c 6.75 ± 0.39 c −0.61 ± 0.38 b −1.06 ± 0.64 b −4.81 ± 0.69 a −5.59 ± 0.42 a 

ΔE 0 60.59 ± 1.56 a 61.13 ± 0.85 a 63.21 ± 0.24 
ab 64.98 ± 2.4 b 65.25 ± 0.44 b 65.56 ± 0.2 b 

Color 
changes 

 

  
 

  
 

The values are presented as a mean ± standard deviation. The values of the same column, followed 
by different letters, are significantly different (p < 0.05). 

 
Figure 5. (a) L, a, and b, (b) ΔE values, and (c) color responsive styles in different concentrations of 
TMA solutions at 25 °C and 4 °C. 

3.4. Packaging Test 
3.4.1. Monitoring Freshness of Japanese Sea Bass (Lateolabrax japonicus) 

During the storage, processing, and transportation of fish, free amino acids and tri-
methylamine-N-oxide underwent conversion into biogenic amines; the adenine nucleo-
tides gradually degraded to form inosine and xanthine, and sugars and lactate salts were 
metabolized to generate various other organic acids [40,41]. Moreover, the specific 

Foods 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 

effects of indicators at room temperature (25 °C) and refrigerated (4 °C) were not signifi-
cantly different. 

Table 2. The color change of the PAAm/BCG indicator in response to different pH buffer solutions 
and variations in color parameters. 

pH        
 Control 3 4 5 6 7 8 

L 96.52 36.32 ± 1.46 c 35.69 ± 0.82 bc 33.37 ± 0.24 
ab 31.57 ± 2.47 a 31.48 ± 0.47 a 31.23 ± 0.28 a 

a −0.24 1.42 ± 0.10 e −0.48 ± 0.19 d −3.46 ± 0.31 a −2.38 ± 0.17 b −2.01 ± 0.29 
bc −1.73 ± 0.11 c 

b 0.46 7.27 ± 1.07 c 6.75 ± 0.39 c −0.61 ± 0.38 b −1.06 ± 0.64 b −4.81 ± 0.69 a −5.59 ± 0.42 a 

ΔE 0 60.59 ± 1.56 a 61.13 ± 0.85 a 63.21 ± 0.24 
ab 64.98 ± 2.4 b 65.25 ± 0.44 b 65.56 ± 0.2 b 

Color 
changes 

 

  
 

  
 

The values are presented as a mean ± standard deviation. The values of the same column, followed 
by different letters, are significantly different (p < 0.05). 

 
Figure 5. (a) L, a, and b, (b) ΔE values, and (c) color responsive styles in different concentrations of 
TMA solutions at 25 °C and 4 °C. 

3.4. Packaging Test 
3.4.1. Monitoring Freshness of Japanese Sea Bass (Lateolabrax japonicus) 

During the storage, processing, and transportation of fish, free amino acids and tri-
methylamine-N-oxide underwent conversion into biogenic amines; the adenine nucleo-
tides gradually degraded to form inosine and xanthine, and sugars and lactate salts were 
metabolized to generate various other organic acids [40,41]. Moreover, the specific 

Foods 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 

effects of indicators at room temperature (25 °C) and refrigerated (4 °C) were not signifi-
cantly different. 

Table 2. The color change of the PAAm/BCG indicator in response to different pH buffer solutions 
and variations in color parameters. 

pH        
 Control 3 4 5 6 7 8 

L 96.52 36.32 ± 1.46 c 35.69 ± 0.82 bc 33.37 ± 0.24 
ab 31.57 ± 2.47 a 31.48 ± 0.47 a 31.23 ± 0.28 a 

a −0.24 1.42 ± 0.10 e −0.48 ± 0.19 d −3.46 ± 0.31 a −2.38 ± 0.17 b −2.01 ± 0.29 
bc −1.73 ± 0.11 c 

b 0.46 7.27 ± 1.07 c 6.75 ± 0.39 c −0.61 ± 0.38 b −1.06 ± 0.64 b −4.81 ± 0.69 a −5.59 ± 0.42 a 

ΔE 0 60.59 ± 1.56 a 61.13 ± 0.85 a 63.21 ± 0.24 
ab 64.98 ± 2.4 b 65.25 ± 0.44 b 65.56 ± 0.2 b 

Color 
changes 

 

  
 

  
 

The values are presented as a mean ± standard deviation. The values of the same column, followed 
by different letters, are significantly different (p < 0.05). 

