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Abstract: In recent years, minor ginsenosides have received increasing attention due to their out-
standing biological activities, yet they are of extremely low content in wild ginseng. Ginsenoside Rb1,
which accounts for 20% of the total ginsenosides, is commonly used as a precursor to produce minor
ginsenosides via β-glucosidases. To date, many research groups have used different approaches to
obtain β-glucosidases that can hydrolyze ginsenoside Rb1. This paper provides a compilation and
analysis of relevant literature published mainly in the last decade, focusing on enzymatic hydrolysis
pathways, enzymatic characteristics and molecular mechanisms of ginsenoside Rb1 hydrolysis by
β-glucosidases. Based on this, it can be concluded that: (1) The β-glucosidases that convert ginseno-
side Rb1 are mainly derived from bacteria and fungi and are classified as glycoside hydrolase (GH)
families 1 and 3, which hydrolyze ginsenoside Rb1 mainly through the six pathways. (2) Almost all of
these β-glucosidases are acidic and neutral enzymes with molecular masses ranging from 44–230 kDa.
Furthermore, the different enzymes vary widely in terms of their optimal temperature, degradation
products and kinetics. (3) In contrast to the GH1 β-glucosidases, the GH3 β-glucosidases that convert
Rb1 show close sequence-function relationships. Mutations affecting the substrate binding site might
alter the catalytic efficiency of enzymes and yield different prosapogenins. Further studies should
focus on elucidating molecular mechanisms and improving overall performances of β-glucosidases
for better application in food and pharmaceutical industries.
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1. Introduction

The Asian species Panax ginseng and Panax notoginseng, as well as the American
ginseng Panax quinquefolius, are widely produced in China, Korea and North America due
to their great bioactive value. Their dried roots and rhizomes have a long history of use
as functional foods, medicine and dietary supplements, and the global ginseng market is
expected to reach USD 900 million in 2027 [1].

The active ingredients in ginseng plants include ginsenosides, polysaccharides, amino
acids, volatile oil, polyacetylenes, sterols, flavonoids, etc. [2]. Ginsenosides, of which
more than 200 kinds have been identified to date, are the main bioactive ingredients
of ginseng [3]. The outstanding pharmacological effects of ginsenosides include anti-
tumor, anti-diabetic, anti-inflammatory, anti-allergic, immunomodulatory, hepatoprotective
effect, neuroprotective effect, etc. (Figure 1) [4–8]. Chemically, ginsenosides are triterpene
saponins, and they can be classified as dammaranes and oleananes-type triterpenes based
on their aglycone skeletons. Dammarane-type ginsenosides are the main active ingredients
and they are further classified into protopanaxadiol (PPD) type with hydroxyls at the 3β
and 12β in the nucleus and protopanaxatriol (PPT) type with hydroxyls at the 3β, 12β
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and 6α in the nucleus [9]. The ginsenosides Rb1, Rb2, Rc, Re, Rd and Rg1, whose side
chains have carbohydrate moiety with several monosaccharide residues, comprise more
than 80% of the total ginsenosides in wild ginseng, and are considered to be the major
ingredients [10,11]. By contrast, the minor ginsenosides F2, CK, Rg3, Rh2 and APPD
constitute less than 1% of total ginsenosides in wild ginseng [3].

Figure 1. The biological activities of deglycosylated ginsenosides. The picture materials were
downloaded from Vecteezy (https://www.vecteezy.com, accessed on 11 November 2022) and Smart
(https://smart.servier.com, accessed on 11 November 2022), which provide free pictures.

The content of ginsenoside Rb1 among total ginsenosides reaches approximately
20% [12]. However, ginsenoside Rb1 has poor membrane permeability, and it is compar-
atively easily excreted by the biliary tract and urinary system because of its dammarane
tetracyclic triterpenoid skeleton, as well as the high number of flexible side-chain glycosyl
moieties [13–15]. Pharmacokinetic studies in rats have shown that the oral bioavailability
of ginsenoside Rb1 is only 0.1–4.35% [16]. The biotransformation by intestinal microbiota
results in a decrease in the number of side-chain glucose residues, so after entering the or-
ganism, the major ginsenosides Rb1, Rc, etc., are transformed into the deglycosylated minor
ginsenosides such as CK and Rh2 [17,18]. Compared to glycosylated ginsenosides, minor
ginsenosides are more easily absorbed from the gastrointestinal tract into the bloodstream,
whereby CK, Rh2 and APPD are much more toxic to tumor cells than the major ginseno-
sides, as shown in Figure 1, suggesting that minor ginsenosides are the main bioactive
saponins of ginseng [19].

At present, there are three main biocatalytic strategies for the conversion of ginsenoside
Rb1. One is the direct use of bacterial or fungal strains/whole cells to ferment ginsenoside
Rb1. The second strategy is to first separate the crude β-glucosidase secreted during the
growth of bacteria or fungi by methods such as ammonium sulfate precipitation, and
further obtain the purified β-glucosidase by protein separation methods such as dialysis
and column chromatography, and finally hydrolyze ginsenoside Rb1 using these purified β-
glucosidases. The third strategy is to obtain pure β-glucosidase to enzymatically hydrolysis
ginsenoside Rb1 by heterologous expression and purification by affinity chromatography
and other methods. The production of minor ginsenosides using microbial strains/whole
cells is generally an efficient and inexpensive process, but it is accompanied by the dis-
advantages of low specificity, long conversion time, unclear enzymes and poor access

https://www.vecteezy.com
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to intermediate prosapogenins. By contrast, biotransformation using purified enzymes
and recombinant enzymes is more advantageous for the targeted production of minor
ginsenosides due to the high specificity, high selectivity, high catalytic efficiency, high
product purity, mild reaction conditions and clear catalytic process, which is one of the
current research topics in ginsenoside biotransformation [20].

