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Abstract: There is a severe need to develop a sustainable, affordable, and nutritious food supply
system. Broccoli microgreens have attracted attention due to their rich nutritional content and
abundant bioactive compounds, constituting an important opportunity to feed the ever-increasing
population and fight global health problems. This study aimed to measure the impact of the combined
application of biofertilizers and zinc and iron nanofertilizers on plant growth and the biofortification
of glucosinolates (GLSs) and micronutrients in broccoli microgreens. Biofertilizers were based on plant
growth-promoting (PGP) bacterial consortia previously isolated and characterized for multiple PGP
traits. Nanofertilizers consisted of ZnO (77 nm) and γ-Fe2O3 (68 nm) nanoparticles synthesized with
the coprecipitation method and functionalized with a Pseudomonas species preparation. Treatments
were evaluated under seedbed conditions. Plant growth parameters of plant height (37.0–59.8%), leaf
diameter (57.6–81.1%) and fresh weight (112.1–178.0%), as well as zinc (122.19–363.41%) and iron
contents (55.19–161.57%), were mainly increased by nanoparticles subjected to the functionalization
process with Pseudomonas species and uncapped NPs applied together with the biofertilizer treatment.
Regarding GLSs, eight compounds were detected as being most positively influenced by these
treatments. This work demonstrated the synergistic interactions of applying ZnO and γ-Fe2O3

nanofertilizers combined with biofertilizers to enhance plant growth and biofortify micronutrients
and glucosinolates in broccoli microgreens.

Keywords: beneficial microorganisms; nanoparticles; micronutrient deficiency; mineral fertilization;
plant nutritional quality; plant growth-promoting microorganisms; plant nutrition

1. Introduction

Currently, regulations and actions regarding food security are mainly aimed at ensur-
ing food quantity and daily calorie intake rather than improving food quality [1]. Modern
agricultural practices such as overfertilization, excessive land use, crop intensification, the
use of high-yielding varieties, and poor micronutrient fertilization are progressively produc-
ing nutrient-deficient foods and contributing significantly to alarming problems through
public health, soil degradation, and environmental damage of agroecosystems [1–5]. Mod-
ern agriculture is increasingly linked with micronutrient deficiencies in the population,
including iron and zinc, which correspond to the most widespread micronutrient de-
ficiencies worldwide [1,6]. In addition, increased consumption of low-nutrient, cheap,
energy-dense, and processed foods have contributed significantly to the current alarming
rates of malnutrition and other chronic diseases [7,8].

There is a serious need to develop more sustainable, affordable, accessible, and nu-
tritious food products [9]. In this sense, the use of microgreens has gained great interest
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and popularity in recent years [10]. Microgreens are seedlings of edible plants that are
harvested after cotyledonary leaves are developed, approximately 7–14 days after ger-
mination [9,11,12]. They are versatile crops that can be cultivated easily, quickly, and
cost-effectively and that are eco-friendly due to the simple requirements for supplies and
equipment, making them an important opportunity for dietary supplementation [9,10].
Microscale vegetables are reported to contain lower concentrations of antinutrients and
higher amounts of nutrients and bioactive compounds such as amino acids, simple sug-
ars, minerals (e.g., zinc and copper), carotenoids, phenolic compounds, and vitamin C,
compared with their mature forms [7,9,12]. These compounds come from the secondary
metabolism and the enzymatic breakdown of macromolecules [10].

Plant species from the Brassicaceae family are among the most used for sprouting
purposes and, thus, are among the most reported in the scientific literature [10,11]. Partic-
ularly, broccoli (Brassica oleracea var. italica) microgreens have attracted attention due to
their rich nutritional content and abundant bioactive compounds, especially glucosinolates
(GLSs) [11–15]. Bhandari et al. [16] reported that broccoli contains the highest total glu-
cosinolates in sprouts (162.19 µmol·g−1) and seeds (110.76 µmol·g−1) compared with other
Brassica species, including cabbage, radish, cauliflower, pakchoi, baemuchae, leaf mustard,
and kale. Studies have shown that consuming broccoli microgreens, highly concentrated in
GLSs, can reduce the incidence of colon, colorectal, bladder, and lung cancers; significantly
relieve type 2 diabetes symptoms (such as insulin resistance and oxidative stress); protect
against Helicobacter pylori infections, brain injuries, and light-induced damage of the retina;
and exert anti-obesogenic effects [10,11,17–19]. Much of the bioactivity and health benefits of
broccoli come from the products of the hydrolysis of glucosinolates [12]. Glucoraphanin (GRA)
is considered one of the most relevant GSLs due to its anticancer properties. Researchers
are interested in improving the GRA content in Brassica species due to its health-promoting
potential [12,20–22]. Phenylethyl isothiocyanate hydrolyzed from gluconasturtiin (GNS) have
exhibited antimicrobial and anti-cancer properties against colon and prostate cancer [20].
Recent research has also shown relevant in vivo and in vitro assays regarding GLSs’ anti-
obesogenic potential, they participate in the reduction of circulating lipopolysaccharides
(LPS), weight gain, obesity-induced inflammation, and lipid accumulation; modulation of
hypercholesterolemia and gut microbiota; and enhancing insulin sensitivity and white fat
browning [9,11,12,17]. In contrast, progoitrin (PRO) is considered not only harmful to human
health, but is also responsible for the bitter flavor of Brassica vegetables [12].

Interestingly, stressful conditions during germination can stimulate secondary metabolism
and increase the content of relevant phytochemicals such as GLSs of microgreens [10]. Also,
nutrient fortification can significantly influence the metabolic activities of microgreens and
enhance their growth and nutritional quality [9]. This process of improving the nutritional
quality of food crops during their cultivation is called biofortification [1,8,23,24], which is
an important strategy to enrich macro and micronutrients, as well as bioactive compounds
in the edible parts of plants [1,7,24,25].

