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Abstract: Background: high meat intake may contribute to several chronic diseases including obesity.
However, evidence is insufficient on the relation between red/white meat intake and gut flora
among individuals with varying degrees of adiposity. Objective: investigate the association of
red/white meat intake with gut flora in Saudi Arabian females with/without obesity. Methods: this
observational study involved 92 females with and without obesity (n = 44, 48, respectively) aged
19–25 years. The whole-genome shotgun technique was used to analyze the gut flora. Shannon alpha
and Bray–Curtis beta diversity as well as correlation coefficients were used. Results: in the total
sample, there were positive correlations between Actinobacteria, Bacteroides (p ≤ 0.05), Flavonifractor
plautii (p ≤ 0.0001), and total red meat intake. There were also positive correlations between total
white meat intake, Bacteroides, and Faecalibacterium prausnitzii (p ≤ 0.05) in the total sample. In
the group without obesity, there was a positive correlation between low white meat intake and
Actinobacteria (p = 0.05). In the group with obesity, there was a positive correlation between high
white meat intake and Bacteroides (p ≤ 0.001). Conclusion: our findings suggest that meat intake had
an impact on the gut flora of Arab adult females, independent of adiposity. Specific strains identified
in this study need further investigation to determine their relation to meat intake and obesity.

Keywords: gut flora; red meat; white meat; obesity; inflammatory markers; lipid profile

1. Introduction

In the past decade, global dietary patterns have shifted toward Western-style diets,
characterized by higher consumption of refined carbohydrates, added sugars, and animal
food sources, including eggs, red meat, processed meat, and white meat [1–3]. In 2018,
the mean global intake of red meat was ≥50 g/day, having increased by about 88% since
1990 [4]. In Saudi Arabia, the average red meat consumption was high, amounting to
≈50 kg per capita of meat per year in 2017 [5], with an annual growth rate of about 0.24%
since 1999 [6]. This increase in meat intake is concurrent with the progressive increase
in obesity from 22% in 1990–1993 [7] to 40% in 2017 [8]. High intake of meat has been
shown to increase weight gain due to its high energy density and fat content [9]. Compared
with other food groups, meat intake was most highly correlated with the prevalence of
obesity [10] and other adverse health conditions, such as diabetes [11], cardiovascular
disease (CVD) [12], and increased proinflammatory blood markers such as C-reactive
protein (CRP), a predictor for CVD risk [13], especially in women [13,14].

Recent studies suggest that diet is one of the most important factors that influence the
composition and diversity of the gut flora, eventually modulating the risk of several chronic
diseases [15]. The composition of gut bacteria is affected partly by the microorganisms in
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the ingested food, and partly by the host’s dietary behavior and lifestyle. For example,
rats consuming a high-fat diet have a decreased relative abundance of Bacteroidetes and
Bifidobacteria and an increased relative abundance of Firmicutes and Proteobacteria [16].
Randomized control trials (RCTs) have reported that meat protein intake correlates with
overall microbial diversity [17,18]. However, very few RCTs have investigated the impact of
different types of meat on gut flora [17–21], with some revealing an increase in Bacteroides
enterotype and a decrease in Firmicutes [17,20] and Clostridium [18] after a high red meat
meal. Other RCTs showed that the effect of meat on gut flora may be dependent on the
type of meat, i.e., red meat or processed meat [19,21]. It has been suggested that microbial
metabolites originating from meat protein, such as short-chain fatty acids, could affect gut
flora indirectly by promoting the release of 5-serotonin, leading to raised intestinal motility
and ion transport as well as alterations in the gut microbiota composition [22].

Nonetheless, the human gut flora has been observed to differ according to race,
ethnicity, and gender, in addition to lifestyle and dietary factors [23,24]. Given the rapid
shift in dietary patterns in Saudi Arabia, from a nutrient-rich traditional diet to an energy-
dense Western diet [3], and the rising obesity rates, especially in females, it is important
to identify the impact of meat intake on gut microbiota composition. To our knowledge,
limited evidence is available on the association between the intake of different types of meat
and gut flora in the Middle Eastern region. We aim to identify the impact of red/white meat
intake on gut flora and the inflammatory marker hs-CRP in Saudi Arabian females with
and without obesity. The current study is part of a previous study that aimed to identify
the relation between gut microbiota and adiposity. In this study, we focus mainly on
dietary factors related to gut flora, specifically meat intake, using the unique whole-genome
shotgun (WGS) sequencing technique.

