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Abstract: Soft sensors work as predictive frameworks encapsulating a set of easy-to-collect input 

data and a machine learning method (ML) to predict highly related variables that are difficult to 

measure. The machine learning method could provide a prediction of complex unknown relations 

between the input data and desired output parameters. Recently, soft sensors have been applicable 

in predicting the prices and vintages of New Zealand Pinot noir wines based on chemical param-

eters. However, the previous sample size did not adequately represent the diversity of prove-

nances, vintages, and price points across commercially available New Zealand Pinot noir wines. 

Consequently, a representative sample of 39 commercially available New Zealand Pinot noir wines 

from diverse provenances, vintages, and price points were selected. Literature has shown that wine 

phenolic compounds strongly correlated with wine provenances, vintages and price points, which 

could be used as input data for developing soft sensors. Due to the significance of these phenolic 

compounds, chemical parameters, including phenolic compounds and pH, were collected using 

UV-Vis visible spectrophotometry and a pH meter. The soft sensor utilising Naive Bayes (ML) was 

designed to predict Pinot noir wines’ provenances (regions of origin) based on six chemical pa-

rameters with the prediction accuracy of over 75%. Soft sensors based on decision trees (ML) could 

predict Pinot noir wines’ vintages and price points with prediction accuracies of over 75% based on 

six chemical parameters. These predictions were based on the same collected six chemical param-

eters as aforementioned. 

Keywords: decision tree; machine learning method; Naive Bayes; New Zealand Pinot noir wines; 

price points; provenances; regions of origin; soft sensors; vintages 

 

1. Introduction 

Pinot noir is the most planted red grape variety in New Zealand and the second 

most planted variety after Sauvignon Blanc. Meanwhile, the export sales of New Zealand 

Pinot noir have increased significantly over the past five years, with 10,282 million L 

exported in the 12 months to June year-end 2020 

(https://www.nzwine.com/en/winestyles/pinot-noir, accessed on 10 November 2022), 

which has attracted the attention of the New Zealand Government as well 

(https://bri.co.nz/current-research/#pn, accessed on 10 November 2022). Based on the 

importance of Pinot noir wines to New Zealand, it is necessary to establish and maintain 

a good reputation for New Zealand Pinot noir wines, which could benefit consumers and 

winemakers. For example, when consumers purchase wines, extrinsic cues such as brand 

name, region of origin, vintages and prices could drive their purchase decisions [1]. For 
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instance, Chinese buyers in Hong Kong viewed American wines as dignified, Japanese 

wines as inventive, and Chinese wines as inexpensive [2]. Compared to 

high-involvement consumers, low-involvement consumers are more likely to prioritize 

price over wine quality when making purchase selections [3]. Occasionally, wine con-

sumers may not be able to obtain these product extrinsic cues as the wine label is dam-

aged, or lacking information, or some wine consumers cast doubt upon the trustworthi-

ness of certain extrinsic cues provided by wine merchants, such as price point. In addi-

tion, the number of mislabeled wines is on the rise, posing a greater danger to food 

safety, such as harmful wine additives and contaminants [4]. Thus, protecting wine 

consumers from commercial fraud is essential. For instance, it is a typical fraudulent ac-

tivity in the commercialization of Chinese rice wine from varied geographical origins as 

Shaoxing rice wine [5]. The sale of counterfeit wines could be detrimental to consumers’ 

interests and the reputation of authentic wine merchants. Therefore, wine classification 

by identifying regions, vintages and prices is crucial for safeguarding the high economic 

value of wine products, preventing illegal labelling, protecting against wine counterfeit-

ing and characterize region protected designation of origin (PDO) [6,7]. 

To address these issues, soft sensors for predicting wines’ product extrinsic cues 

have been developed. The soft sensor works as a predictive framework which encapsu-

lates a set of input data which provides predefined output data, utilizing a selected ma-

chine learning method 

(https://www.frontiersin.org/articles/10.3389/fbioe.2021.722202/full, accessed on 10 No-

vember 2022). Machine learning methods provide a prediction of complex unknown re-

lations between the input data and desired output data without relying on a predeter-

mined equation (https://au.mathworks.com/discovery/machine-learning.html, accessed 

on 10 November 2022). Soft sensors are built using machine learning methods, alongside 

easy-to-measure variables to predict highly related difficult-to-measure variables [8]. For 

instance, a soft sensor employing the machine learning method artificial neural network 

(ANN) was used to predict Pinot noir wines’ retail price based on viticultural data with 

an R2 value 0.80 [9]. The soft sensor utilising machine learning method least-square 

support vector machine (LS-SVM) successfully predicted 1-year-aged, 3-year-aged and 

5-year-aged rice wines based on alcohol content, titratable acidity (TA) and pH, with R2 

values of 0.91, 0.82 and 0.96, respectively [10]. A soft sensor using the machine learning 

method partial least squares-discriminant analysis (PLS-DA) was used to predict vin-

tages of New Zealand Pinot noir in 2010 and 2015 with R2 values above 0.8; however, soft 

sensors using PLS-DA can only predict the vintages of New Zealand Pinot noir wines in 

2014, 2016 and 2017 with an R2 value 0.632, an R2 value 0.626 and an R2 value 0.674, re-

spectively [11]. The combination of nuclear magnetic resonance (NMR) spectroscopy and 

the machine learning method random forest was able to accurately characterize Pinot 

noir produced by Eger and Villany with 100% accuracy [12]. The machine learning 

method PCA, in conjunction with phenolic compounds, could be used to differentiate 221 

samples of unreleased (2019 vintage) commercial Shiraz, Cabernet Sauvignon, and Mer-

lot wines from 10 distinct Australian regions [13]. Researchers have tried many different 

chemical parameters and machine learning methods to predict the regions, vintages and 

prices. However, few researchers have attempted to construct soft sensors to forecast the 

regions of origin, vintages and price points of Pinot noir wines based on the same chem-

ical parameters. To build soft sensors that can forecast the region of origins, vintages, and 

price points with acceptable prediction accuracy, it is necessary to understand the rela-

tionship between chemical compounds and regions of origin, vintages and price points of 

Pinot noir wines. 