Bio-fortification through bio and nanofertilization are promising strategies due to their
sustainability, efficiency, cost-effectiveness, and low environmental impact. In addition,
these fertilization methods enhance the efficiency of agricultural inputs, contributing to
generating sustainable agroecosystems [24,26]. Biofertilizers are formulations of plant
growth-promoting microorganisms (PGPM) that establish symbiotic relationships with
plants and can promote their growth and enrich their nutritional value by stimulating
plant metabolism and enhancing nutrient uptake through multiple mechanisms including
the mobilization of macro and micronutrients (mainly by P, K, and Zn solubilization;
nitrogen fixation; and siderophores production), secretion of plant growth regulators
(including phytohormones and organic acids), abiotic stress resistance, and plant protection
against phytopathogens [2,24,25,27,28]. Nanofertilizers consist of nanoscale nutrients
(1–100 nm) that present unique physicochemical properties, including a high surface
area to volume ratio and increased reactivity and functionalization properties, compared
with their bulk macrostructure counterparts (commonly used as conventional mineral
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fertilizers). The nanoscale improves plant nutrient absorption, transport, and utilization,
facilitating their penetration through biological barriers, diffusion to the vascular system,
and assimilation in the different plant organs [28–31]. Nanofertilizers have been reported
to be between 20 to 30% more efficient than conventional mineral fertilizers [28,32–34]. This
work involves zinc and iron nanofertilization as these micronutrients are highly deficient
in the global population; around 20–25% and 17.3% of the population are Fe and Zn
deficient, respectively. Fe and Zn are required for several critical functions, including
protein synthesis, enzymatic function, DNA replication, cognition, immune response,
reactive oxygen species detoxification and antioxidant activity, and the alleviation of
chronic diseases [6,25]. Both strategies of bio and nanofertilization have been successfully
applied in microgreens to improve the nutritional and phytochemical content [7,13,35,36].

Microgreens have been extensively investigated as new functional foods or nutraceuticals
that are beneficial to human health [10], which make them an excellent target for biofortification
assays [9]. Therefore, this study aimed to measure the impact of the combined application of
biofertilizers of PGPR and zinc and iron nanofertilizers on plant growth and biofortification with
glucosinolates and micronutrients in broccoli microgreens grown under seedbed conditions.

2. Materials and Methods
2.1. Chemicals and Plant Materials

Iron (II) sulfate heptahydrate (FeSO4·7H2O) and ferric chloride (FeCl3·6H2O) were
obtained from J.T. Baker Chemical Co. (Phillipsburg, NJ, USA). Zinc acetate dihydrate
(ZnC4H6O4·2H2O), sodium acetate (CH3COONa), sinigrin hydrate, sulfatase from Helix
pomatia, diethylaminoethyl (DEAE)-sephadex A-25, acetonitrile (HPLC grade), methanol
(HPLC grade), and ethanol (HPLC grade) were purchased from Sigma-Aldrich (Saint Louis,
MO, USA). Desulfoglucoraphanin was obtained from Santa Cruz Biotechnology (Dallas, TX,
USA). Deionized water (18.2 MΩ·cm resistance) used in the protocols was acquired from a
Milli-Q Element water purification system (Millipore, Bedford, MA, USA). Commercial
broccoli (Brassica oleracea L. var. italica) seeds Vita® were obtained from “Rancho Los
Molinos” company (Tepoztlan, Mexico).

2.2. Formulation of Biofertilizers Based on Native Plant Growth-Promoting Microorganisms

Biofertilizers were based on plant growth-promoting bacteria that were previously
isolated and characterized as described in Guardiola-Márquez et al. [27]. Briefly, native
bacterial strains were isolated from agri-food crops and wild plant species in northern
Mexico and then characterized for several plant growth-promoting (PGP) traits (including
potassium, phosphate, and zinc solubilization; nitrogen fixation; ammonia production;
indole-3-acetic acid (IAA) secretion; siderophore production; and antifungal activity against
phytopathogenic Fusarium oxysporum) and finally evaluated on radish and broccoli micro-
greens to select potential biofertilization agents. In this earlier work, bacteria were grouped
depending on their relevance for each PGP attribute. The consortia named “P bac” was
used in the present study as it was one of the treatments with the best performance to
promote seedling growth and was formulated with bacterial isolates showing multiple
PGP traits at high levels, mainly mineral solubilization. Details regarding PGP traits’ levels
of each bacterial isolate and results on the early plant response evaluation are also shown
in Guardiola-Márquez et al. [27] (Figure 1a).

The “P bac” consortia consisted of Serratia liquefaciens strain A302, Pseudomonas
extremorientalis strain A306A1, Pseudescherichia vulneris strain A334, and Serratia liquefa-
ciens strain B14FEB, which were placed individually in 40 mL of sterile trypticase soy
broth (TSB) and incubated on a rotary shaker at 180 rpm and 30 ◦C for 48 h. Bacte-
rial cell density was monitored spectroscopically with a microplate reader VARIOSKAN
LUX (ThermoFisher Scientific, Waltham, MA, USA) until obtaining optical density val-
ues at 600 nm (OD600) between 0.6 and 0.8, which corresponded to total plate counts of
1.2 × 108–1.6 × 108 CFU mL−1 [37,38]. Bacterial growth was also estimated by plate count
in trypticase soy agar (TSA) plates [27].