2. Materials and Methods
2.1. Study Design

The current study is part of a case-control study conducted between January 2019 and
March 2020 at the clinic of the College of Applied Medical Sciences in King Saud University,
Riyadh, Saudi Arabia, and aiming to identify the relation between gut microbiota and
obesity markers. Details on the study design were published previously [25]. Briefly,
the sample size was 92, based on the gut microbiota composition and its differences
among Saudi females attending university at a 5% significance level and 80% power.
The sample was calculated in a similar manner to a previous study [26]. We observed
a Firmicutes: Bacteroidetes of 0.9 ± 0.4 in women with normal weight and 1.7 ± 1.7 in
women with obesity, with a 95% confidence interval (CI) and 80% power. The participants
were randomly recruited via flyers, faculty member assistance, oral presentations, and
social media networks. We excluded those who were ≤18 years old, overweight (body mass
index (BMI) 25.0–29.9 kg/m2), pregnant, or following specific diets (e.g., calorie-restricted
diets), as well as those who reported the presence of gastrointestinal diseases in the past
eight weeks, endocrine or oncological disease history, psychiatric disorders, anorexia, other
medical conditions, and usage of multi-vitamins, vitamin B12, or antibiotics in the past 6
months (n = 193).

After submitting a signed consent form, each participant was given an appointment
at the nutrition clinic in the same college and supplied with containers for collecting
stool samples that were to be returned on a scheduled visit day. During the visit, de-
mographic, dietary, and anthropometric data were collected, as well as fasting blood
samples. Figure S1 represents the number of individuals assessed for participation in the
study. The final sample included 92 Saudi female students aged 18 to 25 and classified
into obese (BMI ≥ 30 kg/m2, n = 44) and non-obese (BMI = 18.50–24.99 kg/m2, n = 48).
The study protocol was approved by the Institutional Review Board Committee of King
Khalid University Hospital at King Saud University (IRB #E-19-3625). Clinical trial registra-
tion: URL: https://www.clinicaltrials.gov (accessed on 15 October 2022), unique identifier:
NCT05664321.

https://www.clinicaltrials.gov
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2.2. Anthropometric Measurements

Anthropometric measurements were collected by trained staff using standardized
methods. Measurements were recorded twice, and the average results were used for the
final analysis. Body weight was measured and recorded to the nearest 0.10 kg and height
to the nearest 0.50 cm using an international standard scale (Digital Pearson Scale, ADAM
Equipment Inc., Oxford, CT, USA). BMI was calculated by dividing the weight in kilograms
by the squared height in meters. BMI was classified into two groups: normal weight
(18.50–24.99 kg/m2) and obese (≥30 kg/m2), using the World Health Organization (WHO)
criteria [27].

The waist and hip circumferences were measured using a non-stretchable tape. The
waist circumference was measured at the narrowest point between the lowest rib and
the umbilicus, and hip circumference at the point of the great trochanter, with the two
measurements recorded to the nearest 0.50 cm. The waist–hip ratio (WHR) was calcu-
lated by dividing the mean waist circumference by the mean hip circumference [28] and
categorized as follows: (i) normal WHR (<0.83) and (ii) high WHR (≥0.83) [28]. Body
composition, including fat percentage (BF%) and muscle mass, was measured using a
bioelectrical impedance analysis method (770 BIA, Inbody, Seoul, South Korea) [29]. The
categories are as follows: (i) normal BF% (≤35%) and (ii) high BF% (>35%) [30].

2.3. Dietary Data

Dietary data were collected by trained dietitians during a structured interview. The
validated Saudi Food and Drug Authority Food Frequency Questionnaire (FFQ) was used
to assess the participants’ dietary intake [31]. The participants were asked to report their
frequency of intake of each food item during the past year. The questionnaire was provided
in the Arabic language and included 133 food items [31]. Food modules were used to help
the participants to determine portion sizes of meat and other foods. ‘Red meat’ referred
to beef, camel, goat, or lamb, while ‘white meat’ indicated poultry (chicken, duck, and
turkey) and fish [32]. ‘Total meat’ was the total of these two categories. Two 24-h recalls on
consecutive days were completed by 20% of the participants to assess the accuracy of the
FFQ. Nutrient intake was assessed by the FFQ, and the 24-h recalls correlated well, with
a correlation coefficient ranging between 0.50–0.60 for macronutrients and 0.40–0.70 for
micronutrients. ESHA Food Processor Software version 11.1 (ESHA Research, Salem, OR,
USA) was used for nutrition analysis.