Phenolic compounds are important components in wines that influence sensory at-

tributes. Based on their chemical structure, phenolics can be separated into flavonoids 

and non-flavonoids [14]. Anthocyanins, flavonols, and flavanols (including flavan-3-ols) 

are flavonoids, while hydroxybenzoic acid, hydroxycinnamic acid, stilbenes, and phe-

nolic alcohols are non-flavonoids [14]. Quantitatively and functionally, phenolic com-
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pounds play a vital role in wines. For instance, phenolic compounds have a considerable 

impact on sensory attributes. For example, phenolic acids like coumaric, caffeic, gallic, 

and protocatechuic acids can cause astringency sensations [15]. Certain phenolic com-

pounds in wines, including syringic acid, vanillic acid, and ferulic acid, have been re-

ported as having mild sweetness [16]. Apart from their influence on sensory attributes, 

there are close correlations between phenolic compounds and product extrinsic cues, 

such as regions of origin, vintages, and price points. 

1.1. Regions of Origin and Phenolic Compounds 

Regions of origin can influence the carbon flow to specific branch pathways in the 

flavonoid metabolism of grape berries, resulting in changes in the phenolic profile of 

wines [14]. In light of this circumstance, phenolic compounds have been utilized to de-

termine the geographical origin. For instance, monomeric phenols could be used to 

identify Chinese wines’ origin [17]. Flavonols were used to differentiate wines from 

France and Spain, whereas phenolic acids and flavan-3-ols were used to separate Cab-

ernet Sauvignon, Cabernet Franc, Merlot, and Syrah grown in China [18]. 

1.2. Vintages and Phenolic Compounds 

Vintage corresponds to the harvesting year of the grapes. The impact of vintage on 

phenolic compounds can be attributed to two factors: the effect of weather on the grapes’ 

growing season and the effect of storage and maturation of the wine. Due to the effect of 

weather on the vines’ growing season, t-resveratrol levels in Shiraz wines produced in 

2003 were higher than those produced in 2004 [19]. In 2016 and other chilly, rainy years, 

petunidin 3-O-glucoside and OH-tyrosol were more prevalent in Malbec wines, but 

astilbin, malvidin-3-O-p-coumarylglucoside, and quercetin-3-glucoside were more prev-

alent in the 2017 and 2018 vintages [20]. In terms of ageing, wine phenolics change as the 

wine ages in the bottle. In Pinotage wines, for instance, caffeic acid concentrations re-

mained steady during the ageing process, while malvidin-3-o-glucoside levels decreased 

[18]. 

1.3. Price Points and Phenolic Compounds 

Several studies have uncovered associations between phenolics and wine price 

points. For instance, Kassara (2011) discovered a correlation between the maximum skin 

tannin concentration and an increase in projected wine prices [21]. The wines with the 

highest economic value exhibited higher concentrations of the phenolic parameters 

measured [22]. However, researchers such as Wu (2021) discovered no relationship be-

tween the amounts of particular phenolics such as catechin, quercetin, resveratrol and 

wines’ prices [23]. The association between New Zealand Pinot noir wines’ retail price 

and phenolic compounds is yet to be explored. 

According to the relevant literature, there appear to be close correlations between 

phenolic compounds and wine regions of origin, vintages and price points. However, it is 

unclear as to whether phenolic compounds could be used to construct soft sensors capa-

ble of simultaneously predicting the provenance, vintage and price point of New Zealand 

Pinot noir wines. In addition, although some soft sensors have been developed to forecast 

the price points and vintages of New Zealand Pinot noir wines, the previous wine sample 

size did not provide a representative sample across different vintages, regions and price 

points in New Zealand. Therefore, in this paper, soft sensors using machine learning 

methods, including Naive Bayes and decision trees should be rebuilt based on diverse 

regions of origin, vintages and price points, capturing the diversity of New Zealand Pinot 

noir wines. In this study, 39 commercially available Pinot noir wines were purchased 

from New Zealand. The key chemical input data from these wines were collected in order 

to concurrently characterize the regions of origin, vintages, and price points of New 

Zealand Pinot noir wines, enabling complete information to be available to the 
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wine-buying public. Additionally, reasons why prediction errors exist in soft sensors to 

predict regions of origin, vintages and price points were analyzed. 

2. Materials and Methods 

2.1. Pinot Noir Wines 

Thirty-nine samples of commercially produced New Zealand Pinot noir wines from 

five regions (Central Otago, Marlborough, Martinborough, Nelson, and North Canter-

bury) in triplicate (3 different bottles of each sample, a total of 117 of bottles) were ana-

lyzed, with retail prices ranging from NZ$10 to NZ$80 and vintages from 2011 to 2020. 

The Pinot noir wines were grouped based on price point with categories including 

low-priced (<NZ $30), middle-priced (NZ $30–60 NZ), and high-priced wines (>NZ $60), 

and into two vintage ranges, namely old vintages (≤vintage 2016) and new vintages 

(>vintage 2016). To completely comprehend and understand the influence of regions of 

origin, vintages, and price points on New Zealand Pinot noir wines, a large sample size 

of 39 different wines was necessary to provide a representative sample of Pinot noir from 

diverse provenances, vintages, and price points. All Pinot noir wines were purchased 

online from New Zealand retail stores, including Countdown, Caro’s Wine, Glengarry 

Wines and Black Market Wine NZ. 

2.2. Analytical Measurement 

Table 1 lists the basic methods to measure chemical data, which was used as input 

data to predict the New Zealand Pinot noir wines’ regions of origin, vintages and price 

points. A Shimadzu 2550 spectrometer was used to measure the colour parameters, total 

phenolics, total flavanols, total flavan-3-ols, total anthocyanins, total tannins, and the 

chemical age of Pinot noir wines. An edge pH meter was used to measure wine pH. 

These chemical measurements were conducted in triplicate. For more detailed infor-

mation about Pinot noir wines, chemical reagents and analytical measurements, please 

refer to the Supplementary Materials for Chemical measurement procedure. 