β-Glucosidase (EC 3.2.1.21) releases non-reducing terminal glucosidic residues from
glycosylated metabolites or oligosaccharides [21], and it acts mainly on β-1,4 glucosidic
bonds, in addition to β-1,2 bonds, β-1,3 bonds and β-1,6 bonds. The side-chain glycosyl
moieties of ginsenoside Rb1 are connected through β-1,2 bonds and β-1,6 bonds, which can
be effectively hydrolyzed by some β-glucosidases to bioconvert major ginsenoside Rb1 into
minor ginsenosides [22]. Although the enzymatic conversion of ginsenosides has been re-
viewed previously, including the conversion methods of ginsenosides [23], classification of
ginsenosidases [22] and conversion of multiple ginsenosides by multiple glycosidases [17],
the progress of research on the conversion of ginsenoside Rb1 by β-glucosidases has not
been focused on. Here, we collect the available literature and present the progress in the
conversion of ginsenoside Rb1 into minor ginsenosides using β-glucosidases, especially
enzymatic hydrolysis pathways, characteristics and molecular mechanisms. This review
may assist the development of β-glucosidases for preparation of minor ginsenosides with
various application prospects.

2. Chemical Structure of PPD-Type Ginsenosides

The PPD-type ginsenosides possess different glycosyl moieties linked to the C-3 and C-
20 positions of the PPD aglycon (Figure 2). The C-3 side-chain is a β-d-glucopyranosyl moi-
ety, whereas the glycosyl moieties at C-20 includeβ-D-glucopyranosyl,α-l-arabinopyranosyl,
α-l-arabinofuranosyl and β-d-xylopyranosyl groups (Table 1). According to the differences
in specific positions, types and number of sugar moieties on the aglycone structures, PPD-
type ginsenosides are mainly classified as ginsenoside Rb1 (Figure 3), Rb2, Rb3, Rc, Rd,
F2, compound Mc1 (CMc1), compound Mc (CMc), compound Mx1 (CMx1), compound
Mx (CMx), compound O (CO), compound Y (CY), compound K (CK), gypenoside XVII
(Gyp17), gypenoside LXXV (Gyp75), Rg3, Rh2 and aglycon PPD (APPD).
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Table 1. Chemical structures of PPD-type ginsenosides.

Ginsenoside R1 (C-3) R2 (C-20)

Rb1 Glc(1→ 2)Glc- Glc(1→ 6)Glc-
Rb2 Glc(1→ 2)Glc- Arap(1→ 6)Glc-
Rb3 Glc(1→ 2)Glc- Xyl(1→ 6)Glc-
Rc Glc(1→ 2)Glc- Araf(1→ 6)Glc-
Rd Glc(1→ 2)Glc- Glc-
F2 Glc- Glc-

CMc1 Glc- Araf(1→ 6)Glc-
CMc H- Araf(1→ 6)Glc-

CMx1 Glc- Xyl(1→ 6)Glc-
CMx H- Xyl(1→ 6)Glc-
CO Glc- Arap(1→ 6)Glc-
CY H- Arap(1→ 6)Glc-
CK H- Glc-

Gyp17 Glc- Glc(1→ 6)Glc-
Gyp75 H- Glc(1→ 6)Glc-

Rg3 Glc(1→ 2)Glc- H-
Rh2 Glc- H-

APPD H- H-
Note Glc: β-d-glucopyranosyl; Arap: α-l-arabinopyranosyl; Araf: α-l-arabinofuranosyl; Xyl: β-d-xylopyranosyl.
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3. Classification of Ginsenosidases