2.4. Lipid Profile and Hs-CRP Test

Blood samples were collected after ≥10 h of fasting from the cubital vein into two 5-mL
tubes, an ethylenediaminetetraacetic acid tube for the whole blood sample and a gel tube
for the serum sample. Serum samples were transferred on the day of collection to the study
laboratory and stored at −80 ◦C to facilitate their availability for further analysis. Lipid
profiles were measured using a biochemical analyzer (Konelab, Espoo, Finland). Friede-
wald’s equation was used to calculate low-density lipoprotein cholesterol (LDL-C) [33].
Serum hs-CRP was measured using commercial enzyme-linked immunosorbent assay kits.

2.5. Stool Analysis

Each fecal sample was collected in a clean, dry screw-top container and stored directly at
−80 ◦C. All the samples were then transferred to the study laboratory and kept at −80 ◦C
for further analysis. Later, the DNA was extracted from 0.25 g frozen stool aliquots using
the QIAGEN PowerFecal DNA Kit (Catalogue: 12830-50). The purity of the isolated DNA
(260/280 ratio) and its concentration was measured using a NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). The DNA concentration was ≥1.60. DNA
libraries were prepared using the Nextera XT DNA Library Preparation Kit (Illumina) and
Nextera Index Kit (Illumina), with a total DNA input of 1 ng. Genomic DNA was fragmented
using a proportional amount of Illumina Nextera XT fragmentation enzyme. Combinatory
dual indices were added to each sample, followed by 12 cycles of PCR to construct the libraries.



Foods 2023, 12, 245 4 of 13

The DNA libraries were purified using AMpure magnetic beads (Beckman Coulter) and eluted
in QIAGEN EB buffer. The samples were sequenced on an Illumina HiSeq 4000, 2 × 150 bp.
DNA extractions were sent to CosmosID (Rockville, MD, USA) to identify the gut micro-
biota composition at the level of the main microbial phyla by identifying the total bacterial
DNA and the Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia, and
Fusobacteria DNA using the WGS metagenomic sequencing technique.

2.5.1. Bioinformatics Analysis Methods

Unassembled sequencing reads were directly analyzed using the CosmosID bioinfor-
matics platform (CosmosID Inc., Rockville, MD, USA), described elsewhere [34–36], for multi-
kingdom microbiome analysis, profiling of antibiotic resistance and virulence genes, and
quantification of the relative abundance of organisms. The system utilizes a high-performance
data-mining k-mer algorithm that rapidly disambiguates millions of short-sequence reads
into the discrete genomes engendering the particular sequences. The pipeline has two separa-
ble comparators; the first consists of a pre-computation phase for reference databases and
the second is a per-sample computation. The input for the pre-computation phase consists
of databases of reference genomes, virulence markers, and antimicrobial resistance markers
that are continuously curated by CosmosID scientists. The output of the pre-computational
phase is a phylogeny tree of microbes together with sets of variable length k-mer fingerprints
(biomarkers) uniquely associated with distinct branches and leaves of the tree.

The second per-sample computational phase searches the hundreds of millions of
short-sequence reads, or alternatively contigs from draft de novo assemblies, against the
fingerprint sets. This query enables the sensitive yet highly precise detection and taxonomic
classification of microbial NGS reads. The resulting statistics are analyzed to return the
fine-grain taxonomic and relative abundance estimates for the microbial NGS datasets.
To exclude false positive identifications, the results are filtered using a filtering threshold
based on internal statistical scores that are determined by analyzing a large number of
diverse metagenomes. The same approach is applied to enable the sensitive and accurate
detection of genetic markers for virulence and for resistance to antibiotics.

2.5.2. Alpha Diversity Boxplots (with Wilcoxon Rank-Sum)

Alpha diversity boxplots were calculated from the phylum, genus, species, and strain-
level abundance score matrices from the CosmosID-HUB analysis. Chao, Simpson, and
Shannon alpha diversity metrics were calculated in R using the R package vegan [37,38].
Wilcoxon Rank-Sum tests were performed between groups using the R package ggsig-
nif [39]. Boxplots with overlaid significance in p-value format were generated using the R
package ggpubr [40].

