
Citation: Sotelo-Díaz, L.I.; Igual, M.;

Martínez-Monzó, J.; García-Segovia,

P. Techno-Functional Properties of

Corn Flour with Cowpea (Vigna

unguilata) Powders Obtained by

Extrusion. Foods 2023, 12, 298.

https://doi.org/10.3390/

foods12020298

Academic Editor: Danyang Ying

Received: 28 November 2022

Revised: 5 January 2023

Accepted: 6 January 2023

Published: 8 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Techno-Functional Properties of Corn Flour with Cowpea
(Vigna unguilata) Powders Obtained by Extrusion
Luz Indira Sotelo-Díaz 1, Marta Igual 2 , Javier Martínez-Monzó 2,* and Purificación García-Segovia 2

1 Food Investigation, Process Management and Service Group, Food Science and Culture Department,
Universidad de La Sabana, Campus del Puente del Común Km. 7, Autopista Norte de Bogotá,
Chía 250001, Colombia

2 Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, Spain

* Correspondence: xmartine@tal.upv.es; Tel.: +34-963877361

Abstract: Legumes are a good source of vegetal protein that improves diets worldwide. Cowpea
has been used as fortification agents in some traditional corn foods in developing countries such
as Colombia. The work aimed to evaluate the physicochemical properties of extruded mixtures of
corn and cowpea flours to assess the use of these mixes as vegetable protein ingredients. Corn flour
was mixed with 15, 30, and 50% of cowpea flour and extruded for this proposal. After extrusion,
mixtures were ground to produce a powder. Techno-functional properties of powders as water
content, hygroscopicity, water absorption, fat absorption, water solubility index, swelling index, bulk
density, Hausner ratio, Carr index, and porosity were evaluated in the mixtures, extrudates, and
obtained powders to assess the effect of the addition of cowpea on these properties. Results showed
that processing powder obtained by extrusion and drying could be used as a powder to regenerate
with water as a source of protein. Moreover, storing processing samples in sections (pellet format) is
convenient to avoid wetting since this format is less hygroscopic and the same mass occupies less
storage volume than powders.

Keywords: extrusion; cowpea; physicochemical properties; protein

1. Introduction

The mixture of cereals and legumes is well-known to improve the nutritional value of
foods, highlighting their amino acidic profile [1]. These combinations can solve malnutrition
problems in developing countries [2]. For example, in Colombia, traditional beverages
such as chucula contain a mix of cereals and legumes generally consumed by farmers and
habitats in the mountains of small peasant communities [3]. These traditional beverages
are also considered as an excellent energy source for their carbohydrate content. This kind
of beverage is a mixture of powders dissolved in hot water or milk, with many problems
related to its final solubility [3]. One of the legumes used in this beverage is cowpea.
Cowpea (Vigna unguilata) is a legume widely cultivated in Colombia with great cultural
and economic importance, low price, accessibility, and is a source of starch and protein [4].
The proximate composition of cowpea flour is 25% protein, 51% starch, 11% fiber, 3% ash,
and 1.5% fat and minerals [5]. Furthermore, cowpea can be considered as a gluten-free food.
Another component typically used in this kind of beverage is corn (Zea mays). Corn is one
of the cereals used more in Latin America as part of native diets as a source of starch and
protein. The composition of corn flour is 66% carbohydrates, 8.3% protein, 3% fat, and 9.5%
fiber [6]. Despite this ingredient’s importance and nutritional value, some things related to
its use could be improved. For example, the nutritional value of cowpeas can be reduced
by the presence of anti-nutrients such as trypsin inhibitors, phytates, and tannins [2,7–9].
These compounds can reduce the bioavailability of minerals such as calcium, magnesium,
iron, zinc, and copper through the formation of insoluble or very poorly dissociated
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complexes [10]. Another aspect to consider in evaluating the nutritional value of nutrients
is their digestibility. The protein digestibility in corn ranges from 85% to 90% [6,11], and
in the case of cowpea, it is around 80% [12]. It is well-known that some low-moisture
processing techniques such as extrusion can increase digestibility and significantly reduce
anti-nutritional factors [13]. Extrusion cooking implies a combination of pressure, high
temperature, and shear forces. This process combines unit operations such as cooking,
mixing, shearing, and forming [14]. Because of this process, many changes in food can
affect its techno-functional and organoleptic properties. Between these changes can be
mentioned the gelation of starches, denaturation, or reorientation of proteins, fat melting,
or expansion of the food structure [15]. As previously mentioned, there have been many
studies on the effect of the extrusion process on the physicochemical properties of starch and
proteins [14,16–20]. However, few works have used extrusion to obtain cereal and legume
powders as an ingredient. For example, Wang et al. [21] used the extrusion treatment
to improve the instant properties of kudzu powders. Szczygiel et al. [22] evaluated the
acceptance of navy bean (Phaseolus vulgaris) powders prepared by extrusion as a process to
eliminate flatulence-causing oligosaccharides and anti-nutrients. Obilana et al. [23] assessed
the effects of extrusion on the physical and functional properties of the pearl millet-based
instant beverage powder. Diez-Sánchez et al. [24] used extruded flour with blackcurrant
pomace as a techno-functional ingredient to obtain a hyperglycemic effect of pre-gelatinized
starch in muffins. However, the effect of the extrusion on the techno-functional properties
of corn-cowpea extruded powders has never been studied. Therefore, this work aimed to
evaluate the effect of the extrusion of mixtures of corn and cowpea on the techno-functional
properties of the obtained powders. These properties can be used in the development of
different kinds of foods as beverages, plant-based meat replacers, or gluten-free products.