Table 1. Chemical measurements. 

Experimental Aim: Data Collection Reference 

Colour measurement: A420 nm, A520 nm, A620 nm [24] 

Total phenolics assay [25] 

Total flavanols [26] 

Total flavan-3 ols [27] 

Total anthocyanins [27] 

Total tannins assay [28] 

Chemical age: A520 nm HCl, A280 nm HCl, chemical age [24] 

pH  

2.3. Estimation of Regions of Origin, Vintages and Price Points 

Seven experts (six men and one woman, aged 24 to 40, who had lived in New Zea-

land for at least six years and held a WSET 3 certificate) were invited to evaluate regions 

of origin, vintages (old/new vintages) and price points (low/middle/high prices) of 78 

bottles New Zealand Pinot noir wines. One of the seven experts was a winemaker, three 

were international wine traders, two were graduate students in Viticulture and Oenolo-

gy, and one was a member of the wine evaluation teaching team. All had a more than the 

5-year history of wine involvement. According to the definition of wine experts from 

wine specialists Parr et al., these panels were wine experts [29]. 

This ethics application was approved by the University of Auckland Human Par-

ticipants Ethics Committee with Reference Number UAHPEC2696. Before the sensory 

evaluation, all experts were informed that the University of Auckland had approved the 
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sensory evaluation, and they were required to sign consent forms before the sensory 

evaluation. After signing consent forms, they used two consecutive days to finish this 

sensory evaluation. First day, they were required to evaluate the product extrinsic cues of 

39 samples of Pinot noir wines (labelled as No. 1~No. 39 by researchers), and second day, 

they were required to evaluate another 39 samples of Pinot noir wines (labelled as No. 

40–No. 78 by researchers). These wine numbers are labelled by researchers and experts 

never have the chance to see Pinot noir wines’ bottles. During the sensory evaluation, 

wine samples (30 mL) were poured into ISO standard tasting glasses, which were ran-

domly labelled with a two-digit code by researchers to eliminate bias. Each taster spent 

approximately ten minutes to taste a single glass of Pinot noir wine and took a twen-

ty-minute break after every ten glasses of Pinot noir wine. During the sensory evaluation, 

experts used white papers against natural light. Soda water was provided to cleanse the 

palate, and coffee beans were provided to refresh the nose. For Pinot noir wines’ product 

extrinsic cues, please check Table S2. 

2.4. Machine Learning Methods 

2.4.1. Build Classification Models to Predict New Zealand Pinot Noir Wines’ Product 

Extrinsic Cue 

Wineinformatics incorporates data science and wine-related datasets, including 

physicochemical laboratory data and wine reviews, to discover useful information for 

wine producers, distributors, and consumers [30]. Typically, Naive Bayes, k-nearest 

neighbour (KNN), decision tree, support vector machine (SVM) and Random Forrest are 

used in wineinformatics (Table 2) [12,30–36]. 

Table 2. The usage of machine learning methods. 

Classifier Decision Tree Naive Bayes 
K-Nearest 

Neighbours (KNN) 

Support Vector 

Machine (SVM) 

Random Forrest 

(RF) 

Definition 

The decision tree tool is the 

most effective and widely 

used classification tool. A 

decision tree is a tree-like 

flowchart structure in 

which each internal node 

represents a test on an 

attribute, each branch 

represents a trial outcome, 

and each leaf node holds a 

class label. 

Naive Bayes is a 

classification 

technique based 

on Bayes’ 

Theorem with the 

assumption of 

predictor 

independence 

[31] 

K-nearest neighbour 

(KNN) is a method for 

classifying objects 

based on the training 

examples in the 

feature space that is 

closest to the target 

object. 

Support vector 

machine (SVM) is 

an algorithm for 

classification and 

regression analysis 

in supervised 

machine learning. 

Random forest is 

a supervised 

learning 

algorithm which 

creates decision 

trees on randomly 

selected data 

samples. 

Traits 

The benefit of the decision 

tree is that the mined 

information has high 

readability. Usually, 

important attributes are 

displayed at the top of the 

tree [30]. 

There is no 

relationship 

between the input 

data and 

attributes. 

Typically, input 

data or attributes 

influence the 

prediction of 

output data with 

equal weight [32] 

K-nearest neighbour 

(KNN) is a simple, 

straightforward 

machine learning 

algorithm that can be 

used to solve 

classification and 

regression problems 

[30]. 

This classifier is a 

useful classification 

algorithm when 

there are few 

available training 

data and avoid 

overfitting [12]. 

Random Forest 

provides a fairly 

good indicator of 

feature 

importance. 

Application Wine grade [30] Wine quality [33] Regions of origin [30] 
Wine quality [33] 

Region of origin 

Regions of 

origin [35,36] 
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[34] 

In this paper, classification models including Naive Bayes, k-nearest neighbour 

(KNN), decision tree and support vector machine (SVM) were used to build soft sensors 

with the help of software Matlab Matlab R2019b-academic use (University of Auckland, 

Auckland, New Zealand) to predict New Zealand Pinot noir wines’ regions of origin, 

vintages, and price points based on chemical data including A420 nm (absorbance at 420 

nm for yellow colour), A520 nm (absorbance at 520 nm for red colour), A620 nm (ab-

sorbance at 620 nm for blue colour), total flavan-3-ols (within the flavanols), total fla-

vanols (includes flavan-3-ols), total tannins, total anthocyanins, total phenolics, A280 nm 

HCl (absorbance at 280 nm is positively correlated with total phenolics), A520 nmHCl (ab-

sorbance at 520 nm is positively correlated with total red pigments), chemical age 

(chemical age (chemical age = A520 nmHCl/A280 nmHCl) is correlated with vintages), alcohol 

content (obtained from wine labels). 

2.4.2. Select Important Key Chemical Parameters to Influence Regions of Origin, Vintages 

(Old/New Vintages), and Price Points 

There is a compelling case for employing machine learning approaches to choose 

key chemical factors that have the potential to have a significant impact on regions of 

origin, vintages, and price points. It could help winemakers comprehend how to improve 

the quality of their products. 