2.5.3. Beta Diversity PCoA (with PERMANOVA)

Beta diversity principal coordinate analyses were calculated from phylum, genus,
species, and strain-level matrices for bacteria from CosmosID-HUB. Bray–Curtis dissimilar-
ity was calculated in R using the vegan package with the function vegdist, and PCoA tables
were generated using ape’s function pcoa [41]. PERMANOVA tests for each distance matrix
were generated using vegan’s [38] function adonis2, and beta dispersion was calculated
and compared using the anova method for the betadisper function from vegan [38]. Plots
were visualized using the R package ggpubr [40].

2.6. Statistical Analysis

Quantitative variables were tested for normality prior to the analysis. The normality of
the variables was assessed visually using a histogram and Q-Q plot and/or by evaluating
skewness and kurtosis. The independent samples t-test was used for continuous variables
and outcomes. Nonparametric tests were used for variables that were not normally dis-
tributed and that skewed toward one side. To identify the impact of meat by type, we
divided the participants into distinct categories, i.e., high and low intake, using the median
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of each type of meat as the cut-off point. For the intake of white meat, the non-obese group
was considered to have high white meat (HWM, n = 32) if the intake was >34 g/1000 kcal
and low white meat (LWM, n = 16) if the intake was ≤34 g/1000 kcal. The obese group
was stratified into high (HWM, n = 28) if the intake was >25 g/1000 kcal and low (LWM,
n = 16) if the intake was ≤25 g/1000 kcal.

The non-obese group was also stratified according to red meat intake into high red
meat intake (HRM, n = 21) if intake was >12 g /1000 kcal and low red meat intake (LRM,
n = 27) if intake was ≤12 g/1000 kcal. The obese group was considered to have high red
meat intake (HRM, n = 14) if intake was >16 g/1000 kcal and low red meat intake (LRM,
n = 30) if the red meat intake was ≤16 g/1000 kcal.

A Pearson correlation coefficient was used to identify the correlations between meat
(total and by type) and gut flora. All non-normal variables were transformed prior to
parametric testing. A p-value of <0.05 and a 95% CI were used to report estimated statistical
significance. Furthermore, a Benjamini-Hochberg critical value for a false discovery rate
of 0.25 was computed for all correlations. The analysis was carried out using IBM SPSS
Statistics for Windows (version 24, IBM Corp., Armonk, NY, USA).

To identify the distribution of species abundances and similarities between groups,
the CosmosID application was used to examine the relationship between gut flora and
different levels and types of meat intake in the obese and non-obese groups, and by body
fat percentage and waist to hip ratio stratification. The Shannon test was used for alpha
diversity, which represents the distribution of species abundances in a given sample as
a number that depends on species evenness and richness, concentrating on community
variation within a single sample [42]. For beta diversity, Bray–Curtis was used to measure
the similarity or dissimilarity between samples [42].

3. Results
3.1. Characteristics of Participants

Blood biochemical data, including total cholesterol (TC), HDL-C, LDL-C, total choles-
terol/HDL ratio, triglyceride (TG), and hs-CRP, were significantly higher in the obese group
compared with the non-obese group (p < 0.05) (Table 1). Additionally, total red meat intake
(g/1000 kcal) was significantly higher in the obese group compared with the non-obese
group (p < 0.05) (Table 1).

Table 1. Characteristics of obese and non-obese groups, n = 92 1.

Characteristics Total
(n = 92)

Non-Obese
(BMI 18.50–24.99)

(n = 48)

Obese
(BMI ≥ 30)

(n = 44)
p-Value

Age (years) (mean ± SD) 21.10 ± 1.50 20.60 ± 1.10 21.60 ± 1.70 <0.001
BMI (kg/m2) 28.50 ± 8.00 21.70 ± 1.90 36.00 ± 4.70 <0.001
Waist to hip ratio (cm) 0.70 ± 0.10 0.70 ± 0.10 0.80 ± 0.10 0.01
Fat (kg) 42.50 ± 9.40 34.80 ± 5.50 51.10 ± 3.30 <0.001
Skeletal muscle mass (kg) 21.00 ± 3.50 18.60 ± 2.20 23.60 ± 2.60 <0.001
Total white meat (g/1000 kcal) 32 (19–41) 34 (26–41) 25 (16–40) 0.11
Total red meat (g/1000 kcal) 15 (9–19) 12 (4–16) 16 (13–21) <0.001
LWM (%) 35 33 36 0.01
HWM (%) 65 67 64
LRM (%) 62 56 68
HRM (%) 38 44 32
Biochemical Measurements
Total Cholesterol (mmol/L) 4.10 ± 1.50 3.60 ± 1.70 4.50 ± 1.00 0.01
HDL-Cholesterol (mmol/L) 1.00 ± 0.30 0.90 ± 0.40 1.00 ± 0.30 0.24
LDL-Cholesterol (mmol/L) 2.90 ± 1.30 2.60 ± 1.50 3.30 ± 1.00 0.01
Total cholesterol/HDL ratio 4.30 ± 1.70 3.90 ± 1.70 4.70 ± 1.70 0.05
Triglyceride (mmol/L) 0.70 (0.50–1.00) 0.50 (0.40–0.70) 1.00 (0.80–1.10) <0.001
High-sensitivity C-reactive Protein (ng/mL) 1473.90 (787.10–7635.60) 1031.20 (553–1514) 6385.40 (1235–12,988) <0.001