2. Materials and Methods
2.1. Raw Materials

Cowpea (Vigna unguilata) was purchased from a local market (Valencia, Spain). Corn
grits were supplied by Maicerías Españolas S.L. (Valencia, Spain).

2.2. Formulations and Extrusion Processing

Cowpea was ground in a Thermomix (TM 21, Vorwerk, Valencia, Spain) for 1 min at
5200 rpm. The obtained powder was named Vu. The protein content of this powder was
22 ± 1%.

Corn grits were blended with water in a ratio of 9:1 to obtain the control sample (C).
C was mixed with 15, 30, and 50% of cowpea (Vu) to produce the extrusion mixtures (M).
CM, 15VuM, 30VuM, and 50VuM were the mixtures used to feed the extruder (Figure 1).
Extrusion was carried out using a single-screw laboratory extruder (Kompakt extruder KE
19/25; Brabender, Duisburg, Germany) with a 19 mm diameter barrel and a length:diameter
ratio of 25:1, operating with a screw of a 2:1 compression ratio, a constant feeding speed of
18 rpm, feed rate of 3.9 kg/h, and the use of a nozzle 4 mm in diameter. The screw was
rotated constantly at 120 rpm, and barrel section (four) temperatures from the feeder to the
nozzle were set to 25, 55, 110, and 110 ◦C, respectively. Motor torque, barrel temperatures,
screw speed, and melt pressure were monitored using the Extruder Winext software
(Brabender). The pressure measured on the extruder head during the process ranged
between 80 and 120 bar. After extrusion, samples were dried at 40 ◦C for 24 h to reduce the
water content of the pellet sections (S). These samples were CS, 15VuS, 30VuS, and 50VuS
(Figure 1). Finally, dried pellet sections were ground in a Thermomix (TM 21, Vorwerk,
Valencia, Spain) for 1 min at 5200 rpm to produce powder (P) from samples, named CP,
15VuP, 30VuP, and 50VuP (Figure 1).
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Figure 1. The studied samples. Mixtures (M), pellet sections (S), and powder (P) with different
concentrations (15, 30, and 50%) of Vigna unguilata (Vu) and the respective controls (CM, CS, and CP).

2.3. Determinations
2.3.1. Water Content and Hygroscopicity

Water content (xw), expressed as g water/100 g sample, was determined by vacuum
oven drying at 105 ◦C until constant weight [25] for mixtures (M) and final powder (P)
with and without cowpea (Vu). Samples were analyzed in triplicate. Water loss because of
the extrusion and drying was calculated as the difference between the mixtures and water
content of the powders.

Hygroscopicity (Hy) was evaluated in mixtures (M), dried pellet sections (S), and final
powder (P). Approximately, 0.5 g of each sample was placed in a Petri dish at 25 ◦C in a
desiccator conditioned at 81% relative humidity with Na2SO4 saturated solution. After 2,
5, and 7 days, the samples were weighed. The hygroscopicity (Hy) was expressed as g of
water gained per 100 g of dry solids [26].