Foods 2023, 12, 3826 4 of 17

Foods 2023, 12, x FOR PEER REVIEW 4 of 19 
 

 

was monitored spectroscopically with a microplate reader VARIOSKAN LUX (Ther-
moFisher Scientific, Waltham, MA, USA) until obtaining optical density values at 600 nm 
(OD600) between 0.6 and 0.8, which corresponded to total plate counts of 1.2 × 108–1.6 × 108 
CFU mL−1 [37,38]. Bacterial growth was also estimated by plate count in trypticase soy 
agar (TSA) plates [27]. 

 

Figure 1. Complete experimental strategy considering the formulation of biofertilizers based on plant
growth-promoting rhizobacteria (a) as reported in Guardiola-Márquez et al. [27]; the production and
evaluation of zinc and iron bio-nanofertilizers (b) described by Guardiola-Márquez et al. [39]; and
the biofortification of broccoli microgreens with glucosinolates, zinc, and iron using the bio- and
nanoformulations with the best performance in previous works (c). Zn Bac, bacteria functionalized
ZnO NPs. Fe Bac, bacteria capped γ-Fe2O3-NPs. Cons Bac, bacterial consortia used as a capping
agent. Zn NPs, uncapped ZnO NPs. Fe NPs, uncapped γ-Fe2O3-NPs. P Bac, phosphate-solubilizing
bacterial biofertilizer. Figure created with BioRender.com.

2.3. Preparation of Zinc and Iron Nanofertilizer

The synthesis and characterization process of the zinc and iron nanoparticles used in
this study were previously reported in Guardiola-Márquez et al. [39]. A co-precipitation
method was used to synthesize hexagonal wurtzite ZnO nanoparticles (ZnO NPs;
76.84 ± 10.3 nm) from 0.5 M zinc acetate dihydrate (ZnC4H6O4·2H2O) solution as the start-
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ing material, and face-centered cubic maghemite (γ-Fe2O3-NPs; 67.7 ± 8.9 nm) using 0.3 M
iron (II) sulfate heptahydrate (FeSO4·7H2O) and 0.6 M ferric chloride (FeCl3·6H2O) as the
precursor solution for iron nanoparticles. Nanoparticles were subjected to a functional-
ization process to incorporate surface capping; for this purpose, a bacterial consortium of
native Pseudomonas species was used. Bacterial species corresponded to four Pseudomonas
species (Pseudomonas allii strain B5KEA, Pseudomonas marginalis strain B9M, Pseudomonas
protegens strain A276, and Pseudomonas sesami strain A137A1) that were earlier isolated,
characterized for several PGP traits and identified through DNA sequencing [27]. Further
details of the NP functionalization and characterization process are presented in Guardiola-
Márquez et al. [39]. Bacteria capped ZnO and γ-Fe2O3 NPs at 250 ppm were used in the
present work as they presented the bio-nanofertilizing potential in the previous in vivo
assays in broccoli and radish (Figure 1b) [39].

2.4. Evaluation of Bio- and Nanoformulations in Broccoli Microgreens

A seedbed experiment was performed for 12 days to analyze the biofortification po-
tential of the bio- and nanoformulations (Figure 1c); a completely randomized design was
used. Twelve treatments were tested: (1) Bacteria functionalized ZnO NPs at 250 ppm
(Zn Bac). (2) Bacteria capped γ-Fe2O3 NPs at 250 ppm (Fe Bac). (3) Bacterial consortia
used as NP capping agents (Cons Bac). (4) Uncapped ZnO NPs at 250 ppm (Zn NPs).
(5) Uncapped γ-Fe2O3 NPs at 250 ppm (Fe NPs). (6) Mineral ZnO NP precursor (Zn Prec).
(7) Mineral γ-Fe2O3 NP precursor (Fe Prec). (8) P-solubilizing bacterial biofertilizer (P Bac).
(9) Application of treatments 4 and 8. (10) Application of treatments 5 and 8. (11) Applica-
tion of treatments 6 and 8. (12) Application of treatments 7 and 8. Negative control was
untreated plants irrigated with water (− control). Three cavities (replicates) were evaluated
per treatment. The assay was performed in plastic seedbeds of 72 cavities (5 × 5 × 6 cm),
filled to 3

4 of their capacity with sterile black soil mixed with vermiculite (3:1 v/v) [27,39].
Commercial broccoli (Brassica oleracea L. var. italica) seeds were surface sterilized by soaking

in 70% ethanol for 30 s, followed by 5% sodium hypochlorite solution for 5 min, and five washes
with sterile water [40]. The seeds were soaked in sterile distilled water with aeration overnight
at room temperature to induce germination. Five seeds were sown per cavity at 0.5–1 cm depth
and thinned to three plants per pot after germination [37]. Nine plants were tested per treatment.
The seedbeds were watered daily with tap water. Plants were grown in a growth chamber at
25 ◦C and 70% relative humidity under a 16 h:8 h light/dark cycle [27,39].

Bio- and nanofertilization treatments were applied three times during the experiment
at days 1, 6, and 9, applying 2 mL of the formulations to the corresponding cavities of each
treatment. Experimental plants were harvested after 12 days and measured for agronomic
parameters; microgreens were then immediately frozen with liquid nitrogen and stored at
−80 ◦C (Revco Ultima PLUS ULT1386, Thermo Scientific Inc., Waltham, MA, USA) [27,39].
Frozen samples were freeze-dried at −83 ◦C and 0.035 mbar for 72 h (Labconco, Kansas
City, MO, USA), lyophilized seedlings were ground to a fine powder and stored at −80 ◦C
for further analysis [41,42].

2.4.1. Determination of Plant Growth Parameters

Agronomic growth parameters of plant height (cm), leaf diameter (cm), root length
(cm), and shoot fresh weight were measured. Plant height was determined from the base to
the tip of the plants [27,39,43].