Extra trees classifier, Gradient boosting classifier, Extreme gradient boost (XGB), 

and Random forest (RF) classifier (as shown in Table 3) are among the most well-known 

feature selection methods used to understand important chemical data [37]. In this paper, 

feature selection methods were used to understand which chemical parameters could 

characterize New Zealand Pinot noir wines’ regions of origin, vintages (old/new vintag-

es), and price points by using in-house developed codes based on Python. In the in-house 

developed codes, the following open-sourced libraries: pandas, numpy, matplotilib, and 

scikit-learn were used [38,39]. During experiments, chemical data including A420 nm, 

A520 nm, A620 nm, total anthocyanins, total flavanols, total flavan-3ols, total tannins, 

total phenolics, A280 nm HCl, A520 nm HCl, chemical age, pH, and alcohol content 

(from wine labels) always worked as input data regardless of regions of origins (five re-

gions), vintages (old/new vintages) or price points (low/middle/high price) work as 

output data, respectively. 

Table 3. The usage of machine learning methods to select important features. 

Feature 

Selection 
Extreme Gradient Boost (XGBoost) Extra Tree Classifier 

Gradient Boost 

Classifier 

Random 

Forest 

Definition 

Extreme gradient boost is based on 

‘boosting’, which combines all predictions 

of a set of ‘weak’ learners to develop a 

‘strong’ learner through additive training 

strategies. In the meanwhile, XGBoost 

aims to prevent overfitting while 

optimizing computation resources by 

redefining the objective function and tree 

structure and optimizing the execution 

efficiency of the algorithm [7]. 

Extra trees classifier 

builds a set of 

unpruned decision 

trees using the 

standard top-down 

technique [37] 

Gradient boosting 

builds new models from 

an ensemble of weak 

models, aiming to 

minimize the loss 

function [37] 

See Table 2 
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3. Results 

The results of the chemical measurements for 39 commercial New Zealand Pinot 

noir wines (a total of 117 bottles Pinot noir wines) are summarised in Table S1 in Sup-

plementary Materials. According to Table S1 in Supplementary Materials, it could be in-

ferred that the majority of New Zealand Pinot noir wines had total phenolics ranging 

from 2506–4660 mg/L, total anthocyanins ranged from 54–156 mg/L, total tannins ranged 

from 504–1368 mg/L, total flavanols ranged from 584–1400 mg/L, total flavan-3ols ranged 

from 324–686 mg/L, ethanol ranging from 12.8%–13.8% (v/v), and pH ranging from 

3.53–3.79, which provide comprehensive chemical ranges representing the diversity of 

New Zealand Pinot noir wines. Total phenolics in wines can vary based on the grape 

cultivar, viticultural practices, skin maceration temperature, and grape pomace contact 

time [40]. For example, total phenolics could be increased by adding whole clusters and 

stems to Pinot noir wines during maceration and fermentation [41]. Compared to other 

wine grape varieties, the concentration of stable, non-acylated forms of anthocyanins in 

Pinot noir grapes is low [42]. Anthocyanins are the main pigments of young red wines, 

and their contents in the wines depend on the polyphenolic richness of grapes and their 

winemaking procedures [43]. Moreover, during storage, monomeric anthocyanins may 

undergo interactions with tannins to form pigmented tannins [44]. 

These 39 samples Pinot noir wines employed in this study could provide a more 

representative New Zealand Pinot noir wine commercial dataset as opposed to the da-

taset generated by the machine learning method synthetic minority over sampling tech-

nique (SMOTE), which used 18 samples of New Zealand Pinot noir wines from two vin-

tages (2013 and 2016) [37]. Importantly, the New Zealand Pinot noir wines used in this 

study were easily available for purchase by the general public, as consumers did not have 

to spend a considerable number of money at the wine auctions to purchase Pinot noir 

wines that had been aged for a long time. With the use of this comprehensive dataset, soft 

sensors could predict the regions of origin, vintages and price points of New Zealand 

Pinot noir wines that are more readily available and representative of those on the shelf. 

3.1. Building Soft Sensors to Predict New Zealand Pinot Noir Wines’ Extrinsic Cues Based on 

Same Collected Chemical Parameters 

Seven wine experts were also asked to anticipate 78 bottles of Pinot noir wines’ (39 

samples in duplicate) the regions of origin, vintages, and prices of Pinot noir wines. 

Nonetheless, even experienced consumers familiar with sensory attributes have difficulty 

estimating the regions of origin, vintages and price points based on Figures S1–S3 in 

Supplementary Materials. As shown in Figure S1a,b in Supplementary Materials, it was 

particularly difficult for experienced customers to evaluate the price points of Pinot noir 

wines exceeding sixty NZ dollars. Therefore, soft sensors were developed to predict the 

regions of origin, vintages and price points of New Zealand Pinot noir wines based on 

chemical data. Phenolics are essential chemical compounds found in wines that can be 

used as quality and authenticity fingerprints for grape species, origin regions, and vin-

tages [18]. Therefore, soft sensors using Naive Bayes, decision trees, KNN, support vector 

machine and random forest were developed to predict the region of origin, price, and 

vintage for 39 samples New Zealand Pinot noir wines, primarily based on chemical pa-

rameters related to phenolics such as A420 nm, A520 nm, A620 nm, total flavan-3-ols, 

total flavanols, total tannins, total phenolics, A280 nm HCl, A520 nm HCl. Soft sensors 

utilizing Naive Bayes could accurately predict the regions of origin, vintages and prices 

of New Zealand Pinot noir wines. In contrast, soft sensors utilizing decision trees could 

accurately predict the vintage ranges (older/newer vintages) and price points of New 

Zealand Pinot noir wines. 
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3.1.1. Soft Sensors Predicting New Zealand Pinot Noir Wines’ Regions of Origin 

Building Soft Sensors to Predict New Zealand Pinot Noir Wines’ Regions of Origin 

A soft sensor utilizing Naive Bayes is an effective classification model for predicting 

the five regions of New Zealand Pinot noir wines, including Central Otago, Marlbor-

ough, Martinborough, Nelson and North Canterbury, based on the 13 chemical data in-

cluding A420 nm, A520 nm, A620 nm, total flavan-3-ols, total flavanols, total tannins, 

total phenolics, total anthocyanins, A280 nm HCl, A520 nm HCl, chemical age and al-

cohol content (obtained from wine labels) of 39 samples New Zealand Pinot noir wines 

(every sample has three bottles, a total of 117 bottles Pinot noir wines). 