2.3.2. Water and Oil Absorption Index, Water Solubility Index, and Swelling Index

The analyses in this section were performed only on the products that had a powdery
appearance (M and P) due to the protocol restrictions. The water solubility index (WSI)
and water absorption index (WAI) were determined by the method of Singh and Smith [27].
A 2.5 g sample (M or P) was dispersed in 25 g of distilled water. After stirring for 30 min,
the dispersions were rinsed into tared 50 mL centrifuge tubes, made up to 32.5 g, and
centrifuged at 3000× g for 10 min. After centrifugation, the sediment was weighed, and
the supernatant was decanted for the dissolved solid content determination. WAI and WSI
were calculated according to Equations (1) and (2).

WAI =
weight of sediment
weight of dry solids

(1)

WSI (%) =

(
weight of dissolved solids in supernatant

weight of dry solids

)
× 100 (2)
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Following the method reported by Navarro-González, García-Valverde, García-Alonso,
and Periago [28] with little modifications [29], the oil adsorption index (FAI) was deter-
mined. For this, samples of 4 g were placed in a centrifuge tube with 24 g of sunflower oil.
The tubes were stirred (3000 rpm) for 30 s every 5 min until 30 min. After stirring, samples
were centrifuged at 1600× g for 25 min, and free oil was decanted. FAI was expressed as g
oil/g sample.

For the measurement of the swelling index (SWE), the bed volume technique was used.
In brief, samples were weighed (5 g) and transferred to a graduated test tube, and 50 mL of
distilled water was added. Test tubes were maintained for 18 h at ambient temperature.
The bed volume was measured and expressed as mm of swollen sample per g of the dry
initial sample [30].

2.3.3. Bulk Density, Hausner Ratio, Carr Index, and Porosity

For the powders, to determine the bulk density (ρb) in a 10 mL graduated test tube,
approximately 2 g of powder was placed. The occupied volume was recorded. ρb was
calculated by dividing the powder mass by the occupied volume and was expressed as
g/L. To determine the tap density (ρT), a graduated test tube with 2 g of powder was
mechanically tapped, and the volume was recorded until it reached a constant volume.
ρT was calculated by dividing the powder mass by the occupied volume after tapping
and was expressed as g/L. For pellet sections, ρb determination, measurements of the
height and diameter of cylinders were taken 15 times with an electronic Vernier caliper
(Comecta S.A., Abrera, Spain), and the pellet sections were weighed with a precision scale
(±0.001 g) (Mettler Toledo, Greifensee, Switzerland). The samples’ true density (ρ) was
established by a helium pycnometer (AccPyc 1330, Micromeritics, Norcross, GA, USA).
From these determinations, the Hausner ratio (HR), which is correlated to the flowability
of a powder [31], was calculated by Equation (3), and the Carr index (CI), which represents
the compressibility of a powder [32], was calculated by Equation (4).

HR =
ρT
ρb

(3)

CI = 100 × ρT − ρb
ρT

(4)

where HR is the Hausner ratio; CI is the Carr index (%); ρb is the bulk density (g/L); and
ρT is the tap density (g/L).

Moreover, porosity (ε), the percentage of air volume related to the total volume, was
calculated according to Equation (5). For the powdery samples, M and P, this parameter was
described by Igual et al. [33], and in the case of the pieces, S, according to Igual et al. [34].

ε =
(ρ− ρb)

ρ
(5)

where ε is the porosity; ρb is the bulk density (g/L); and ρ is the true density (g/L).

2.3.4. Color

CIE*L*a*b* color coordinates were measured considering a standard light source D65
and a standard observer 10◦ (Minolta spectrophotometer CM-3600d, Japan). Measurements
were taken nine times on the mixtures (M), the section of the pellet (S), and powder (P)
samples. Previously, samples were measured on white and black backgrounds to consider
translucency. In any case, the samples were not translucent. The total color differences
between the section of pellet and mixtures or between the final powders to mixtures (∆E1)
were calculated, which means that the reference was the correspondent mixture before
extrusion. The total color difference (∆E2) was calculated to evaluate the color changes by
Vu effect in the mixtures, sections of pellets, and final powders. In this case, the reference
was cowpea flour (Vu).
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Color coordinates were also measured in the mixtures and powder samples after 18 h
in contact with water inside the calibrated cylinder, as described for SWE in Section 2.3.1.

