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Fast nondestructive detection technology in food quality and safety evaluation is a
powerful support tool that fosters informatization and intelligence in the food industry,
characterized by its rapid processing, convenient operation, and seamless online inspection.
Over the past two decades, these technologies have found numerous successful applica-
tions in the field of food and agricultural product detection and processing. Owing to
improvements in the development of photoelectric sensors and the ongoing progress in
artificial intelligence and software algorithms, fast nondestructive detection technologies
provide significantly enhanced accuracy, reliability, and stability, revolutionizing their role
in food quality and safety detection and processing. Their seamless integration with the
Internet of Things (IoT) and intelligent manufacturing is promoting a new wave of inno-
vation in the food industry. The application of new sensing technology and equipment in
the fast, nondestructive detection of food has always been at the forefront of scientific and
technological research. The schematic diagram of the advance in research progress is shown
in Figure 1. This Special Issue is dedicated to highlighting the latest research progress and
jointly discussing the future directions of research and development in the field.

Raman spectroscopy is a fast and sensitive tool that has established itself as a valuable
technique that has demonstrated successful applications in ensuring food safety and quality.
Yin et al. [1] employed bimetallic core-shell nanoparticles and a specific redox reaction
of carbimazole and chromium iron for the surface-enhanced Raman spectroscopy (SERS)
detection of hexavalent chromium in tea. The developed techniques demonstrated excellent
sensitivity, emphasizing the significant potential of rapid, non-destructive, and sensitive
SERS detection in the field of food safety and quality analysis. Qiu et al. [2] developed an
SERS-based method for the detection of polycyclic aromatic hydrocarbon (PAH) residues
on the surface of fruits and vegetables. A flexible substrate (3-CD@AuNP/PTFE) was
employed for enhancing the signals along with lightweight deep learning networks for
data analysis. In addition, Zhang et al. [3] utilized a microfluidic chip for the capture of crop
airborne disease spores for further detection using Raman spectroscopy. The use of support
vector machine (SVM) and back-propagation artificial neural network (BPANN) ensured
high accuracy in detection. Thus, the integration of deep learning in Raman spectroscopic
data facilitates automated feature extraction, accommodates complex data relationships,
and achieves high accuracy levels, thereby enabling its effective application in the field
of food safety. Interestingly, Sun et al. [4] focused on theoretically calculating Raman
spectra for five commonly used plasticizers, known as phthalic acid esters (PAEs). The
density functional theory (DFT) calculations showed in the research have the potential to
contribute to the development of Raman spectroscopic methods for the rapid detection of
PAEs in the future, a crucial step in assessing their potential health risks. These innovative
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applications demonstrate the effectiveness of Raman spectroscopy in detecting contam-
inants and analyzing the quality of food products. Theoretical advancements in Raman
spectral calculation help to gain insights into molecular structure, composition, and their
interaction, which eventually has the potential to improve the accuracy and sensitivity of
Raman-based analysis.
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Figure 1. Schematic diagram of the advance research progress of fast nondestructive detection
technology and equipment for food quality and safety.

Further, Sun et al. [5] employed visible/near-infrared (Vis/NIR) spectroscopy to de-
tect the soluble solid content in fresh jujubes along with a least square support vector
machine to develop a model. The proposed method yielded highly accurate prediction
results, effectively tackling the demand for quality analysis of jujubes in the open fields. In
addition, Jiang et al. [6] developed a calibration method for NIR spectroscopy to enhance
the accuracy of the model for detecting the soluble solid content in apples of different sizes.
The results hold high significance in advancing the development of dependable models for
predicting the SSC in diverse fruits. While establishing a Vis/NIR spectroscopy detecting
method for the stone cell content of Korla fragrant pears, Wang et al. [7] showed that the
standardized normal variate (SNV) pre-processed successive projective algorithm-support
vector regression (SPA-SVR) model effectively meets the requirements for intelligent evalu-
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ation, achieving high correlation coefficients for both calibration and validation sets. The
effectiveness of Vis/NIR spectroscopy in food quality analysis was further proved by
Wang et al. [8], where Vis/NIR spectroscopy was successfully employed to predict the
anthocyanin content in purple Chinese cabbage with high accuracy. On the other hand,
Migues et al. [9] developed a method for predicting the acceptability of Mandarin fruit
based on the sugar and citric acid levels extracted from the NMR spectroscopic data. The
study proved that the chemometric-based models facilitate data-driven decisions to op-
timize food quality, ensuring that the product meets consumer demands and regulatory
standards. In addition, He et al. [10] evaluated the impact of 60Co irradiation on turmeric
essential oil composition using gas chromatography-ion mobility spectrometry (GC-IMS).
The findings demonstrated that, even though compound composition remained constant,
the peak intensities were altered, supporting a 5 kGy/min irradiation dose for preserving
essential oil quality. The studies have effectively demonstrated that the integration of
spectroscopic techniques along with advanced data analysis is a promising choice that
cements the advancement in food safety and quality analysis. These approaches offer rapid
and accurate predictions of key quality attributes in various food products.