Ginsenosidases are commonly classified as type I, type II, type III and type IV, ac-
cording to the hydrolysis site, residues and types of sugar moieties of ginsenosides. In
addition, Shin et al., introduced the ginsenosidase type V to classify other ginsenosi-
dases that had previously not been assigned [22]. Ginsenosidase type I simultaneously
hydrolyze the glycosyl residues linked to C-20 and C-3 positions in the PPD-type gin-
senosides, yielding minor ginsenosides with only one glucose residue or other glycosyl
residues, such as ginsenosides CK and Rh2. The β-glucosidase from Microbacterium ester-
aromaticum, which belongs to ginsenosidase type I, hydrolyzes the C-3 glycosyl moieties
of ginsenoside Rb1 as well as the C-20 glycosyl moieties to produce minor ginsenoside
CK [24]. Ginsenosidase type II hydrolyzes the glycosyl residues at the C-20 position of
PPD-and PPT-type saponins. Ginsenosidase from Aspergillus sp. g48p hydrolyses glycosyl
residues at the C-20 of PPD-type ginsenosides (e.g., Rb1, Rb2 and Rc) into ginsenoside Rd
and a small amount of ginsenoside Rg3, without hydrolysis of the glycosyl moieties at
C-3 [25]. Ginsenosidase type III hydrolyzes the sugar moieties attached to the C-3 position
of PPD-type ginsenosides, such as the enzyme from Terrabacter ginsenosidimutans, which
hydrolyzes 3-O-β-D-(1-2)-glucopyranoside residue in Rb1 to produce Gyp17, and then
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further hydrolyzes 3-O-β-D-glucopyranoside residue in Gyp17 to produce the end product
Gyp75 [26]. Ginsenosidase type IV only hydrolyzes the sugar moieties linked to C-6 in
PPT-type ginsenosides. For example, the enzyme from Aspergillus sp. strain 39 g hydrolyzes
the glycosyl moieties attached to C-6 of ginsenosides Re and R1 to convert them into F1, and
hydrolyzes the glycosyl moieties of ginsenoside Rg2 to produce Rh1, with no hydrolysis
of PPD-type ginsenosides [27]. Ginsenosidase type V hydrolyzes the glycosyl moieties
attached to the C-20 and C-6 positions of PPT-type ginsenosides to yield the correspond-
ing aglycones. For example, the recombinant β-glycosidase from Actinosynnema mirum
hydrolyzes the outer and inner glucose moieties linked to C-20 and C-6 of ginsenoside Rg1
to produce APPT [28].

4. Enzymatic Conversion Pathway of Ginsenoside Rb1

We summarized and classified the hydrolysis mode of ginsenoside Rb1 by β-glucosidases
into the C3 pattern and C20 pattern based on the specificity of β-glucosidases for the
glycosyl moieties linked to C-3 and C-20 of ginsenoside Rb1. Accordingly, the enzyme first
hydrolyzes the carbohydrate chain at C-3 or first hydrolyzes the carbohydrate moiety at
C-20 of ginsenoside Rb1, respectively (Figure 4). Furthermore, in the C3 and C20 hydrolysis
pattern, because of the difference in the order of hydrolysis of the inner and outer glycosyl
residues of ginsenoside Rb1, there are three possible hydrolysis pathways for each mode,
resulting in the final product APPD. The six hydrolysis pathways were named C3-I, C3-II,
C3-III, C20-I, C20-II and C20-III (Figure 4). The major ginsenoside Rd, as well as the minor
ginsenosides Gyp17, Gyp75, F2, CK, Rg3 and Rh2 are common intermediates in the C3 and
C20 patterns.

Figure 4. Enzymatic conversion pathways of ginsenoside Rb1. The chemical structure and conversion
pathways were drawn by the ChemDraw software.

Using ginsenoside Rb1 as the substrate, the C3-I pathway first completely eliminate
two sugars attached to the C-3 position, and then sequentially eliminate two monosaccha-
ride residues at the C-20 position until APPD is generated Thus, the whole conversion
pathway is Rb1→ Gyp17→ Gyp75→ CK→ APPD. The C3-II pathway hydrolyzes one
outer glucose residue at the C-3 and C-20 positions, after which the inner glucose residue of
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C-3 and the inner glucose of C-20 are hydrolyzed in turn. Accordingly, the total hydrolysis
pathway is Rb1→ Gyp17→ F2→ CK→ APPD. The C3-III pathway, on the other hand,
first hydrolyzes one outer glucose residue linked to C-3, then sequentially hydrolyzes
two glucose residues at C-20, and finally hydrolyzes the remaining glucose residue at C-3.
Hence, the total conversion pathway is Rb1→ Gyp17→ F2→ Rh2→ APPD.

In the three conversion pathways, C20-I first completely hydrolyzes the two glucoses
attached to C-20, and then sequentially hydrolyzes the two glucose groups at the C-3
position, finally yielding APPD. Thus, the total conversion pathway is Rb1→ Rd→ Rg3
→ Rh2→ APPD. The C2-II pathway first hydrolyzes one outer glucose residue each at the
C-20 and C-3 positions of ginsenoside Rb1, and then hydrolyzes the inner glucose residues
at the C-20 and C-3 positions, resulting in the total hydrolysis pathway Rb1→ Rd→ F2
→ Rh2→ APPD. The C20-III pathway hydrolyzes one glucose residue on the outside of
the C-20 position, then two glucose residues at the C-3 position, and then the remaining
glucose residue at C-20. The total conversion pathway is therefore Rb1→ Rd→ F2→ CK
→ APPD.

The β-glucosidase MT619 converts ginsenoside Rb1 into minor ginsenoside CK and
APPD via the C3 pattern, using the conversion pathways Rb1→ Gyp17→ Gyp75→ CK→
APPD and Rb1→ Gyp17→ F2→ CK→ APPD [29]. The β-glucosidase BglA hydrolyzes
ginsenoside Rb1 in the same hydrolysis pattern, but its hydrolysis pathways are Rb1→
Gyp17→ Gyp75→ APPD and Rb1→ Gyp17→ Rh2→ APPD [28]. The C20 hydrolysis
pattern is widely found in the enzymatic hydrolysis of ginsenoside Rb1. For example,
β-glucosidase BglG167b hydrolyzes ginsenoside Rb1 through the hydrolysis pathway Rb1
→ Rd→ Rg3→ APPD [30]. The crude enzymes of Lactobacillus delbrueckii and Leuconostoc
paramesenteroides convert Rb1 to Rh2 via the intermediates Rd and F2 with the hydrolysis
pathway Rb1→ Rd→ F2→ Rh2 [31]. Choi et al., showed that β-glucosidase DT-Bgl had
the highest conversion activity compared to previous whole-cell or enzymatic conversion
of ginsenoside Rb1 to produce APPD, hydrolyzing all side-chain glycosyls of Rb1 through
the hydrolysis pathways Rb1→ Rd→ F2→ CK→ APPD [32].