2.4.2. Analysis of Glucosinolates Contents

The extraction and desulfation of GSLs from broccoli microgreens were performed
as previously described [22]. To extract glucosinolates, 0.2 g of lyophilized broccoli micro-
greens powder was added with 10 mL of a pre-heated (10 min at 70 ◦C in a water bath
(VWR, Radnor, PA, USA) ethanol/water (50:50, v/v) solution, followed by the addition
of 50 µL of a 3 mM solution of sinigrin as the internal standard (I.S). Suspensions were
incubated for 1 h at 250 rpm and 40 ◦C in a shaking incubator. The extracts were removed
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from the incubator, left to cool at room temperature, and then centrifuged (SL16R Thermo
Scientific, Bremen, Germany) at 18,000× g for 10 min and at 4 ◦C. The supernatant was
recovered and stored at −80 ◦C for further glucosinolates analysis.

GSLs were desulphated and purified using disposable polypropylene columns (Thermo
Fisher Scientific, Waltham, MA, USA). The columns were prepared by adding 0.5 mL of
water, followed by 0.5 mL of previously prepared resin Sephadex A-25 and an additional
0.5 mL of HPLC water. Then, 3 mL of broccoli extract supernatant was added to the pre-
pared column and allowed to elute slowly. After removing the excess supernatant, the
columns were washed with 2 × 0.5 mL of HPLC water followed by 2 × 0.5 mL of 0.02 M
sodium acetate. Then, 75 µL of purified sulfatase previously prepared was added to each
sample and left at room temperature overnight (12 h). Desulfoglucosinolates were eluted
in vials with a total of 1.25 mL of water (2 × 0.5 mL + 0.25 mL) [44,45].

Glucosinolates were assayed using ultra-high performance liquid chromatography
with a photodiode array detector (UHPLC-PDA). Individual GSLs were prepared using a
standard curve of desulfoglucoraphanin ranging from 0 to 1250 ppm. The concentrations
of total and individual GSL were expressed as mg of desulfoglucoraphanin equivalents per
g of broccoli microgreens dry weight (DW), while individual GSL were identified based
on retention time compared with authentic standards and related published data [45–47].
Chromatographic separations were performed on a UHPLC-PDA Acquity Arc system
(Waters, Milford, MA, USA). Desulfoglucosinolates were separated on a Waters Cortecs
reverse phase C18 (4.6 × 50 mm, 2.7 µm pore size) column using water (phase A) and
acetonitrile (phase B) as mobile phases with a flow rate of 1.5 mL/min and a sequential
gradient of 0/100, 28/80, and 35/100 (min/% phase A). The injection volume was 20 µL
and the compounds were detected at 227 nm [22,45].

2.4.3. Quantification of Zinc and Iron Micronutrients

The lyophilized microgreen powder was analyzed for the content of zinc and iron
using the atomic absorption spectrophotometry method [14,48]. Quantification was per-
formed with a PinAAcle 900F Atomic absorption (AA) spectrometer (Perkin Elmer, Waltham,
MA, USA). The results were expressed as mg/100 g of dried plant material.

2.4.4. Statistical Analysis

Statistical analyses of the experimental data were performed using one-way analysis of
variance ANOVA and Tukey Test (p < 0.05) to compare mean values. Three replicates were
considered, and the data represent the mean values ± standard deviation (SD). Jmp software
version 17.0 (SAS Institute Inc., Cary, NC, USA) was employed for statistical analysis [22,27,39].

3. Results
3.1. Effects of Bio- and Nanoformulations on the Growth of Broccoli Microgreens

Twelve treatments, including biofertilizers and nanofertilizers, were tested in a 12-day
seedbed assay in broccoli (Brassica oleracea L. var. italica) microgreens. To identify their
impact on the plant yield, the agronomic growth parameters of plant height, leaf diameter,
root length, and shoot fresh weight were measured.

Regarding plant height, the most relevant treatments were bacteria functionalized
ZnO NPs (Zn Bac), uncapped ZnO NPs applied in conjunction with the biofertilizer treat-
ment (Zn NPs + P Bac), uncapped γ-Fe2O3 NPs applied with biofertilizer (Fe NPs + P Bac),
mineral γ-Fe2O3 NP precursor applied in combination with biofertilizer (Fe Prec + P Bac),
and bacteria capped γ-Fe2O3 NPs (Fe Bac). Treatments containing zinc micronutrient sig-
nificantly improved plant height between 57.3 and 59.8%, while those with iron increased
between 37.0 and 48.0% compared with water-irrigated plants. The leaf diameter was
significantly influenced by the same treatments as plant height, treatments with zinc mi-
cronutrient (Zn Bac and Zn NPs + P Bac) increased the leaf diameter between 79.6 to 81.1%,
and iron treatments (Fe NPs + P Bac, Fe Prec + P Bac, and Fe Bac) between 57.6 to 69.2%.
Additionally, the biofertilizer treatment alone (P Bac) also exerted a significant effect on the
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diameter of the leaves, improving this parameter by 69.9%. With respect to root length, the
experimental data did not lead to conclusive results. Statistically, this parameter presented
high variability, which may be due to their size, which made it difficult to measure changes
in the development of both primary and lateral roots due to the dimensions of the seedbed
cavities, and tangled root structures that were handled carefully to prevent loss of plant ma-
terial, which could impact weighing. Finally, the fresh weight of broccoli microgreens was
significantly increased by the same treatments with zinc (150.4–178.0%), iron (112.1–156.1%),
and the biofertilizer alone (123.9%), with respect to untreated plants (Figure 2).
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Figure 2. Evaluation of bio- and nanoformulations on agronomic parameters in broccoli microgreens.
(a) Plant height (cm). (b) Leaf diameter (cm). (c) Root length (cm). (d) Fresh weight (g). Results
correspond to mean ± standard deviation; letters indicate significant differences between treatments
(p < 0.05). − control, water irrigated plants. Zn Bac, bacteria functionalized ZnO NPs. Fe Bac,
bacteria capped γ-Fe2O3 NPs. Cons Bac, bacterial consortia used as the capping agent. Zn NPs,
uncapped ZnO NPs. Fe NPs, uncapped γ-Fe2O3 NPs. Zn Prec, mineral ZnO NP precursor. Fe Prec,
mineral γ-Fe2O3 NP precursor. P Bac, phosphate-solubilizing bacterial biofertilizer. Zn NPs + P Bac,
uncapped ZnO NPs applied with the biofertilizer. Fe NPs + P Bac; uncapped γ-Fe2O3 NPs applied in
conjunction with biofertilizer. Zn Prec + P Bac, mineral ZnO NP precursor applied with biofertilizers.
Fe Prec + P Bac, mineral γ-Fe2O3 NP precursor applied in combination with biofertilizer.
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3.2. Glucosinolates Profile in Broccoli Microgreens after the Application of Bio- and Nanofertilizers