The ability of machine learning to extract valuable information from high-dimensional
spectral data was utilized to enhance the effectiveness and efficiency of hyperspectral
imaging in analyzing the safety and quality of food products. Xu et al. [11] explored the
relationship between water distribution and quality indicators in shrimp during hot air
drying using hyperspectral imaging. The study revealed a positive association between
shrimp moisture content and bound water, immobilized water, and free water. Conversely,
attributes including hardness, stickiness, and chewiness showed negative correlations with
bound water and free water. Likewise, Cao et al. [12] developed a rapid approach for
assessing the texture profile analysis of common carp fillets, leveraging hyperspectral imag-
ing and machine learning algorithms. The proposed method accelerated the assessment
process and maintained the integrity of the product, making it a valuable alternative to
traditional texture analysis methods. Additionally, Wang et al. [13] and Xu et al. [14] both
employed hyperspectral imaging to assess the quality of the safety of maize seeds. However,
Wang et al. [13] developed a method to detect mold growth in maize kernels by applying
categorical analysis and data fusion to hyperspectral data. In contrast, Xu et al. [14] devel-
oped a method to identify defective maize seeds by employing deep learning, particularly
convolutional neural networks to hyperspectral images. Further, Zhang et al. [15] combined
internal and external leaf features obtained from both near-infrared hyperspectral imaging
and THz time-domain spectroscopy to assess the different grades of tomato leaf mildew
infestation. The fusion of these sources of information allows for a high degree of accu-
racy in detection, preventing misdiagnosis associated with traditional disease detection
methods. Hyperspectral imaging has brought about a transformative shift in food quality
and safety assessment, providing an in-depth analysis of food products. The wide range of
applications of hyperspectral imaging from understanding water distribution and assessing
texture to detecting mold growth and defects emphasizes its versatility and reliability.

IoT plays a significant role in food safety and quality assurance by providing real-time
monitoring, data accuracy, complete traceability, and early warning systems throughout
the food supply chain. Yin et al. [16] developed a spoilage monitoring and early warning
system based on the volatile component production during apple spoilage. The combi-
nation of a sensor prototype and multi-factor fusion early warning model provided the
real-time evaluation of food spoilage. Thus, the development of novel sensors that have the
capability to collect data from the environment is an integral part of the IoT to ensure minia-
turization and energy efficiency. In this regard, a chemiresistive ethylene sensor, employing
rGO/WSe2 /Pd heterojunctions, has been developed for room-temperature (RT) ethylene
detection. This sensor offers a practical solution to monitor ethylene concentration, im-
proving fruit and vegetable quality control during transportation and reducing losses [17].
Similarly, Zhang et al. [18] developed a bi-layer containing an anthocyanin-loaded liposome
that has the capability to indicate the freshness of shrimp products through visual color
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changes by monitoring the pH of the surrounding medium. These studies have great
significance as they focus on sensor development, which is a key aspect of smart and
intelligent agriculture.

Artificial intelligence and machine learning can provide a conceptual tool to transform
food safety and quality data management, facilitating the early detection and prevention
of food safety issues. The synergy between deep learning and image processing was
harnessed by Liang et al. [19] to develop a real-time grading system for defective apples
using an RGB camera machine vision system and a combination of semantic segmentation
and a pruned YOLO V4 network. This approach ensured a high detection accuracy (92.42%)
without compromising computational efficiency. In addition, Zhou et al. [20] found that
the light penetration depth in apple tissues was around 2.2 mm when spatial frequency
domain imaging (SFDI) was used to detect early stage bruises in apple tissue. These works
proved the effectiveness of deep learning architecture in detecting early stage defects in
thin-skinned fruits. Moreover, Chen et al. [21] focused on creating a methodology for
assessing the degree of milling (DOM) in rice with digital image processing technology
and deep learning. The research introduced an enhanced model that combines multi-
scale information through the integration of the Inception-v3 structure and the residual
network (ResNet) model, using the Bayesian optimization algorithm which achieved
superior results. The method achieved an average detection accuracy of 96.9%. Similarly,
Yu et al. [22] developed a model using YOLOVS5 to identify small impurities in walnut
kernels that showed a detection accuracy of 88.9%. The model achieved a faster detection
time for single images using an improved YOLOv5 model. By replacing conventional Conv
with Ghostconv, the detection time was reduced from 65.25 ms to 45.38 ms, ensuring the
real-time detection of walnut impurities while maintaining detection performance.

Ensuring the safety and quality of food products is of paramount importance in the
food supply chain. From production to distribution, rigorous food safety and quality
inspections have to be conducted at every stage involving the monitoring and control of
food processing methods, preventing contamination and maintaining the highest standard.
Ongoing research and development efforts focus on creating non-destructive technologies
and cutting-edge equipment to attain this goal. These innovations understandably play
a crucial role in ensuring the safety and quality of food products without compromising
the integrity and promoting public safety and confidence in the food supply chain. The
application of artificial intelligence, big data, and the IoT has led to a transformative era
for the food industry. This implementation has ushered in an improvement in quality and
an increase in efficiency across the entirety of the food production and distribution chain.
Predictive analytics powered by artificial intelligence help to optimize production and
minimize postharvest loss, while IoT-associated sensors provide real-time data on various
environmental factors, ensuring food safety and quality. Big data analytics provides insight
into consumer preferences and market trends, leading to more informed decision making.
These digital transformations promote the transformation of and upgrade the food industry,
making it more sustainable, innovative, and responsive to the evolving needs of consumers.

In summary, this Special Issue explores a wide range of innovative research at the
intersection of technology development, artificial intelligence, and IoT. From sensor de-
velopment and emerging techniques to machine learning and chemometric analysis, the
studies included in this Special Issue showcase the incredible progress in safety and quality
analysis in the food industry. Moving forward, these advances hold great importance
in revolutionizing, early detection, quality assessment, and safety evaluation, ultimately
benefiting both consumers and the food industry.
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