 

Figure 1. Confusion matrix about the soft sensor using Naive Bayes to predict 39 the region of 

origin of New Zealand Pinot noir wines. Dotted circles in the confusion matrix were used to help 

readers to understand what is True class, Predicted class, the meaning of the blue box and the or-

ange box, and how the prediction accuracies are obtained. 

According to Figure 1, the soft sensor accurately predicts the origin of New Zealand 

Pinot noir wines 88% of the time. Among the 39 samples of Pinot noir wines, there were 

eight samples (24 bottles) from Central Otago, ten samples (30 bottles) from Marlbor-

ough, seven samples (21 bottles) from Nelson, seven samples (21 samples) from Nelson 

and seven samples (21 samples) from North Canterbury. The soft sensor had a dismal 

20% prediction error across five regions for identifying whether or not Central Otago 

produces New Zealand Pinot noir wines. Surprisingly, a soft sensor is more likely to 

misidentify Pinot noir wines from Marlborough as Pinot noir wines from Central Otago. 

Of the 117 bottles, four Pinot noir wines from Marlborough were incorrectly labelled as 

Pinot noir from Central Otago. In addition, when determining whether or not New Zea-

land Pinot noir wines are produced in North Canterbury, the soft sensor had a relatively 

poor prediction error of 17.4%. Similarly, soft sensors may misidentify three bottles of 

Pinot noir wine from Marlborough as Pinot noir wine from North Canterbury. Among 

the five regions that produce Pinot noir wines, Marlborough has the most area, so it is 

likely that Pinot noir wines from Marlborough will be evaluated similarly to Pinot noir 

wines from Central Otago or North Canterbury [45]. Extensive research has focused on 

predicting the origin of Pinot noir wines using soft sensors. Using random forest classi-

fication, 55 lipids identified by Ultra-performance liquid chromatography-time-of-flight 
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tandem mass spectrometry (UPLC-TOF-MS) were used to predict the origin of commer-

cial Pinot noir wines from Burgundy, California, Oregon, and New Zealand with a pre-

dict accuracy of 97.5% [46]. Similarly, NMR spectroscopy combined with the support 

vector machine and random forest could be used to clarify of Hungarian wines’ geo-

graphical origin [12]. However, it is impractical for New Zealand winemakers to invest in 

expensive analytical instruments like UPLC-TOF-MS and NMR. 

Important Chemical Parameters to Predict New Zealand Pinot Noir Wines’ Regions of 

Origin 

  

(a) Random forest (b) Extra trees classifier 

  

(c) Gradient boosting classifier (d) Extreme gradient boost 

Figure 2. Features selection of 13 chemical data using Random Forest (RF), Extra trees classifier, 

Gradient boosting classifier, and Extreme gradient boost (XGBOOST) in regions of origin. (a–d) 

display the important chemical parameters in regions of origin that areselected by Random Forest, 

Extra trees classifier, Gradient boosting classifier and Extreme gradient boost, respectively. 

Feature selecting methods, including Random forest, Extra trees classifier, Gradient 

boosting classifier, and Extreme gradient boost, are utilized to define the association 

between 13 chemical data and the locations of origin of New Zealand Pinot noir wines in 

Figure 2. Even though some of the results in Figure 2a–d differ, it is still possible to con-

clude that total flavan-3-ols and A620 nm were the most important chemical parameters 

among 13 chemical data for characterizing the regions of origin of New Zealand Pinot 

noir wines except Figure 2a. Previously, Sun (2015) discovered that flavan-3-ol profiles 

might be utilized to distinguish the regional origin of red wines [47]. In addition, the blue 

component (A620 nm) is attributed to free anthocyanins in the chinonic form or interac-

tions between tannins and anthocyanins, and total anthocyanins may also be altered by 

climate conditions specific to an area [24,48]. 
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3.1.2. Soft Sensors Predicting New Zealand Pinot Noir Wines’ Vintages 

Building Soft Sensors to Predict New Zealand Pinot Noir Wines’ Vintages 

Based on the 13 chemical characteristics of 39 samples New Zealand Pinot noir 

wines in triplicate (a total of 117 bottles), the soft sensor utilizing a decision tree is an ef-

fective classification model for predicting the new vintage (made after vintage 2016) and 

old vintage (made before and including vintage 2016) of New Zealand Pinot noir wines. 

Comparing 39 samples using the 13 different sets of chemical data of New Zealand Pinot 

noir wines to other machine learning methods SVM, decision tree, Naive Bayes, KNN, 

and random forest, the soft sensor using Naive Bayes had the highest prediction accuracy 

for predicting the vintages of New Zealand Pinot noir wines. 

According to Figure 3a, soft sensors utilising a decision tree can distinguish between 

new and old vintages of Pinot noir wines more easily due to the soft sensor’s prediction 

accuracy of 89.74% and classification tree structure from machine learning method deci-

sion tree in this soft sensor has displayed in Figure S4 in Supplementary Materials. The 

soft sensor using Naive Bayes had difficulty distinguishing between Pinot noir wines 

with vintages 2014–2018. Out of 117 bottles of Pinot noir wines, eight bottles were mis-

labelled as vintage 2016, and six bottles were mislabelled as vintage 2017. Prior to this 

study, soft sensors based on Random Forest were used to classify vintage 2015 and vin-

tage 2016 of American Pinot noir wines using NMR spectroscopic input data with classi-

fication accuracies of 97.4% and 100%, respectively. However, only the vintage 2015 and 

vintage 2016 were chosen for this study [49]. 