2.4. Statistical Analysis

Analysis of variance (ANOVA) was applied with a confidence level of 95% (p < 0.05) to
evaluate the differences among samples. Additionally, a correlation analysis was conducted
among the studied parameters of samples with a 95% significance level. The software
Statgraphics Centurion XVII, version 17.2.04 (Statgraphics Technologies, Inc., The Plains,
VA, USA) was used to conduct this analysis.

3. Results and Discussion
3.1. Physicochemical Characteristics of Extrudates

Figure 2 shows the xw of the mixtures and powder obtained after the extrusion and
drying process and WL during the extrusion and drying process. The Vu incorporation
to the corn grits to feed the extruder significantly decreased (p < 0.05) the water content
of mixtures in all cases, especially at 50 Vu. WL due to the extrusion and drying process
was significantly higher at 15 Vu. In the end, the powder xw was significantly higher in the
control than the rest of the samples enriched with Vu. Vu enrichment boosted water loss
after the process (extrusion + drying). Total water loss in samples with Vu ranged from
0.125 to 0.149 gw/gdb, whereas the control samples presented 0.066 gw/gdb.
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Figure 2. Mean values and standard deviation of moisture (xw) of the mixtures (M) and powder
(P), and the total water loss (WL) of the process. For each parameter, the same small letter indicates
homogeneous groups established by ANOVA (p < 0.05) by comparing the Vu percentages (0, 15, 30,
and 50). For each Vu percentage (0, 15, 30, and 50) and parameter, the same capital letter indicates
homogeneous groups established by ANOVA (p < 0.05) by comparing M and P.

WAI, WSI, SWE, and FAI of the mixtures and powder are shown in Figure 3. The
WAI and WSI indices show how samples interact with water [35]. WAI refers to the
water absorbed by the samples when immersed in water [36]. WSI refers to the water-
solubilized components released during extrusion [37]. Final powder samples (P) presented
significantly (p < 0.05) higher WAI than the mixtures (M). The WAI parameter shows the
capability of a material to absorb water, and is affected by the magnitude of the molecular
interaction within the starch structure (amorphous and crystalline). Extrusion implies a
gelatinization of starch, and then its crystalline structure is modified due to the breaking of
inter- and intra-molecular hydrogen bonds. Therefore, hydroxyl groups are more exposed
to form hydrogen bonds with water. As a result, water molecules can diffuse into the
amorphous region of extruded starch more easily than in native starch [38]. Materials
with high WAI tend to be easily dispersed in water. Hence, the WAI of extruded starch
of P was higher than that of the native starch of M, as shown in other studies [39–44].
There was no significant (p > 0.05) effect of the Vu addition in P; however, this effect was
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significant (p < 0.05) in M. According to other studies carried out with mixtures of starch
and vegetable protein [45], there are interactions between both components that increase
the capacity for absorption and retention of water. Extrusion + drying reduced the number
of soluble components released as indicated by WSI values, thus reducing the molecular
degradation in samples. Other studies observed that the WSI of extruded starch is much
higher than that of native starch [39–44,46]. However, the feed mixtures to the extruder
contain water, as indicated in Section 2.2, which acts as a plasticizer and probably reduces
shearing and starch degradation during extrusion. Therefore, high feed moisture results in
higher WAI and lower WSI [42,46]. The WSI of P samples did not show significant (p > 0.05)
differences for %Vu. In the case of sample M, the WSI values of the mixtures with 50% Vu
were significantly (p < 0.05) lower than the rest. 

 

Fig 3. Figure 3. Mean values and standard deviation of the water absorption index (WAI), water solubility
index (WSI), swelling index (SWE), and fat absorption index (FAI) of the mixtures (M) and powder
(P). For each parameter, the same small letter indicates homogeneous groups established by ANOVA
(p < 0.05) by comparing the Vu percentages (0, 15, 30, and 50) in M or P. For each Vu percentage (0,
15, 30, and 50) and parameter, the same capital letter indicates homogeneous groups established by
ANOVA (p < 0.05) comparing M and P.

Extrusion + drying significantly increased (p < 0.05) the SWE of mixtures with or
without Vu (Figure 3). In M, there was a significant effect of Vu % (p < 0.05), with higher
Vu % in samples with higher SWE. However, in P, only the sample with 50% Vu showed
significant (p < 0.05) higher values of SWE. The behavior of the SWE is similar to the
WAI both because of the processing and the addition of Vu. Gelatinization produces
significant structural changes that destroy the light packing of the polymers and allow their
release to interact with water [38]. Therefore, P showed more significant swelling when in
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contact with water than M. If M and P were used as ingredients for the preparation of a
food product, P would introduce more water into the network than M. This would give
the future product more consistency. At a dietary level, it would provide satiety to the
consumer and reduce caloric intake.