The products of enzymatic hydrolysis of ginsenoside Rb1 depend on the regioselec-
tivity of the enzyme for the glycosyl moieties of Rb1, including the ease of hydrolysis and
the sequence of hydrolysis. Most of the reported β-glucosidases can only hydrolyze one
to three sugar residues of ginsenoside Rb1 to produce the intermediate ginsenoside Rd,
together with the minor ginsenosides Gyp17, Gyp75, F2, CK, Rg3 and Rh2. Based on this
catalytic property, different types of engineered enzymes can be selected for enzymatic
hydrolysis to target a specific sugar moiety to produce specific minor ginsenoside for food
and pharmaceutical applications.

5. Sources and Enzymatic Properties of β-Glucosidases That Convert Ginsenoside Rb1

β-Glucosidases are produced by a wide range of organisms, including archaea, bacte-
ria, fungi, plants and animals. In the Carbohydrate-Active Enzymes Database (CAZymes),
β-glucosidases are mainly classified in the glycoside hydrolase (GH) family 1 and GH
family 3 based on the similarity of their amino acid sequences and tertiary structures. In
addition, a small number of β-glucosidases belong to the GH2, GH5, GH9, GH30, GH39
and GH116 [33]. Most of the side-chain glucose moieties of ginsenoside Rb1 are hydrolyzed
by β-glucosidases of the GH families 1 and 3 to produce minor ginsenosides. The reported
β-glucosidases of GH1 with ginsenoside conversion ability are mainly of bacterial origin,
whereas those from GH3 are mainly of fungal and bacterial origin (Table 2).

5.1. Conversion of Ginsenoside Rb1 by Bacterial β-Glucosidases

Various bacteria from ginseng plants, soil, food, animal intestines and other environ-
ments have been isolated based on their ability to convert ginsenosides. The biochemical
properties of bacterial β-glucosidases with the ability to convert ginsenoside Rb1 are
summarized in Table 2.
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The molecular masses of these enzymes ranges from 44 to 230 kDa, their optimal
pH is mostly between 4.5–8.0, and the reaction temperature is usually around 30–40 ◦C.
Nevertheless, the recombinant β-glucosidase from Thermotoga petrophila and Thermotoga
thermarum are active at temperatures above 80 ◦C [34–36]. In general, increasing the reaction
temperature can enhance the solubility of the substrate and the biocatalytic efficiency
of the enzyme. Therefore, a higher reaction temperature is often required in industrial
applications, and appropriate enzymes are desirable for the high-temperature enzymatic
hydrolysis of ginsenoside Rb1.

The enzymatic reaction time and transformation rate of ginsenoside Rb1 are influenced
by the substrate specificity of the enzyme, the substrate concentration and the enzyme
concentration. For example, β-glucosidase Tpebgl3 can achieve the conversion of ginseno-
side Rb1 to minor ginsenoside Rg3 within 1.5 h with a conversion rate of 97.9% and a
productivity of 4.62 g/L/h, while the conversion of ginsenoside Rb1 into ginsenoside Rg3
by β-glucosidase Bgp1 required 6 h, with a conversion rate of only 71% and a productivity
of 0.074 g/L/h [24,36]. The yield and conversion rate of minor ginsenosides were found
to be higher when the enzyme concentration and substrate concentration were in the low
range, and when either concentration crossed a threshold, the conversion of ginsenosides
decreased [37,38]. Thus, selecting the appropriate β-glucosidase, as well as the appropri-
ate enzyme concentration and substrate concentration can help improve the conversion
efficiency and yield of saponins while reducing the reaction time and production costs.

5.2. Conversion of Ginsenoside Rb1 by Fungal β-Glucosidases

As well-known commercially available enzymes, glycosidases from Aspergillus spp.
are also used for the conversion of ginsenosides. The β-glucosidase-producing strain
Aspergillus niger XD101 was screened from P. notoginseng soil using Esculin-R2A agar, and
A. niger XD101 efficiently transformed ginsenoside Rb1 into the minor ginsenoside CK with
a conversion rate of 94.4% under optimal conditions [39]. Furthermore, the β-glucosidase
produced by Aspergillus versicolor could be directly obtain from solid medium and convert
ginsenoside Rb1 to ginsenoside Rd. When the reaction was scaled up in a 2 L system, the
ginsenoside conversion rate reached 85% [40].

In addition, β-glucosidases from other fungi have also been widely used in the enzy-
matic transformation of ginsenosides. Cladosporium cladosporioides, which also produces
β-glucosidase, was isolated from a ginseng field and could transform ginsenoside Rb1 into
ginsenoside CK with a conversion rate of 74.2%. In addition, it also transforms Rg1 into the
minor ginsenoside Rh1, and further experiments revealed that during the co-transformation
of Rb1 and Rg1, the substrate Rg1 inhibits the production of the intermediate Gyp17 from
the substrate Rb1, thus altering the transformation pathway [12].