 
Figure 5. (a) L, a, and b, (b) ΔE values, and (c) color responsive styles in different concentrations of 
TMA solutions at 25 °C and 4 °C. 

3.4. Packaging Test 
3.4.1. Monitoring Freshness of Japanese Sea Bass (Lateolabrax japonicus) 

During the storage, processing, and transportation of fish, free amino acids and tri-
methylamine-N-oxide underwent conversion into biogenic amines; the adenine nucleo-
tides gradually degraded to form inosine and xanthine, and sugars and lactate salts were 
metabolized to generate various other organic acids [40,41]. Moreover, the specific 

The values are presented as a mean ± standard deviation. The values of the same column, followed by different
letters, are significantly different (p < 0.05).



Foods 2023, 12, 3964 10 of 15

Foods 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 

effects of indicators at room temperature (25 °C) and refrigerated (4 °C) were not signifi-
cantly different. 

Table 2. The color change of the PAAm/BCG indicator in response to different pH buffer solutions 
and variations in color parameters. 

pH        
 Control 3 4 5 6 7 8 

L 96.52 36.32 ± 1.46 c 35.69 ± 0.82 bc 33.37 ± 0.24 
ab 31.57 ± 2.47 a 31.48 ± 0.47 a 31.23 ± 0.28 a 

a −0.24 1.42 ± 0.10 e −0.48 ± 0.19 d −3.46 ± 0.31 a −2.38 ± 0.17 b −2.01 ± 0.29 
bc −1.73 ± 0.11 c 

b 0.46 7.27 ± 1.07 c 6.75 ± 0.39 c −0.61 ± 0.38 b −1.06 ± 0.64 b −4.81 ± 0.69 a −5.59 ± 0.42 a 

ΔE 0 60.59 ± 1.56 a 61.13 ± 0.85 a 63.21 ± 0.24 
ab 64.98 ± 2.4 b 65.25 ± 0.44 b 65.56 ± 0.2 b 

Color 
changes 

 

  
 

  
 

The values are presented as a mean ± standard deviation. The values of the same column, followed 
by different letters, are significantly different (p < 0.05). 

 
Figure 5. (a) L, a, and b, (b) ΔE values, and (c) color responsive styles in different concentrations of 
TMA solutions at 25 °C and 4 °C. 

3.4. Packaging Test 
3.4.1. Monitoring Freshness of Japanese Sea Bass (Lateolabrax japonicus) 

During the storage, processing, and transportation of fish, free amino acids and tri-
methylamine-N-oxide underwent conversion into biogenic amines; the adenine nucleo-
tides gradually degraded to form inosine and xanthine, and sugars and lactate salts were 
metabolized to generate various other organic acids [40,41]. Moreover, the specific 

Figure 5. (a) L, a, and b, (b) ∆E values, and (c) color responsive styles in different concentrations of
TMA solutions at 25 ◦C and 4 ◦C.

In practical applications for intelligent packaging, the response of the indicator to
the color changed after exposure to steam must be unique and rapid. Here, ammonia,
dimethylamine (DMA), TMA and other mixtures of mono- and polyamines could be
produced by the metabolic breakdown of amino acids during fish products spoilage [38].
The color response of the indicator to different concentrations of TMA solutions was
determined to validate the sensitivity to pH changes (Figure 5). The concentration of TMA
gas in the airtight container was proportional to the concentration of TMA solution [39],
inversely proportional to the tristimulus color values of the indicator, and positive to the
∆E value related. The large change in a-value indicated that the indicator had a significant
visual effect when encountering the fish spoilage gas, and the degree of spoilage could be
judged according to the depth of the color. In addition, the tristimulus color values and
visual effects of indicators at room temperature (25 ◦C) and refrigerated (4 ◦C) were not
significantly different.