  

(a) Predict accuracy: 89.74% (b) Predict accuracy 83.76% 

Figure 3. Confusion matrix about the soft sensor using a decision tree and Naive Bayes to predict 

New Zealand Pinot noir wines’ vintage ranges (old/new vintages) and vintages. (a) has displayed 

the confusion matrix of the soft sensor using decision tree when New Zealand Pinot noir wines’ 

vintages are classified into two categorize, namely old vintages (≤Vintage 2016), new vintages 

(>Vintage 2016). (b) has displayed the confusion matrix of soft sensors using Naive Bayes when 

New Zealand Pinot noir wines’ vintages. 

Important Chemical Parameters to Predict New Zealand Pinot Noir Wines’ Vintage 

Points 

According to Figure 4a–d, total anthocyanins and alcohol content (obtained from 

wine label) appeared to be the most important chemical parameters defining the vintages 

(old/new vintages) of New Zealand Pinot noir wines except for chemical parameters 

characterized by Extra trees classifier in Figure 4a. Total anthocyanins are one of the most 

significant phenolic compounds responsible for the colour of red wines [50]. Younger 

wines often have higher concentrations of total anthocyanins than older wines because 

tannins or flavan-3-ols may react with total anthocyanins to form stable pigments, which 



Foods 2023, 12, 323 11 of 21 
 

 

could explain why total anthocyanins are the most relevant criterion for judging Pinot 

noir wines’ vintages [51–53]. Additionally, Pinot noir has a distinctive anthocyanin pro-

file, as it lacks acylated anthocyanins and has a substantially larger amount of mal-

vidin-3-glucoside relative to other red wines [41]. 

  

(a) Random forest (b) Extra trees classifier 

  

(c) Gradient boosting classifier (d) Extreme gradient boost 

Figure 4. Features selection of 13 chemical data using Random forest, Extra trees classifier, Gradi-

ent boosting classifier, and Extreme gradient boost in vintages (old/new vintages). (a–d) display the 

important chemical parameters in Vintage Points that are selected by Random Forest, Extra trees 

classifier, Gradient boosting classifier and Extreme gradient boost, respectively. 

Surprisingly, alcohol content is also a significant chemical data for describing the 

vintage characteristics of New Zealand Pinot noir wines. In alcoholic beverages, yeast 

ferments hexose sugars (fructose, glucose) sourced primarily from grapes to produce 

ethanol [54]. During ageing, the alcohol level of Pinot noir wines may undergo interac-

tions with carboxylic acid functional groups to form esters [55]. 

3.1.3. Soft Sensors Predicting New Zealand Pinot Noir Wines’ Prices 

Building Soft Sensors to Predict New Zealand Pinot Noir Wines’ Prices 

The soft sensor using a decision tree was shown to be a reasonable classification 

model for predicting New Zealand Pinot noir wines’ high price (>60 NZ dollars), middle 

price (30–60 NZ dollars) and low price (<30 NZ dollars) based on 13 chemical data of 39 

samples (total 117 bottles) New Zealand Pinot noir wines. The soft sensor using Naive 

Bayes had a better prediction accuracy in predicting New Zealand Pinot noir wines’ ac-

tual price compared to other machine learning methods, including SVM, decision tree, 

Naive Bayes and KNN based on the chemical data of 117 bottles of New Zealand Pinot 

noir wines. 

Referring to the explanation from Figure 1, it could be inferred that, among 117 bot-

tles Pinot noir wines, 15 bottles New Zealand Pinot noir wines with high prices, 60 bottles 
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New Zealand Pinot noir wines with low prices and 42 bottles New Zealand Pinot noir 

wines with middle prices in Figure 5a. In Figure 5a, soft sensors using decision trees were 

able to forecast Pinot noir wines with low prices more correctly than those with middle 

and high prices, with a prediction accuracy of 88.9% and the classification tree structure 

in this soft sensor has displayed in Figure S5 in Supplementary Materials. 

  

(a) Prediction accuracy: 86.32% (b) Prediction accuracy: 84.62% 

Figure 5. Confusion matrix about the soft sensors using a decision tree and Naive Bayes to predict 

New Zealand Pinot noir wines’ price points and actual price, respectively. (a) has displayed the 

confusion matrix of soft sensors using decision tree when New Zealand Pinot noir wines’ price are 

classified into three categorize, namely high price (>60 NZ dollars), middle price (30–60 NZ dollars) 

and low price (<30 NZ dollars). (b) has displayed the confusion matrix of soft sensors using Naive 

Bayes when New Zealand Pinot noir wines’ prices are classified into 10–80 NZ dollars. When retail 

price of New Zealand Pinot noir wine has ranged from 5–15 NZ dollars, this wine would be classi-

fied as 10 NZ dollars. 

For the high price category, only ten bottles of Pinot noir wines were accurately 

predicted as having high price points. In contrast, three bottles of Pinot noir with high 

price points are categorized as having middle price points. According to a prior study, 

the majority of middle- and high-priced New Zealand Pinot noir wines contain similar 

chemical data, which may explain why soft sensors perform poorly when predicting 

middle- and high-priced New Zealand Pinot noir wines. In addition, it can be deduced 

that, out of 42 bottles of Pinot noir wine with middle price points, seven bottles were 

misjudged as having low or high price points by soft sensors. Similarly, among the sixty 

bottles of low-priced Pinot noir wines, two bottles were rated as Pinot noir wines with 

middle price points. According to the results, both experienced customers and soft sen-

sors could not reliably predict the high price of Pinot noir wines. It may be because the 

cost of some Pinot noir wines is impacted not only by wine quality but also by extrinsic 

cues like wine reputation. For example, Benfratello (2009) found that reputation signifi-

cantly influences Italian premium wines, namely Barolo and Barbaresco than wines’ 

tastes [56]. 