The FAI of samples is shown in Figure 3. P presented lower values of FAI than M, but
only in samples with 15% Vu and 50% Vu were the FAI differences significant (p < 0.05). In
both M and P, when Vu % increased, FAI decreased. The incorporation of protein into the
mixtures probably caused a lower oil absorption. If M and P were used as an ingredient for
the preparation of a food product, a lower FAI would guarantee that if the product is fried
or in contact with oil, P will capture less oil than M. In addition, either of the two with Vu
would also capture less oil than without Vu.

Figure 4 shows the mean values and standard deviation of ρb, ε, HR, and CI. In the
range of samples enriched between 0 and 30% Vu, the samples with the highest ρb were S,
followed by P and M. However, when the mixtures contained 50% Vu in their formulation,
the densest was P. The opposite trend was observed in ε, with the most porous being
samples M. Although the final use of the products studied in this work was M or P, the S
format could be very suitable since, being denser and less porous, it occupies less space
and would facilitate transport and storage. In powdered products, porosity plays a key role
in the agglomerate strength of dried foods [47]. Furthermore, a greater porosity (and lower
bulk density) corresponds to a greater air volume distributed among particles where the
water inlet could be more accessible [47,48]. A larger particle size conditions the greater air
volume among particles since the particles, when they settle, leave air spaces of a greater
volume than if the particles are small. A smaller particle size allows for a better organization
of particles. It leaves smaller spaces among particles and, therefore, less porosity, as can be
observed for P compared with M. Figure 4 shows HR and CI. HR is an index correlated
to the flowability of a powder. The difference range for HR in defining the flowability is
free flowing powder (1.0 < HR < 1.1), medium flowing powder (1.1 < HR < 1.25), difficult
flowing powder (1.25 < HR < 1.4), and tough flowing powder (HR > 1.4) [49]. According
to this ranking, P presents a difficult flowing powder, but in the case of 50VuP, it was
close to the medium flowing powder. However, M showed tough flowing powder for
all formulations. CI represents the compressibility of a powder. According to Carr [32],
excellent flowability can be expected if the CI is within 5 to 15%, and if the value of CI
is above 25%, it indicates poor flowability. The CI of M samples ranged from 53 to 68%,
so they presented poor flowability. However, the values of CI for 30VuP and 50VuP were
25 and 21%, respectively, showing an intermediate flowability. There were significant
(p < 0.05) differences between M and P when comparing the HR and CI values. The use of
Vu in the formulations provoked a significant (p < 0.05) decrease in HR and CI, improving
the flowability properties of the samples.

Figure 5 shows the evolution of the hygroscopicity of samples along 7 d. Hygroscop-
icity can be defined as the capacity of a powder to absorb water from the environment.
This property can determine the stability of products during storage. Samples with lower
hygroscopicity are desirable for handling and packaging [50]. After extrusion + drying,
S and P showed significantly higher Hy values than M. Comparing S and P, S was less
hygroscopic than P, so after the studied process (extrusion + drying), it was convenient to
store in sections (pellet format) since S presented less hygroscopicity than P. Once its use is
required, it can be crushed, and a powder will be obtained. In addition, S is denser than P,
as indicated above, and therefore, the same mass occupies less volume in storage. In S and
P, there was a significant (p < 0.05) and increasing effect with an increasing concentration of
Vu. However, only 50VuM showed significant differences in Hy in the M samples.



Foods 2023, 12, 298 8 of 14Foods 2023, 12, 298 8 of 14 
 

 

 

Figure 4. Mean values and standard deviation of the bulk density (ρb), porosity (ε), Hausner ratio 

(HR), and Carr index (CI) of the mixtures (M), the section of the pellet (S), and powder (P) in each 

case. For each parameter, the same small letter indicates homogeneous groups established by 

ANOVA (p < 0.05) by comparing the Vu percentages (0, 15, 30, and 50) in M, S, or P. For each Vu 

percentage (0, 15, 30, and 50) and parameter, the same capital letter indicates homogeneous groups 

established by ANOVA (p < 0.05) by comparing M, S, and P. 