Filamentous fungi such as A. niger are considered safe for agro- and food industry, but
previous studies have shown that A. niger can produce a large number of small spores that
are easily spread through the air, resulting in biological contamination that is not easily
eradicated [41]. In addition, studies have shown that A. niger may produce fumonisins and
ochratoxins, which can cause great harm to the health of consumers [42,43].

Edible and medicinal mushrooms are widely consumed in many countries as food,
nutraceuticals and medicine [44]. It seems that the transformation of ginsenosides by edible
mushrooms can avoid the problem of food safety hazards. Schizophyllum commune, an edible
mushroom, converts PPD-type ginsenosides (Rb1, Rc, Rb2 and Rd) into minor ginsenosides
(F2, CO, CY, CMc1, CMc and CK) if there is sufficient glucose in the medium (15 g/mL),
but high glucose concentrations inhibit the production of minor ginsenosides [45]. Upad-
hyaya et al., isolated enzyme preparations from cultures of Armillaria mellea, Ganoderma
lucidum, Phellinus linteus, Elfvingia applanata and Pleurotus ostreatus. Among these enzyme
preparations, the β-glucosidase preparation of A. mellea had the strongest activity in the
conversion of ginsenoside Rb1 into minor ginsenoside CK after a reaction time of 72–96 h
at a pH of 4.0–4.5 and 45–55 ◦C [46]. Similarly, Cordyceps sinensis and Cordyceps militaris
have been used as transforming microorganisms for the production of minor ginsenosides.
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Interestingly, in addition to increasing the content of minor ginsenosides, the concentra-
tion of bioactive metabolites produced by these fungi was also increased, resulting in a
dual bioactive product. The production of minor ginsenosides by edible not only ensures
food safety, but also provides a basis for the development of new functional products and
pharmaceuticals combining the advantages of medicinal fungi and ginseng [47,48].

5.3. Conversion of Ginsenoside Rb1 by β-Glucosidase from Other Sources

In addition to β-glucosidases from microorganisms that can convert Rb1, similar
glycosidases can also be isolated from plants and animals. Previous studies suggested that
the regulatory mechanism of secondary ginsenoside production in ginseng was related
to the plant’s own metabolic glycosidases. Four β-glucosidase genes of ginseng were
expressed in a cell-free system, and these glycosidases were found to convert Rb1 into
Rd alone [49]. β-Glucosidases with good thermostability from Achatina fulica hydrolyze
the β-d-glucosidic bonds of side-chain sugar moieties at the C-3 and C-20 positions of
ginsenoside Rb1 to produce deglycosylated ginsenosides, such as ginsenoside Rd, F2 and
CK [50]. However, there are few reports on β-glucosidases from plants and animals that
hydrolyze ginsenoside Rb1, and further research becomes an imperative.
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Table 2. β-Glucosidases from different sources for the conversion of ginsenoside Rb1.

Taxonomy GH
No. Organism Designation Molecular

Mass (kDa)
Concentration
of Rb1 (g/L)

Reaction
Conditions

Reaction
Time

(h)

Hydrolysis
Pattern and

Products

Productivity
(g/L/h)

Molar
Conversion

Km
(mM)

Vmax
(U/mg)

GenBank
Accession No.

Bacteria GH1

Arthrobacter
chlorophenoli-

cus
[51]

BglAch 45.8 1.0 pH 6.0
37 ◦C 12.0 C20: Rd, F2 NR NR 3.19 20.1 ACL38420.1

GH1

Bifidobacterium
adolescentis
ATCC15703

[52]

BaBgl1A 44.2 5.0 pH 7.0
37 ◦C 2 C3: Gyp17 NR NR NR NR BAF40068.1

GH1 Caldicellulosiruptor
bescii [53] NR 53.0 1.1 pH 5.5

80 ◦C 1.0 C20: CK 1.1 100% NR NR ACM59590.1

GH1
Paenibacillus
mucilaginosus

[54]
BglPm 47.7 1.0 pH 7.5

37 ◦C NR C3: F2 NR NR 3.24 10.2 AEI42200.1

GH1 Paenibacillus
polymyxa [55] bglB 52.0 1.0 pH6.5

40 ◦C 72 C20: Rd, F2,
CK NR NR 0.743 31400 AAA22264.1

GH1 Pyrococcus
furiosus [56] NR 55.5 1.0 pH 5

95 ◦C 3 C20: CK 0.177 94.4% NR NR AAC25555.1

GH1 Sphingomonas
sp. 2F2 [57] BglSp 49.4 1.0 pH 7.0

37 ◦C 0.5 C3: Gyp17 NR NR 2.90 515.0 ADY18331.1

GH1 Sphingopyxis
alaskensis [37] NR 51.0 8.0 pH 5.5

40 ◦C 1.0 C3: Gyp17 6.8 100% NR NR ABF52736.1

GH1
Thermus

caldophilus
[58]