In Figure 5b, among 117 bottles of New Zealand Pinot noir wines, three bottles of 

Pinot noir wines with retail price from 5–15 NZ dollars, 33 bottles Pinot noir wines with a 

retail price from 15–25 NZ dollars, 33 bottles Pinot noir wines with retail price from 25~35 

NZ dollars, 18 bottles Pinot noir wines with a retail price 35~45 NZ dollars, 12 bottles 

Pinot noir wines with retail price 45–55 NZ dollars, six bottles Pinot noir wines with retail 

price 55–65 NZ dollars, six bottles Pinot noir wines with retail price 65–75 NZ dollars, 

and six bottles Pinot noir wines with retail price 75–85 NZ dollars. Based on confuse 

matrix in Figure 5b, it could be inferred that six bottles Pinot noir wines with retail price 

15–25 NZ dollars, five bottles Pinot noir wines with retail price 25–35 NZ dollars are 

wrongly predicted as high retail price compared to actual retail price. Meanwhile, only 
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one bottle Pinot noir wine with retail price 35–45 NZ dollars is judged as retail price 

15–25 NZ dollars, and one bottle Pinot noir wine with retail price 45–55 NZ dollars is 

misjudged as retail price 25–35 NZ dollars. 

Important Chemical Parameters to Predict New Zealand Pinot Noir Wines’ Price Points 

According to Figure 6a–d, pH is the most relevant element in determining the price 

points of Pinot noir wines, except for the chemical data characterized by Extreme gradi-

ent boost in Figure 6d. Malolactic fermentation (MLF) is a secondary bacterial fermenta-

tion used to raise the pH of most red wines. The MLF procedure is particularly desirable 

because to the function it plays in changing the wine’s quality [57]. MLF, for instance, can 

increase wine flavour and texture, improve microbiological stability, and reduce wine 

acidity [58]. Furthermore, in Figure 6a, chemical age is another important chemical pa-

rameter which is positively correlated with the price points of New Zealand Pinot noir 

wines. In Figure 6b, total anthocyanins are another important chemical parameter which 

is positively correlated with the New Zealand Pinot noir wines’ price points. Total an-

thocyanins and chemical age are both related with SO2 nonbleachable pigment, which 

has a positive association with bottle wines’ prices [13]. Moreover, in Figure 6c, A280 nm 

HCl is shown to be a further important chemical parameter followed by pH to charac-

terize the price points of New Zealand Pinot noir wines. A280 nm HCl is positively cor-

related with total phenolic compounds, which was positively correlated with the wine 

bottle price and total phenolics [21]. 

  

(a) Random forest (b) Extra trees classifier 

  

(c) Gradient boosting classifier (d) Extreme gradient boost 

Figure 6. Features selection of 13 chemical data using Random forest, Extra trees classifier, gradient 

boosting classifier, and Extreme gradient boost in price points. (a–d) display the important chemi-

cal parameters in PricePoints are selected by Random Forest, Extra trees classifier, Gradient 

boosting classifier and Extreme gradient boost, respectively. 
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3.2. Potential Prediction Error Analysis 

According to Figures 1, 3, and 5, it can be extrapolated that there are still some pre-

diction errors for soft sensors to estimate regions of origin, vintages, and price points, 

which may result from improper input data and chemical variances in output data. 

3.2.1. Improper Input Data 

The input data of soft sensors to forecast regions of origin were decreased based on 

the relevance of chemical data ranked by feature selection methods such as Random 

forest, Extra trees classifier, gradient boosting classifier, and Extreme gradient boost, as 

shown in Figure 2a–d. According to Figure 7a, it can be concluded that when the top 12 

chemical data ranked by feature selection technique Random forest and Extra trees clas-

sifier are used as input data, the prediction accuracy of soft sensors is higher than when 

13 chemical data are used. 
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Figure 7. Prediction accuracy of soft sensors to predict regions of origin, vintage points, and price 

points with different input data. (a–c) display the prediction accuracies for soft sensors to predict 

New Zealand Pinot Noir wines’ regions of origin, vintage points and price points with different 

numbers of input data respectively. These input data were reduced with the help of the feature 

selection method Random Forest (RF), Extra trees classifier, Gradient boosting classifier and Ex-

treme gradient boost (XGBOOST), respectively. 
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Combined with Figures 4a and 7b, it is possible that only total anthocyanins and 

chemical age, which are key chemical parameters to influence vintage points based on 

Section 3.2.2, work as input data, and that the prediction accuracy of soft sensors to pre-

dict vintage ranges (old/new vintages) has increased in comparison to 13 chemical data 

working as input data. It appears that when critical chemical properties function as input 

data, soft sensor accuracy could be improved. Similarly, from Figures 6b and 7c, it can be 

deduced that pH, total anthocyanins, and total flavanols work as input data, the soft 

sensors to predict price points more accurately than the entire 13 chemical data. 

3.2.2. Chemical Variances from Output Data 

Chemical parameters derived from a total of 117 bottles (No. 1–No. 117) New Zea-

land Pinot noir wines were characterized by PCA. There were total 39 samples and every 

sample contained three bottles of Pinot noir wines. In the PCA score plot, the distance 

between the two bottles of Pinot Noir wine is greater, indicating that the wines’ chemical 

variances are greater. According to Figure 8, it could be inferred that there were some 

chemical variances in chemical data, even three bottles like No.1, No.78 and No.79 New 

Zealand Pinot noir wines from the same sample but different bottles. In these soft sen-

sors, chemical data were used as input data, which could be resulted in the prediction 

error in soft sensors to predict New Zealand Pinot noir wines’ region of origin, vintages 

and price points 

 

Figure 8. 117 bottles New Zealand Pinot noir wines’ chemical parameters are characterized by PCA 

score plots.  

Notes: No. 1, No. 78 and No. 79 Pinot noir wines are from the same sample; No.2, No. 77 and 

No. 80 Pinot noir wines are from the same sample No. X, No. 79 − X, and No. 79 + X are from the 

same sample. The red dot is the middle point of three bottles of New Zealand Pinot noir wines from 

the same sample. Different coloured circles represent individualPinot noir wines’ PCA scores.Lines 

have connected three bottles of New Zealand Pinot noir wines from the same sample. 