3.4. Packaging Test
3.4.1. Monitoring Freshness of Japanese Sea Bass (Lateolabrax japonicus)

During the storage, processing, and transportation of fish, free amino acids and
trimethylamine-N-oxide underwent conversion into biogenic amines; the adenine nu-
cleotides gradually degraded to form inosine and xanthine, and sugars and lactate salts
were metabolized to generate various other organic acids [40,41]. Moreover, the specific
decomposition led to the production of alkaline nitrogenous substances, such as ammonia
and amines. These substances were volatile, and their content increased with the degrada-
tion of amino acids, particularly methionine and tyrosine. Hence, microbial spoilage and
biochemical reactions propelled the accumulation of volatile amines and then contributed
to the increased pH of the packaging headspace gradually [42]. Noteworthy, the alternation
in the color of the indicator could display the onset of the decay process visually. However,
various indicators of fish meat spoilage were delayed during the refrigeration period, espe-
cially the metabolism of most spoilage bacteria [43]. Therefore, refrigeration is currently a



Foods 2023, 12, 3964 11 of 15

significant means of preserving raw fish slices [44]. The packaging test of this article was
also carried out under refrigerated temperature.

The pH values and TVB-N levels for sea bass samples stored at 4 ◦C for 10 days are
provided in Figure 6, as well as the visual color, tristimulus color, and ∆E values changed
by the indicator. Among them, Figure 6a shows that the initial pH value of sea bass was
6.68 ± 0.02 on day 0, which indicated the fresh state of the fish samples. On day 2, the pH
value of the fish simple dropped to 6.57 ± 0.01 and then gradually increased over the next
few days. The decrease in pH was caused by the breakdown of muscle glycogen in the
process of fish to produce lactic acid and other acids, after which the increase in pH was
due to the progression of alkalization resulting from the release of essential products of
protein breakdown throughout the postmortem change. These results were consistent with
the previous studies [45].
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The TVB-N level was widely regarded as the key index for reflecting fish spoilage.
A value of 25 mg/100 g was proposed as the highest acceptable level [46]. The initial
TVB-N level of the fish sample was 2.94 ± 0.2 mg/100 g, indicating that the sample was
fresh. Subsequently, TVB-N increased slowly before day 4 and increased rapidly after day
4. It was attributed to microbial activity and protein degradation by autolyzing enzymes,
resulting in amino acid deamination and volatile base accumulation [47]. On day 8, the
TVB-N level of sea bass samples reached 20.81 ± 0.54 mg/100 g, which was close to the
spoilage threshold. In addition, the TVB-N level reached 30.80 ± 0.75 mg/l00 g on day
10, which was higher than 25 mg/100 g, indicating that the sea bass at this time had been
spoiled and inedible.

As shown in Figure 6c, due to gradually increased volatile amines in the headspace,
the color of the visual indicator also changed from yellow to green to blue. Therefore,
the tristimulus color values also showed corresponding trends (Figure 6b). The L-value



Foods 2023, 12, 3964 12 of 15

was the highest on day 0 and lowest on day 10, and showed a downtrend, indicating that
the color brightness of the indicator would gradually become darker as the fish spoiled.
Similarly, the a-value and the b-value also showed a downtrend and the variation range of
the b-value was more than the a-value, showing that the indicator tended to turn green
and blue, respectively. The ∆E values of the indicator increased during storage at 4 ◦C, and
the uptrend was more pronounced after day 6.