NR NR 1 pH 5.0
75 ◦C 0.5 C20: Rd 1.60 93.7% NR NR AAO15361.1

GH1 T.petrophlia
[34] Tpebgl1 51.5 30.0 pH 6.0

90 ◦C 0.8 C20: Rd NR 97.5% 0.28 470.2 ABQ46970.1

GH1
T.thermarum
DSM 5069T

[35]
Tt-BGL 55.0 36.0 pH 4.8

90 ◦C 1.0 C20: Rd NR 97% 0.59 142.0 NR

GH1
Thermus

thermophilus
[59]

NR NR 1.1 pH 6.5
90 ◦C 36 C20: Rd NR NR NR NR WP_011229206.1

GH3 A. mirum [28] BglAm 65.3 1.0 pH 8.0
30 °C 95.0 C3: APPD NR NR 0.33 5.9 WP_015801787.1

GH3
Bifidobacterium

longum H-1
[60]

BglX 95.0 1.1 pH 7.2
37 ◦C 6.0 C20: Rd NR NR 0.83 56.5 NR

GH3
B. longum

KACC 91,563
[61]

BlBG3 NR 2.0 pH 6.0
37 ◦C 0.25 C20: Rd NR NR 2.38 NR NR

GH3 Dictyoglomus
turgidum [62] NR NR 1.1 pH 5.5

80 ◦C 6.0 C20: APPD NR 20% NR NR WP_012582633.1

GH3
Flavobacterium

johnsoniae
[63]

BglF3 81.8 1.0 pH 6.0
37 ◦C 1.50 C20: Rd NR NR 0.91 5.75 ABQ03809.1

GH3 F. johnsoniae
UW101T [64] BglBX10 89.3 1.0 pH 6.0

37 ◦C NR C20: Rg3 NR NR NR NR ABQ06406.1



Foods 2023, 12, 397 10 of 18

Table 2. Cont.

Taxonomy GH
No. Organism Designation Molecular

Mass (kDa)
Concentration
of Rb1 (g/L)

Reaction
Conditions

Reaction
Time

(h)

Hydrolysis
Pattern and

Products

Productivity
(g/L/h)

Molar
Conversion

Km
(mM)

Vmax
(U/mg)

GenBank
Accession No.

GH3 Gordonia
terrae [38] NR 78.0 4.0 pH 6.5

30 ◦C 2.5 C20: Rg3 1.13 100% 14.66 NR GAB42172.1

GH3 Lactobacillus
brevis [65] Bgy2 123.0 1.0 pH 6.0

30 ◦C 10.0 C20: Rd NR 69% NR NR BAN05876

GH3
M. esteraro-

maticum
[66]

Bgp1 87.5 1.0 pH7.0
37 ◦C 6.0 C20: Rg3 0.074 71% NR NR AEX88466.1

GH3
M. esteraro-

maticum
[24]

Bgp3 80.0 1.0 pH 7.0
40 ◦C 1.0 C20: CK 0.46 77% NR NR AEX88467.1

GH3
Microbacterium
sp. Gsoil 167

[30]
BglG167b 90.3 2.0 pH 7.0

37 ◦C 24.0 C20: Rg3,
APPD NR NR NR NR AGA60132.1

GH3 Microbacterium
testaceum [29] MT619 68.3 2.0 pH 7.0

37 ◦C NR C3: CK, PPD NR NR NR NR WP_013585536.1

GH3 Mucilaginibacter
sp. [67] BglQM 85.6 1.0 pH 7.0

25 ◦C NR C20: Rd, Rg3 NR NR 0.037 33.4 AFS34656.1

GH3 Pseudonocardia
sp. [68] BglPC28 79.0 2.0 pH 7.0

37 ◦C NR C20: Rg3 NR NR 6.36 40.0 AGA60134.1

GH3 Sanguibacter
keddieii [69] BglSk NR 1.0 pH 8.0

25 ◦C NR C3: Gyp75,
CK NR NR 0.46 30.2 ACZ20402.1

GH3
T. ginseno-
sidimutans

[70]
BgpA 70.1 1.0 pH 6.0

37 ◦C NR C3: CK NR NR 4.20 100.6 ACZ66247.3

GH3 T.petrophila
[36] Tpebgl3 81.0 10.0 pH 5.0

90 ◦C 1.5 C20: Rg3 4.62 97.9% 1.60 109.0 ABQ46916.1

Fungi NR A.mellea [46] NR NR 1.0 pH 4.8
37 ◦C 96.0 C20: CK NR NR NR NR NR

NR Arthrinium sp.
[71] NR NR 1.0 30 ◦C 48.0 C20: CK NR NR NR NR NR

NR A.niger
KCCM [72] NR NR 1.1 pH 5.5

30 ◦C 24.0 C20: Rd, Rg3 NR NR NR NR NR

NR
A. niger

KCCM 11,239
[73]

NR 123.0 0.1 pH 4.0
50 ◦C 120.0 C20: Rd, Rg3,

F2 NR NR NR NR NR

NR A. niger
XD101 [39] NR 110 6.0 pH 4.5

50 ◦C 72.0 C20: CK NR 94.4% NR NR NR

NR
C.

cladosporioides
[12]

NR NR 0.4 30 ◦C 168.0 C20: CK NR 74.2% NR NR NR

NR Esteya
vermicola [74] NR NR 2.0 pH 5.0

50 ◦C 30.0 C3: Gyp75 NR 95.4% NR NR NR

NR Fomitella
fraxinea [75] NR NR NR pH 4.5

45 ◦C 48.0 C20: CK NR NR NR NR NR

GH3
Penicillium

purpurogenum
[76]

NR 110.5 NR pH 4.5
70 ◦C NR C3: CK NR NR NR NR ACV87737.1
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Table 2. Cont.