There are typically chemical variances amongst natural goods that are difficult to 

manage. Grapes, maceration, fermentation, and storage conditions affect these chemical 

variances in Pinot noir wines. The composition of Pinot noir grapes is determined by 

climatic elements (climate and pedoclimate), soil chemical and physical qualities, bio-

logical factors, and the results of viticultural management [59]. To improve wine phe-
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nolics, winemakers have tried various maceration techniques, such as microwave mac-

eration of Pinot noir grape must [60]. On one hand, oak barrels impart a number of 

oak-related chemicals, such as ellagitannins, furfural compounds, guaiacol, oak or 

whisky lactone, and eugenol, into wine. On the other hand, atmospheric oxygen infiltra-

tion through the oak barrel permits the gentle oxidation of specific components, resulting 

in colour changes and modifying of the wine’s taste qualities [61]. 

4. Discussion 

This present study was conducted to predict New Zealand Pinot noir wines’ regions, 

vintages and prices by machine learning methods based on collected chemical parame-

ters with acceptable prediction accuracy (Figures 1, 3 and 5). With the help of feature se-

lection methods, it could be concluded that measured chemical parameters could con-

tribute to New Zealand Pinot noir wines’ regions of origin, vintages and prices (Figures 2, 

4, and 6). According to Supplementary Figures S4 and S5, when soft sensors using deci-

sion trees to predict New Zealand Pinot noir wines’ vintage ranges (old/new vintages) or 

price points, among 13 chemical parameters, only total phenolics, total flavanols, total 

flavan-3ols, A420 nm, total anthocyanins, and alcohol content are necessary chemical 

parameters to work as input data. When total phenolics, total flavanols, total flavan-3ols, 

A420 nm, total anthocyanins, and alcohol content were necessary chemical parameters to 

work as input data, the soft sensors could predict region, vintage and price with predic-

tion accuracy 76.92%, 93.16% and 85.47%. The reason that collected chemical parameters 

could be used as input data to predict New Zealand Pinot noir wines’ product extrinsic 

cues simultaneously with the acceptable prediction accuracy, is because many chemical 

parameters, especially phenolics, have a close relationship with Pinot noir wines’ regions 

of origin, vintages and price points. Another important reason is that regions of origin 

and vintages both have intensive relationships with wine prices. Region of origin is a 

significant factor in determining wine price because each terroir has its own unique fea-

tures and serves as an indicator of its collective regional reputation, which could affect 

wine price [62]. Meanwhile, there are two sources of vintage’s impact on wine prices. In 

the case of fine wine, it has been shown that prices are proportional to the weather con-

ditions that led to the production of the vintage’s wines [63]. The vine’s behaviour fluc-

tuates from year to year, and what makes a vintage good or poor may be the result of 

varying climatic conditions [64]. The majority of price and quality variation between 

vintages may thus be attributed to the weather. Wines of older vintages would be aged 

for an extended period, which could increase wine prices [65]. 

Another important finding was that according to Figure 7, it could be concluded that 

the greater quantity of input data applied to soft sensors is not indicative of their high 

prediction accuracy. For example, according to Figure 2a,b, removing total tannins from 

input data could improve the accuracy of soft sensors predicting the provenance of New 

Zealand Pinot noir wines. Pinot noir grapes have fewer total tannins than other grape 

varieties [63]. In light of this, some winemakers would like to add food additive tannins 

prior to fermentation to compensate for the lack of sensory attributes caused by a lack of 

tannins [66]. This could explain why removing the interfering chemical parameters could 

improve the accuracy of soft sensors. 

5. Conclusions 

In this paper, a total of 117 bottles of Pinot noir wines (39 samples in triplicate) from 

different regions, vintages and prices were selected to build soft sensors to predict New 

Zealand Pinot noir wines’ regions of origin, vintages and price points. These 39 samples 

could represent New Zealand Pinot noir from diverse provenances, vintages, and price 

points. This study shows that soft sensors may accurately predict the regions of origin, 

vintages (old/new vintages), and price points of New Zealand Pinot noir wines with 

prediction accuracies of more than 80% simultaneously when the whole 13 chemical pa-

rameters worked as input data. In addition, the soft sensor with a decision tree (ML) 
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performed better than the previous soft sensor using PLS-DA (ML) to predict New Zea-

land Pinot noir wine with vintage 2014 in this paper’s Introduction. In the interim, no soft 

sensor for predicting the provenance of New Zealand Pinot noir wines based on previous 

literature. Meanwhile, when total phenolics, total flavanols, total flavan-3ols, A420 nm, 

total anthocyanins, and alcohol content (obtained from wine labels) worked as input da-

ta, soft sensors could predict the regions of origin, vintages, and price points with pre-

diction accuracies of more than 75% simultaneously. Total flavan-3-ols could successfully 

characterise New Zealand Pinot noir wines’ regions of origin, total anthocyanins, chem-

ical age, and alcohol content (obtained from wine label) could successfully characterise 

New Zealand Pinot noir wines’ vintages, and pH could characterise New Zealand Pinot 

noir wines’ price points. According to subsequent research, understanding the critical 

chemical characteristics could further improve the prediction accuracy of soft sensors by 

removing the interfering chemical parameters could improve the accuracy of soft sen-

sors. 

The current study is limited to the typically consumed Pinot noir wines (from the 

price point and commercial availability). It is unclear at the moment if the soft sensor will 

be applicable or not to the oldest vintage or expensive Pinot noir wine, which will require 

further work. 
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noir wines evaluated by seven experts and Figure S1b displays the prediction accuracies of 

No.40–No.78 Pinot noir wines evaluated by seven experts, Figure S2: The prediction accuracy of 

experts on vintages. Figure S2a displays the prediction accuracies of No.1–No.39 Pinot noir wines 

evaluated by seven experts and Figure S2b displays the prediction accuracies of No.40–No.78 Pinot 

noir wines evaluated by seven experts, Figure S3: The prediction accuracy of experts on Price 

points. Figure S3a displays the prediction accuracies of No.1–No.39 Pinot noir wines evaluated by 

seven experts and Figure S3b displays the prediction accuracies of No.40–No.78 Pinot noir wines 

evaluated by seven experts, Figure S4: Classification tree structure about Pinot noir wines’ vintages 

(old/new vintages), Figure S5: Classification tree structure about Pinot noir wines’ price points, 
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