 

Figure 4. Mean values and standard deviation of the bulk density (ρb), porosity (ε), Hausner ratio
(HR), and Carr index (CI) of the mixtures (M), the section of the pellet (S), and powder (P) in each case.
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Pearson correlations (Table 1) were performed to explore the relationships among the
studied properties of the samples. xw maintained a close relationship with all the properties
studied. Significant (p < 0.05) and positive correlations were observed with WSI, FAI, HR,
CI, and ε, and negative with WAI, SWE, Hy, and ρb. In all cases, the correlation coefficients
were greater than 0.94, except for FAI, which was 0.78.

The flowability of the powder decreased (increase in HR and CI) when the water
content increased in the same way as in other studies of barberry powders [51]. Moreover,
HR and CI were significant (p < 0.05) and positively correlated with ε (negatively with ρb),
so highly porous powders will be difficult to flow, probably due to the larger particle size
or higher water content. In Table 1, a significant positive Pearson’s correlation between ε
and WSI could also be observed. A greater porosity and lower bulk density corresponded
to a more soluble product [47,48]. Hy presented a significant Pearson’s correlation related
to ρb and ε (p < 0.05). The higher the Hy, the higher the ρb and the lower the ε, with 0.9050
and −0.9043 correlation values, respectively, as was observed in other studies with beetroot
powder [50].
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Figure 5. Hygroscopicity of each powder sample along with assay time. Mixtures (M): CM, 15VuM,
30VuM, and 50VuM; Section of pellet (S): CS, 15VuS, 30VuS, and 50VuS; Powder (P): CP, 15VuP, 30VuP,
and 50VuP.

Table 1. Pearson correlation coefficients among the studied physicochemical parameters of powders.
Water content (xw), water absorption (WAI), water solubility (WSI) index, fat absorption index (FAI),
swelling index (SWE), hygroscopicity (Hy), bulk density (ρb), Hausner ratio (HR), Carr index (CI),
and porosity (ε).

WAI WSI FAI SWE Hy ρb HR CI ε

xw −0.9725 * 0.9794 * 0.7819 * −0.9464 * −0.9679 * −0.9606 * 0.9433 * 0.9720 * 0.9574 *
WAI −0.9963 * −0.6667 * 0.9791 * 0.9783 * 0.9653 * −0.9296 * −0.9695 * −0.9584 *
WSI 0.6847 −0.9746 * −0.9413 * −0.9540 * 0.9193 * 0.9641 * 0.9470 *
FAI −0.6987 −0.8388 * −0.7803 * 0.8046 * 0.8023 * 0.7928 *

SWE 0.9212 * −0.9627 * −0.9347 * −0.9773 * −0.9604 *
Hy 0.9050 * −0.8892 * −0.9398 * −0.9043 *
ρb −0.9878 * −0.9936 * −0.9994 *
HR 0.9776 * 0.9914 *
CI 0.9934 *

* Correlation was significant at 0.05. All data represent the mean of three determinations.

The color of the mixtures (M), extruded pellet section (S), and final powders (P) are
shown in Figure 6. The difference between S and M or P in L*, a*, and b* stands out.
As shown in Figure 1, M and P were more luminous than S, following the L* values in
Figure 6. No trend was observed as defined by the addition of Vu in L*. Overall, S showed
higher values of a* and lower values of b* compared to M and P. These differences are
due to the matrix of the products. The total color differences of S and P with M (Figure 6)
showed that the more compact matrix of S presented greater total color differences for
M at all concentrations of Vu. ∆E2 presented significant differences due to Vu %. The
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addition of Vu significantly increased (p < 0.05) the ∆E2 values in M, however, in the P
samples, the opposite trend was observed (significant decrease, p < 0.05). In the case of S,
significant differences in ∆E2 were only observed when the sample contained 50% Vu in its
composition.
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Figure 6. Mean values and standard deviation of color coordinates (L*, a*, and b*) and the total color
differences (∆E1 and ∆E2) of the mixtures (M), the section of the pellet (S), and powder (P). For each
parameter, the same small letter indicates homogeneous groups established by ANOVA (p < 0.05) by
comparing the Vu percentages (0, 15, 30, and 50) in M, S, or P. For each Vu percentage (0, 15, 30, and
50) and parameter, the same capital letter indicates homogeneous groups established by ANOVA
(p < 0.05) by comparing M, S, and P.
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3.2. Color of Hydrated Samples