Taxonomy GH
No. Organism Designation Molecular

Mass (kDa)
Concentration
of Rb1 (g/L)

Reaction
Conditions

Reaction
Time

(h)

Hydrolysis
Pattern and

Products

Productivity
(g/L/h)

Molar
Conversion

Km
(mM)

Vmax
(U/mg)

GenBank
Accession No.

Animal NR A.fulica [77] NR 230.0 8.9 pH 5.6
50 ◦C 24 C3: Rd NR NR 0.338 0.25 NR

NR A. fulica [50] G II 220.0 4.4 pH 5.0
50 ◦C 24 C20: Rd, F2,

CK NR NR 0.224 0.203 NR

Note Km and Vmax represent the kinetic parameters for the degradation of the substrate p-nitrophenyl glucoside (pNPG) by β-glucosidase; NR: not reported.
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6. Phylogenetic Analysis of β-Glucosidases That Convert Ginsenoside Rb1

Phylogenetic tree analysis is an important method for assessing the homology and
functional relevance of genes or proteins [78]. Sequences of the characterized β-glucosidases
were obtained from the literature, and phylogenetic analysis was performed in MEGA
using the built-in Poisson model for distance matrix calculation and neighbor-joining
algorithm for phylogenetic tree construction with 1000 bootstrap replications [79]. The
results indicated that the β-glucosidases that hydrolyze ginsenoside Rb1 belonged to the
GH families 1 and 3, mainly clustered in three well-supported clades (Figure 5).
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The β-glucosidases of GH3 clustered into two major branches corresponding to the
C3 pattern and C20 pattern, indicating close sequence-function relationships. Cui et al.,
selected 19 uncharacterized β-glucosidases from the GH3 for phylogenetic analysis along
with 9 known enzymes, and found that 10 of the sequences clustered together with the
9 known enzymes. The ten sequences were further heterologously expressed and char-
acterized, and the final results showed that the successfully expressed enzymes had a
saponin-converting ability similar to the 9 known enzymes [29].

The β-glucosidase of GH1 clustered in one large branch, and the enzymes with the
C3 and C20 patterns did not form obvious independent branches. It is speculated that the
selection of the β-glucosidase of GH1 in hydrolyzing glucose groups of ginsenoside Rb1
is influenced by the amino acids in the local region of these enzymes. At the same time,
the conserved structural domains of the catalytic residues were not changed significantly.
Mills et al., suggested that proteins with high sequence similarity do not always possess
the same sequence similarity at the local active site, causing functional differences [80]. It is
worth mentioning that the β-glucosidases of GH1 likely lack the C20-I hydrolysis pathway,
and the hydrolytic products do not include the minor ginsenosides Rg3 and Rh2. Hence, it
is possible that GH1 β-glucosidases have a lower regioselectivity for the C-20 position of
ginsenoside Rb1 than GH3 β-glucosidases.
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7. The Molecular Mechanism of β-Glucosidases That Convert Ginsenoside Rb1

Although great efforts have been made over the past 10 years to identify suitable
β-glucosidases for the transformation of ginsenoside Rb1, unfortunately, the structures
and catalytic mechanisms of the enzymes remain poorly understood. Hydrolysis of gin-
senoside Rb1 by β-glucosidases is related to the topological conformation of the active
structural domain, including the catalytic pocket, cleft (or groove) and substrate tunnel [81].
The β-glucosidase BlBG3, derived from B. longum, hydrolyzes ginsenoside Rb1 into gin-
senoside Rd. Structural studies revealed that the complexes of β-glucosidase BlBG3 with
d-glucose have three unique loops, which form the catalytic pocket and bind to the substrate
(Figure 6A). Molecular docking showed that hydrogen bonds mediated the interaction of
the substrate with D96, D281, R484 and E524 in the catalytic pocket of BlBG3, while Y478
and H642 contributed hydrophobic interactions (Figure 6B). The results of site-directed mu-
tagenesis indicated that R484 and H642 in the binding pocket are essential for the enzyme
activity [61]. Structural analysis of a β-glucosidase from GH1 (cloned from Microbacterium
sp. Gsoil 167) indicated that the substrate binds to the enzyme through two different
pathways, P1 and P2 (Figure 6C) [82]. In addition, Park et al., constructed the mutants
E316W and 3MT (I184A/I389A/F390A) with changes in amino acids associated with ligand
binding (Figure 6D–F). The results indicated that mutant E316W changed the efficiency of
hydrolysis to side-chain glycosyl residues at the C-20 position, and the catalytic efficiency
(Kcat/Km) of E316W in the conversion of Rb1 to Rd was about 4-fold higher than that of
the wild type. Mutant 3MT enlarged the substrate entry site at the tapered region of the
substrate binding cleft to further cleave the inner glucose residue at the C-3 position of
the substrate, enabling it to produce other minor ginsenosides, while these prosapogenins
cannot be obtained using wild-type enzymes. Thus, local amino acids of β-glucosidase
significantly affect the pathway of enzymatic hydrolysis of Rb1.
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Figure 6. Structural analysis and rational mutagenesis of the acceptor-binding pocket of β-
glucosidase [61,82]. (A) Structural comparison of BlBG3 with other GH3 family members: loops
1, 2 and 3 are present only in BlBG3 (green); (B) Compound protobioside (magenta) was docked
to the active pocket of BLBG3; (C) The substrates were assumed to bind to the enzyme from Mi-
crobacterium sp. Gsoil 167 through both P1 and P2 paths; (D) Docking simulations of Rg3 (blue) and
Gyp17 (cyan) are presented on the cross-section of the substrate binding cleft of β-glucosidase from
Microbacterium sp. Gsoil 167; (E) Substrate binding modes of E316W; (F) Substrate binding mode of
the 3MT (I184A/I389A/F390A) mutant.
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8. Conclusions and Future Perspectives