Eight glucosinolates were identified in the broccoli microgreen lyophilized powders
(Figure 3), including four aliphatic glucosinolates, glucoiberin (GIB), progoitrin (PRO),
glucoraphanin (GRA), and 1-hydroxy-3-indoylmethyl (1H3IM); one aromatic glucosinolate,
gluconasturtiin (GNS); and three indolyl glucosinolates, 4-hydroxy-glucobrassicin (4HGBS),
glucobrassicanapin (GBN), and neoglucobrassicin (NGBS). GIB was significantly improved
by up to 25-fold with the uncapped γ-Fe2O3 NPs applied in conjunction with biofertilizer
(Fe NPs + P Bac); other treatments also enhanced GIB concentrations including mineral
ZnO NP precursor (Zn Prec;13-fold), uncapped ZnO NPs applied with the biofertilizer
(Zn NPs + P Bac; 9-fold), uncapped ZnO NPs (Zn NPs; 8-fold), uncapped γ-Fe2O3 NPs
(Fe NPs; 4-fold), bacterial consortia used as the NP capping agent (Cons Bac; 3-fold), and
bacteria functionalized ZnO NPs (Zn Bac; 3-fold). The PRO content was only influenced by
uncapped ZnO NPs and bacteria-capped γ-Fe2O3 NPs (3 to 1-fold); other treatments did
not significant or negatively impact its concentration with respect to untreated plants.

GRA was significantly increased with the uncapped γ-Fe2O3 NPs applied in combina-
tion with biofertilizer (Fe NPs + P Bac), bacteria-treated ZnO NPs (Zn Bac), uncapped ZnO
NPs applied with the biofertilizer (Zn NPs + P Bac), bacteria capped γ-Fe2O3 NPs (Fe Bac),
and bacterial consortia used as NP capping agent (Cons Bac), which increased its content
by up to 29-fold, 20-fold, 18-fold, 8-fold, and 7-fold, respectively. 1H3IM concentrations
were positively influenced (3 to 1-fold) by five treatments, including Fe-NPs, P Bac, Zn
Prec, Zn NPs, and Fe Prec. Microgreens improved the 4HGBS content with uncapped
ZnO NPs (201.01%), bacteria functionalized ZnO NPs (166.07%), mineral ZnO NP precur-
sor applied with biofertilizer (67.90%), bacterial consortia used as the NP capping agent
(46.53%), and uncapped γ-Fe2O3-NPs applied in conjunction with biofertilizer (43.98%).
Regarding GBN, it was positively affected only with the bacteria capped γ-Fe2O3-NPs,
mineral γ-Fe2O3-NP precursor, and bacteria functionalized ZnO NPs that increased GBN
content by 28-fold, 23-fold, and 22-fold, respectively. The concentrations of GNS were
improved with bacteria-treated ZnO NPs (560.60%) and uncapped γ-Fe2O3 NPs (46.96%).
NGBS exclusively improved with two treatments, the bacterial NP capping agent and the
uncapped γ-Fe2O3 NPs, which increased the NGBS content between 17.75 and 38.64%.
Finally, the total glucosinolates were significantly increased by the following treatments:
Zn Bac (162.14%), Zn NPs (65.07%), Fe NPs (64.29%), Zn Prec (42.52%), Fe NPs + P Bac
(34.64%), P Bac (25.99%), and Cons Bac (15.22%).

3.3. Effects on the Concentration of Zinc and Iron Micronutrients in Broccoli Microgreens

Bio and nanofertilizers were also applied to biofortify zinc and iron micronutrients
in broccoli microgreens. In this sense, uncapped ZnO NPs applied together with the
biofertilizer treatment (Zn NPs + P Bac), bacteria-capped ZnO NPs (Zn Bac), uncapped
γ-Fe2O3 NPs applied with biofertilizer (Fe NPs + P Bac), and uncapped ZnO NPs (Zn NPs)
positively affected the concentrations of zinc in broccoli microgreens by 363.41%, 191.99%,
145.95%, and 122.19%, respectively, compared with the untreated broccoli microgreens,
where a concentration of 7.12 mg/100g of lyophilized powder was detected (Figure 4a).