The results of our study confirmed a valid correspondence among pH increment, TVB-
N generation, and visual color of the PAAm/BCG indicator. Therefore, the change in color
of the indicator depended on the production of TVB-N and was more pronounced with
the increase in TVB-N levels. Figure 6c plotted the ∆E value against TVB-N concentration
in the headspace of fish packaging, and showed the visual specific color change of the
indicator and the threshold for fish spoilage during storage.

3.4.2. Feasibility Analysis of Models and Data

The correlation between the ∆E value of the indicator and the TVB-N of fish during
storage at 4 ◦C was evaluated by the R parameter, implying the strength of the correla-
tion. Additionally, linear polynomial models and R2 (the precision of the model) were
confirmed after day 4 (Figure 6d). The correlation between the ∆E of the indicator and
the TVB-N of sea bass over the range of 4.29 ± 0.13 to 30.80 ± 0.75 mg/100 g (R2 = 0.98,
y = (0.375 ± 0.038) x + 56.913 ± 0.684) was high and positive. In addition, the values of root
mean square error (RMSE), sum of squares error (SSE), and Akaike Information Criterion
(AIC) are 0.51, 1.03, and 4.57, respectively. It indicated that the fitting effect of the model is
good. However, the slightly high AIC value is also a result of the insufficient sample size.

3.5. The Advantages and Disadvantages of the PAAm Hydrogel/BCG Indicator

The biggest advantage of the PAAm hydrogel/BCG indicator was a relatively simple
and economical preparation process. The indicator was prepared using the sol-gel method.
The weak acidity of the acrylamide monomer aqueous solution made the indicator appear
yellow after preparation and molding. Therefore, it was not necessary to consider the
color status of the indicator before use, eliminating the cumbersome process of adjusting
the pH of the pre-liquid, and it was more advantageous than some experiments that
require acid toning [48,49]. Furthermore, due to the proper ratio of monomer content to
water, the use of a crosslinking agent was avoided. The sol could be turned into a gel by
adding a thermal initiator and heating, forming process only 25 min, which was more time-
saving than other kings of literature [50–52]. However, the PAAm hydrogel/BCG indicator
required experiments related to recycling to achieve economic sustainability. Moreover, the
protection measures of the indicator in practical applications should be further considered.

4. Conclusions

To sum up, a novel freshness indicator was prepared by adsorbing BCG to the PAAm
hydrogel and exhibited noticeable color changes relating to fish freshness during storage.
The indicator could be quickly prepared by injection molding, which was suitable for mass
production. Benefiting from the PAAm hydrogel matrix (MC = 50.26%, WS = 14.26% and
WA = 132.38%), the indicator (MC = 43.45%, WS = 9.60% and WA = 103.02%) had good
moisture resistance, which contributed to avoiding moisture, affecting the measurement
accuracy of the indicator. Both FTIR analysis and TGA indicated that the PAAm hydrogel
had excellent compatibility with BCG. The indicator showed that the color changed from
yellow to blue at pH 3.0–8.0 clearly, and the hydrogel matrix had little effect on the color re-
sponse efficiency of BCG. It was worth emphasizing that ∆E had a highly linear relationship
with TVB-N (R2 = 0.98, y = (0.375 ± 0.038) x + 56.913 ± 0.684), and the fitting effect of this
model was good (RMSE = 0.51, SSE = 1.03, and AIC = 4.57). However, there were still some
shortcomings in this article, such as the lack of evaluation of the biodegradation ability of
PAAm hydrogel and the inconspicuous color change of the indicator when approaching the
spoilage threshold. Overall, based on the pH-sensitive visual indication system, different
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color changes were presented, which were easier for the human eye to distinguish and
facilitated the monitoring of fish freshness. Compared to traditional freshness detection
techniques, this method was more acceptable, convenient, and cost-effective. Therefore,
the PAAm hydrogel/BCG indicator as a rapid and simple intelligent approach indicates its
feasibility as a real-time monitoring of freshness for potential prospects.
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