The content of Rb1 in ginseng root extract is the highest among the PPD-type ginseno-
sides, and hydrolysis of side-chain sugar moieties of ginsenoside Rb1 by β-glucosidase can
produce minor ginsenosides such as F2, Rg3, CK and Rh2. In recent years, various minor
saponins approved by the China Food and Drug Administration have been marketed, such
as the anti-cancer drugs Shenyi capsule (ginsenoside Rg3) and Jinxing capsule (ginseno-
side Rh2). Therefore, screening β-glucosidases from different microorganisms capable of
targeted conversion of major ginsenosides into minor ginsenosides is an effective method
to enhance the utilization of total ginsenosides.

This review focused on an in-depth analysis and discussion of the conversion of gin-
senoside Rb1 by β-glucosidases, with the main findings reflected in the following aspects:
(1) Ginsenoside Rb1 is converted into minor ginsenosides through six transformation path-
ways: C3-I, C3-II, C3-III, C20-I, C20-II and C20-III; (2) The β-glucosidases that hydrolyze
ginsenoside Rb1 are primarily derived from bacteria and fungi, and are mainly classified in
the GH1 and GH3. These β-glucosidases are almost all acidic and neutral enzymes with
molecular masses ranging from 44–230 kDa. Furthermore, different enzymes differ greatly
in terms of optimal temperature, degradation products and kinetics. (3) Ginsenoside hy-
drolases screened from bacteria and fungi have been the primary direction of ginsenoside
hydrolysis studies, in which medicinal and edible fungi have unique advantages in con-
verting ginsenosides, while there are fewer ginsenoside-converting enzymes of animal and
plant origin. (4) The β-glucosidases that hydrolyze ginsenoside Rb1, which are classified as
belonging to GH3, show close sequence-function relationships. In the phylogenetic tree
analysis, the β-glucosidases that primarily hydrolyze glucose residues at C-3 clustered
together, whereby the β-glucosidases that first hydrolyze glucose residues at C-20 are
almost always found in a single cluster. Nevertheless, this phenomenon is not evident in
the β-glucosidase of GH1 that convert Rb1. Phylogenetic analysis and the results of some
individual amino acid mutations demonstrated that local amino acid differences affect the
regioselectivity of the enzyme for the substrate.

Based on these earlier findings, future studies on the biotransformation of ginsenoside
Rb1 by β-glucosidase should focus on the following aspects: (1) Novel β-glucosidases
from bacteria, fungi, plants and animals with high catalytic efficiency in the conversion of
ginsenoside Rb1 should be explored. Moreover, considering the interaction between human
intestinal microbiota (probiotics) and ginsenoside Rb1, as well as the unique advantages of
medicinal and edible fungi in converting ginsenosides, it is necessary to focus on studying
β-glucosidases in human intestinal microbiota, and exploring β-glucosidases in medic-
inal and edible fungi. (2) Extremophilic enzymes tolerant to low or high temperatures,
acid or alkali, salt or organic solvents, usually have advantages in industrial applications,
such as reducing energy consumption, preventing microbial contamination and improving
substrate solubility. Therefore, β-glucosidases with excellent overall enzymatic properties
and tolerance to harsh industrial conditions should be screened. (3) The molecular mecha-
nism of ginsenoside Rb1 conversion by β-glucosidases is still poorly understood. The key
amino acids of β-glucosidases for regioselective mechanism is not clear. In addition, the
mechanism of tolerance to extreme conditions is also poorly understood in these enzymes.
Therefore, it is necessary to resolve more crystal structures of β-glucosidases, perform
more bioinformatic analyses, and elucidate the catalytic mechanism as well as the tolerance
mechanism of β-glucosidases in the hydrolysis of ginsenoside Rb1 to form different prod-
ucts by site-directed mutagenesis and random mutations followed by high-throughput
screening. (4) Guided by this knowledge of molecular mechanisms, the semi-rational
and rational design of the enzymes through computer-aided design and other methods
can be applied to change the substrate regioselectivity of ginsenosidases, as well as to
overcome the shortcomings of the enzyme in the harsh industrial environment such as high
temperature, acid, alkali and organic solvents, thus further fulfilling the requirements of
industrial production of minor ginsenosides.
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