The iron content was also significantly enhanced with the bio- and nanofertilization
treatments; uncapped γ-Fe2O3 NPs applied in combination with biofertilizer (Fe NPs + P Bac)
and uncapped γ-Fe2O3 NPs (Fe NPs) markedly increased iron concentrations by up to
161.57% and 101.71%, respectively, followed by uncapped ZnO NPs applied with the
biofertilizer treatment (Zn NPs + P Bac), mineral γ-Fe2O3 NP precursor (Fe Prec). and
bacteria functionalized γ-Fe2O3-NPs (Fe Bac), which improved the iron content by 91.00,
64.49, and 55.19%, respectively (Figure 4b).
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coraphanin (c), 1-hydroxy-3-indoylmethyl (d), gluconasturtiin (e), 4-hydroxy-glucobrassicin (f),
glucobrassicanapin (g), neoglucobrassicin (h), and total glucosinolates (i) in broccoli microgreens.
Values correspond to means ± standard deviation. Values with different letters in the same column
denote statistical differences between the mean of the treatments using Tukey’s test (p < 0.05). −
control, water irrigated plants. Zn Bac, bacteria functionalized ZnO NPs. Fe Bac, bacteria capped
γ-Fe2O3 NPs. Cons Bac, bacterial consortia used as capping agent. Zn NPs, uncapped ZnO NPs. Fe
NPs, uncapped γ-Fe2O3 NPs. Zn Prec, mineral ZnO NP precursor. Fe Prec, mineral γ-Fe2O3, NP
precursor. P Bac, phosphate-solubilizing bacterial biofertilizer. Zn NPs + P Bac, uncapped ZnO NPs
applied with the biofertilizer. Fe NPs + P Bac, uncapped γ-Fe2O3 NPs applied in conjunction with
biofertilizer. Zn Prec + P Bac, mineral ZnO NP precursor applied with biofertilizers. Fe Prec + P Bac,
mineral γ-Fe2O3 NP precursor applied in combination with biofertilizer.
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Figure 4. The contents of zinc (a) and iron (b) micronutrients in broccoli microgreens under bio-
and nanofertilizer treatments. Results correspond to mean ± standard deviation; different letters
above the error bars indicate significant differences between treatments by Tukey’s test at p < 0.05.
− control, water irrigated plants. Zn Bac, bacteria functionalized ZnO NPs. Fe Bac, bacteria capped
γ-Fe2O3 NPs. Cons Bac, bacterial consortia used as the capping agent. Zn NPs, uncapped ZnO NPs.
Fe NPs, uncapped γ-Fe2O3 NPs. Zn Prec, mineral ZnO NP precursor. Fe Prec, mineral γ-Fe2O3 NP
precursor. P Bac, phosphate-solubilizing bacterial biofertilizer. Zn NPs + P Bac, uncapped ZnO NPs
applied with the biofertilizer. Fe NPs + P Bac, uncapped γ-Fe2O3 NPs applied in conjunction with
biofertilizer. Zn Prec + P Bac; mineral ZnO NP precursor applied with biofertilizers. Fe Prec + P Bac,
mineral γ-Fe2O3 NP precursor applied in combination with biofertilizer.

4. Discussion

Dietary supplementation with beneficial, nutritious, and sustainably produced new
food products has been recognized as an important measure to improve nutrition and
health status and prevent and treat important diseases like obesity [17]. Therefore, bio-
and nanofertilization practices were implemented in this work to biofortify broccoli micro-
greens with relevant phytochemicals and micronutrients. Regarding their impact on plant
growth, the treatments with the best effects in the four agronomic parameters evaluated
were bacteria-functionalized ZnO NPs (Zn Bac), uncapped ZnO NPs applied in conjunction
with the biofertilizer treatment (Zn NPs + P Bac), uncapped γ-Fe2O3 NPs applied with
biofertilizer (Fe NPs + P Bac), mineral γ-Fe2O3 NP precursor applied in combination with
biofertilizer (Fe Prec + P Bac), bacteria capped γ-Fe2O3 NPs (Fe Bac), and the biofertil-
izer treatment alone (P Bac). Other studies have also reported the positive influence of
zinc [49–51] and iron [51,52] nanoparticles, as well as the bacterial species present in the P
Bac consortia [27] on the growth parameters of broccoli. Awan et al. [49] found that the
application of ZnO NPs (24 nm) increased the seed germination (37.5%), root length (56.6%),
shoot length (16.6%), and weight (41%) of broccoli seedlings. As in this work, they also
identified that zinc oxide nanoparticles demonstrated a higher efficiency for improving crop
growth than the macro size salt precursor solution. Similarly, Farhan et al. [52] observed
that using nano iron at 50 ppm significantly improved plant height, leaf number, leaf area,
plant yield, root weight, and iron concentration in leaves. Concerning the biofertilizer
treatment (P Bac), it was previously evaluated in another study where the beneficial PGPM
present in this consortium was isolated and characterized. In that work, P Bac significantly
increased the plant height, leaf diameter, and fresh weight of broccoli microgreens by 41.51,
63.66, and 66.20%, respectively [27].
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Interestingly, this study suggests synergistic interactions between bio- and nanofer-
tilization practices, that is, the application of nanoparticles in conjunction with plant
growth-promoting microorganisms, as neither the nanoparticles nor the mineral precursors
alone exerted significant effects with respect to the control. The treatments consisting of
nanoparticles subjected to the functionalization process with a consortium of Pseudomonas
species (Zn Bac, and Fe Bac) and those involving uncapped NPs applied together with
the biofertilizer treatment (Zn NPs + P Bac, and Fe NPs + P Bac) both deliver nanoscale
micronutrients and viable beneficial microorganisms to the plants. It has been reported that,
in the combined application, nanoparticles can promote the growth of PGPM, improve the
enzymatic microbial activity, and enhance their beneficial effects on plants [39,53–55]. At
the same time, PGPM optimizes nutrient absorption, increasing the nanoparticles’ stability
and bioavailability [49]. Seyed Sharifi et al. [54] evaluated the impact of zinc and iron
oxide nanofertilizers and biofertilizers (Azotobacter, Azosperilium, and Pseudomonas) on the
physicochemical properties and grain yield of wheat (Triticum aestivum L.) under water
limitation conditions. They found that the application of biofertilizers and nanoparticles
increased the proline content, photosynthetic pigments, soluble sugars, and enzyme activ-
ities; particularly, the treatment with Azotobacter and nano Zn−Fe oxide enhanced grain
yield by 88% compared with the control under severe water limitations, concluding that
the combined application was more successful in improving plant yield as compared to the
individual application of each fertilizer. In another study, Singhal et al. [55] demonstrated
that ZnO nanorods applied at 500 ppm significantly increased the biomass of the beneficial
fungus Piriformospora indica DSM 11827P, which resulted in a synergistic association that
enhanced the biomass productivity of broccoli.