Considering the results of the physical properties measured in this work and the
current trends in the use of vegetable protein, the samples hydrated for 18 h were the object
of study. In this way, the color coordinates and appearance of samples hydrated for 18 h are
shown in Table 2 and Figure 7, respectively. For each %Vu, there were significant (p < 0.05)
differences in the color coordinates between M and P, showing higher values M. At the four
concentrations of Vu studied, the ∆E1 was greater than three and therefore perceptible to
the human eye [33]. Within the M samples, 50VuM showed significant differences (p < 0.05)
in L*, a*, and b*, more marked than the rest. In the P samples, while L* and b* decreased
with increasing Vu %, a* was stable. ∆E2 for both M and P presented significant (p < 0.05)
differences due to the % Vu. The appearance of P samples (Figure 7) was homogeneous
and compact. These samples can be used as a vegetable matrix to substitute proteins of
animal origin. However, the M samples present an appearance of loose particles and a non-
homogeneous matrix. This appearance change is due to processing (extrusion + drying),
since there is no effect of Vu %.

Table 2. Mean values (and standard deviations) of color coordinates (L*, a* and b*) and total color
differences (∆E1 and ∆E2) of the mixtures (M) and powder (P) with different concentrations (15, 30,
and 50%) of Vigna unguilata (Vu) and the respective controls (CM and CP) hydrated for 18 h according
to SWE methodology.

Sample L* a* b* ∆E1 ∆E2

CM 65.04 (0.09) bA 2.42 (0.12) aA 30.5 (0.4) aA

15VuM 63.4 (0.7) cA 0.4 (0.4) bA 23.96 (1.03) bA 7.1 (0.9) cA

30VuM 65.9 (0.9) bA 0.57 (0.18) bA 20.61 (1.02) cA 10.2 (0.9) bA

50VuM 68.0 (0.4) aA −0.13 (0.14) cA 16.9 (0.7) dA 14.2 (0.6) aA

CP 63.83 (0.18) aB −1.28 (0.02) aB 18.0 (0.2) aB 13.1 (0.2) b

15VuP 59.4 (0.5) bB −1.13 (0.16) aB 15.8 (0.03) bB 9.2 (0.2) d 5.0 (0.3) cB

30VuP 59.8 (0.8) bB −1.31 (0.08) aB 12.5 (0.7) cB 10.34 (1.12) c 6.84 (1.02) bB

50VuP 55.3 (0.5) cB −1.2 (0.3) aB 10.2 (0.4) dB 14.4 (0.3) a 11.6 (0.2) aB

For each parameter, the same small letter indicates homogeneous groups established by ANOVA (p < 0.05) by
comparing the Vu percentages (0, 15, 30, and 50) in M or P. For each Vu percentage (0, 15, 30, and 50) and parameter,
the same capital letter indicates homogeneous groups established by ANOVA (p < 0.05) by comparing M and P.
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For each parameter, the same small letter indicates homogeneous groups established
by ANOVA (p < 0.05) by comparing the Vu percentages (0, 15, 30, and 50) in M or P. For
each Vu percentage (0, 15, 30, and 50) and parameter, the same capital letter indicates
homogeneous groups established by ANOVA (p < 0.05) by comparing M and P.

4. Conclusions

Extruded powders from corn and cowpea could be obtained to provide new protein-
complement ingredients. The techno-functional proprieties studied showed that processing
powder obtained by extrusion and drying could be used as a powder to regenerate with
water as a source of protein. Extrusion and drying reduce the moisture in the samples,
increasing their stability during storage. On the other hand, the extrusion and drying
of mixtures of corn and cowpea increase the WAI of obtained powders, improving their
dispersibility in water. No significant effect of the addition of cowpea was found on WAI.
Extrusion plus drying reduced the number of soluble components released, as indicated
by the WSI values, thus reducing the molecular degradation in the samples. Moreover,
it is convenient to store processing samples in sections (pellet format) to avoid wetting,
since this format is less hygroscopic and the same mass occupies less storage volume
than powders. The cowpea addition caused significant color samples in the mixtures and
powders. In the powder samples, while L* and b* decreased with increasing cowpea, a* was
stable. The appearance of powder samples resulted in more homogeneity and compactness
than the mixtures. It would be advisable to continue studying the processed samples so that
further progress can be made toward understanding each component’s role in imparting
functional characteristics to foods.
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