Concerning glucosinolate production, depending on the glucosinolate, this was en-
hanced by applying micronutrients, PGPM, or their combination. Zinc and iron micronu-
trients perform vital functions for normal plant development and metabolism, having a
significant influence on hormone biosynthesis and regulation, chlorophyll and carbohy-
drates production, protein synthesis, photosynthesis, DNA stability/repair, membrane
function, and enzyme activation [1,54]. They are essential micronutrients that are key for
over 300 enzymes and hormones. Thus, it is inferred that when the micronutrient availabil-
ity and uptake are increased, the accumulation of certain phytochemicals and secondary
metabolites, including glucosinolates, is improved due to enhanced plant metabolism and
nutrient status [49]. GLSs are classified according to their precursor amino acids: aliphatic
GLSs are built from alanine, leucine, isoleucine, methionine, or valine; aromatic GLSs are
derived from phenylalanine or tyrosine; and indole GLSs originate from tryptophan [12,56].
Micronutrients can improve the content of amino acid precursors of glucosinolates, e.g.,
zinc content can improve the concentrations of L-tryptophan, which can increase the biosyn-
thesis of indole glucosinolates [57]. It is also reported that Zn toxicity can cause greater
accumulation of GLSs, triggered by pathogen-resistance-related genes as a response to a
metal-stress-derived signal. However no toxic symptoms were identified in the broccoli
microgreens [58].

Beneficial microorganisms can also impact glucosinolate production by triggering the
plant’s defense mechanisms though systemic resistance. Glucosinolates are involved in the
plant response against plant tissue damage or microbial pathogen attack [21,56,59,60]. The
synthesis of aliphatic, aromatic, and indole glucosinolates varies depending on the envi-
ronmental stressors or microbe species [60]. Little is known about the specific interaction
between individual glucosinolate contents and the colonization of plant growth-promoting
bacteria, but it is suggested that the induction of the plant’s systemic resistance can re-
sult in physiological, biochemical, and metabolic changes that lead to the synthesis of
secondary metabolites, including glucosinolates, required in plant defense mechanisms.
The major compounds responsible for the PGPR-mediated induced systemic resistance
(ISR) include lipopolysaccharides, lipopeptides, pyocyanin, siderophores, antibiotics, iron-
regulated compounds, bacterial quorum sensing molecules, volatile 2,3-butanediol, and
N-alkylated benzylamine [1,59,61,62]. PGPR performs this process to prepare plants before
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the pathogen’s attack and reduce the incidence of disease or damage. ISR is then a state of
enhanced defensive capacity carried out by a plant that has responded to a specific biotic
or chemical stimulant [59,62]. PGPM can also influence plant hormone levels, including
jasmonic acid (JA) and salicylic acid (SA), which are involved in plant defense responses
and have been implicated in glucosinolates production [58].

Enhancing glucosinolate contents in plants has attracted important pharmacological
interest due to their effects on promoting human health, mainly their anticarcinogenic, an-
tiobesity, anti-inflammatory, and antimicrobial properties. Applications of bio- and nanofer-
tilizers as elicitors may be an effective option to increase desired glucosinolates [20,60]. Glu-
cosinolate function is mostly associated with their hydrolysis products, which are generated
by thioglucoside glucohydrolase, also known as myrosinase, which hydrolyzes the glucose
moiety of the core glucosinolate structure, releasing glucose and an unstable aglycone com-
pound that can be transformed to form isothiocyanates, nitriles, thiocyanates, epithionitriles,
and oxazolidines, depending on the starting glucosinolate structure [21,56]. Hydrolysis
products are relevant for the plant defense against insects, bacteria, and fungi [56].

Micronutrient deficiencies in people are linked to micronutrient deficits in plants [24].
Thus, considering the increasing rates of micronutrient deficiencies, mainly zinc and
iron, research directed to improve food quality is of major relevance. The biofortifi-
cation of micronutrients by applying nanoparticles has been widely studied in differ-
ent food crops, including rice, wheat, maize, broccoli, and chickpea [52,63–66]. In the
present study, treatments consisting of uncapped ZnO and γ-Fe2O3 NPs, nanoparticles
functionalized with PGP bacterial consortium (Zn Bac, and Fe Bac), and uncapped NPs
applied with a biofertilizer treatment (Zn NPs + P Bac, Fe NPs + P Bac) were the most
important to improve zinc (145.95–363.41%) and iron (55.19–161.57%) contents in broccoli
microgreens. Sundariae et al. [66] applied iron oxide nanoparticles to biofortify wheat
(Triticum aestivum L.) crops through seed priming, increasing the grain iron contents be-
tween 26.8 to 45.7%. Yang et al. [64] improved the Zn concentration of brown rice between
13.5 to 39.4% by applying ZnO NPs compared with conventional fertilization. Du et al. [65]
also evaluated zinc nanofertilization on wheat (Triticum aestivum L.), they identified that
ZnO NPs were more effective than salt NP precursors (ZnSO4) at increasing the grain
Zn content, but, particularly, they found that ZnO NPs were not detected in the wheat
tissues, attributing this phenomenon to the dissolution of ZnO NPs in the rhizosphere
and the plant absorption and transport of Zn in the ionic form. Similar effects have been
obtained by different authors [67–69], and may be one of the starting mechanisms for zinc
and iron biofortification.

Metal-based nanoparticles like ZnO and γ-Fe2O3 NPs can be subjected to different
surface interactions and biochemical transformations in the soil-root interface, which
depend on the characteristics of the nanomaterials such as capping agents, size, and
charge [70]. Biochemical transformations may involve the release of zinc or iron ions (Zn2+,
Fe2+ or Fe3+) from the nanoparticles into the soil; this process is mediated by factors like soil
pH, redox conditions, and the contact with root exudates (organic acids, such as gluconic
and citric acid, released by plant roots and microorganisms participate in the dissolution
of nanoparticles). For example, the rhizosphere can be acidified by the H-ATPase AHA2,
which extrudes protons from the root and can solubilize Zn and Fe through cation exchange
in the rhizosphere, Fe3+ is reduced to ferrous Fe2+ by ferric chelate reductase (FRO2) and is
absorbed by root epidermal cells by the metal carrier IRT1 (plasma membrane-localized
Fe2+ transporter), while Zn is absorbed mainly through transmembrane transporters in the
ZIP (ZRT and IRT-like protein) family that is localized in the membrane of root epidermal
cells [25]. The rhizosphere is a biologically and chemically active zone enriched with
microorganisms and root exudates that can promote the biotransformation of nanoparticles
prior to their absorption [67,70,71].

The transformation of NPs can also occur inside the plant tissues, resulting in various
accumulated elemental speciation in plants [70,72]. In general terms, when the nanoparti-
cles are not dissolved in the rhizosphere, the mechanism of absorption and translocation of
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soil-applied nanoparticles starts in the root surfaces and root-damaged sites where these
compounds interact with the epidermal cells to penetrate through apoplastic and symplas-
tic pathways and reach the vascular system, they are then translocated to the shoot via
xylem vessels, depending on the charge of the nanoparticle they are more easy (negatively
charged particles) or difficult (positive or neutral charge particles) to be transported. NPs
are finally accumulated in the aerial plant organs (vacuoles and cell walls are important
sites for accumulation), where they can be transformed into ionic forms [1,73,74].

In addition to nanoparticles, another important factor contributing to the zinc and
iron biofortification in the broccoli microgreens is the presence of PGPM in the most rel-
evant treatments. Bacterial isolates used in this study were previously characterized for
several PGP traits, showing a potential mineral solubilizing activity (including phosphate,
potassium, and zinc) and siderophores production [27]. The main mechanism of zinc solubi-
lization is through the reduction in pH in the rhizosphere; for this purpose, microorganisms
produce organic acids, including citric, gluconic, acetic, lactic, formic, malic, and oxalic
acids, to acidify the rhizospheric soil. Small changes in the soil pH significantly promote
the release of bioavailable Zn forms in the soil [1]. Acidic environments also promote
the dissolution of nanoparticles [70]. Species of the genera Serratia and Pseudomonas have
been reported in different studies to have important effects for promoting plant growth
and biofortifying crops with zinc [75,76]. Regarding siderophore production by beneficial
microorganisms, these compounds also increase zinc and iron bioavailability. Siderophores
like bacillibactins, pyoverdines, and cephalosporins chelate insoluble zinc and iron forms;
they can scavenge Zn2+ and Fe3+ from the mineral phases and generate soluble Zn2+-
and Fe3+-siderophores complexes that are absorbed into plant cells, also promoting the
solubilization of the nanoparticles and facilitating the uptake of ionic forms [1,70].

Finally, regarding the recommended dietary intake of broccoli microgreens, and con-
sidering the reference daily intake (RDI) for zinc (8–11 mg/day) and (8–18 mg/day) in
adults of 19 years old and older, an individual would have to consume 230–315 g/day
and 59–132 g/day of biofortified fresh broccoli microgreens to reach the recommended
daily dose of zinc and iron, respectively. Estimates were made considering an average
moisture content of 90% for broccoli microgreens, and the highest concentrations of zinc
(34.87 mg/100 g DW) and iron (135.9 mg/100 g DW) obtained in this work [77].

5. Conclusions

This work demonstrated the potential of utilizing ZnO and γ-Fe2O3 nanofertilizers
combined with biofertilizers based on native plant growth-promoting bacteria to enhance
plant growth and biofortify micronutrients and glucosinolates in broccoli microgreens,
identifying possible synergistic interactions between nanoparticles and PGPR to improve
the growth and nutritional quality of microgreens. Based on the agronomic growth param-
eters, the most relevant treatments were nanoparticles functionalized with PGP-bacterial
consortium (Zn Bac, and Fe Bac), and uncapped NPs applied with a biofertilizer treatment
(Zn NPs + P Bac, and Fe NPs + P Bac); moreover, these treatments and the uncapped ZnO
and γ-Fe2O3 NPs also exerted significant increases in the glucosinolates and zinc and iron
contents. Further experiments will be performed to evaluate their effect in other important
food crops, as well as in the later stages of plant development. This study validated that
applying zinc and iron nutrients as nanofertilizers combined with PGPR as biofertilizers
is an important strategy for the rapid and efficient delivery of nutrients into the plant
system, the enhancement of plant nutrient uptake to fulfill the plants’ requirements, and
the improvement of plant’s nutritional value and growth within a short period of time.
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57. Jiráček, V.; Kutáček, M.; Salkade, S.; Koštíř, J. Effect of zinc on the biosynthesis of indole glucosinolates glucobrassicin and
neoglucobrassicin in etiolated seedlings of rape (Brassica napus var. arvensis (Lam.) Thell). Biol. Plant. 1974, 16, 454–461. [CrossRef]
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