1 Data are presented as mean ± SD for normal variables, median (1st quartile–3rd quartile) for non-normal
variables, and N (%) for categorical variables. BMI: body mass index; HDL: high-density lipoprotein; HRM: high
red meat intake; HWM: high white meat intake; LDL: low-density lipoprotein; LRM: low red meat intake; LWM:
low white meat intake.
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3.2. Correlation between Gut Flora and Meat Intake

Among the total participants, there were positive correlations between Actinobacteria,
Bacteroides (unidentified species) (p ≤ 0.05), Flavonifractor plautii (p ≤ 0.0001), and total red
meat intake (Table 2). For total white meat intake, there were positive correlations between
Bacteroides (unidentified species) and Faecalibacterium Prausnitzii (p ≤ 0.05).

Table 2. Correlations between gut flora by type of meat intake among total participants 1.

Gut Flora
Total White Meat (g/1000 kcal) Total Red Meat (g/1000 kcal)

R p (i/m) Q R p (i/m) Q

Flavonifractor plautii −0.04 0.70 0.18 0.31 <0.0001 0.01
Bacteroides (unidentified species) 0.21 0.05 0.01 0.23 0.04 0.03
Actinobacteria −0.11 0.31 0.06 0.22 0.05 0.04
Faecalibacterium Prausnitzii 0.22 0.05 0.03 0.18 0.07 0.06
Bifidobacterium adolescentis −0.09 0.42 0.12 0.15 0.15 0.07
Fusobacteria 0.06 0.61 0.16 −0.11 0.32 0.09
Bifidobacterium longum −0.11 0.31 0.07 0.09 0.41 0.10
Proteobacteria −0.02 0.87 0.21 0.08 0.46 0.12
Clostridium Bolteae 0.08 0.45 0.15 0.08 0.47 0.13
Firmicutes −0.08 0.45 0.13 −0.07 0.49 0.15
Verrucomicrobia 0.01 0.90 0.24 −0.04 0.74 0.16
Akkermansia muciniphila 0.01 0.89 0.22 −0.03 0.75 0.18
F:B ratio −0.01 0.96 0.25 −0.02 0.83 0.19
Bacteroides uniformis −0.15 0.15 0.04 −0.02 0.85 0.21
Clostridium difficile 0.04 0.71 0.19 0.02 0.86 0.22
Bacteria (unidentified phylum) −0.1 0.36 0.09 0.01 0.94 0.24
Bacteroidetes 0.11 0.37 0.10 0.01 0.95 0.25

1 Data are presented as Pearson correlation coefficient adjusted for age. F:B: Firmicutes to Bacteroidetes;
(i/m) Q: Benjamini-Hochberg critical value for a false discovery rate of 0.25.

3.2.1. White Meat Intake and Gut Flora

In the non-obese group, there was a positive correlation between LWM intake, Acti-
nobacteria (p = 0.05), and Bifidobacterium longum (p = 0.02) (Table 3). There was also a positive
correlation between HWM intake and Bacteroidetes (p = 0.03), Flavonifractor plautii (p ≤ 0.001),
and Clostridium Bolteae (p ≤ 0.001), and an inverse correlation with Firmicutes (p = 0.04).

Table 3. Correlations between gut flora and white meat intake in obese and non-obese groups 1.

Gut Flora
Non-Obese Obese

LWM HWM LWM HWM

R p (i/m) Q R p (i/m) Q R p (i/m) Q R p (i/m) Q

Actinobacteria 0.42 0.05 0.03 −0.21 0.34 0.13 0.06 0.76 0.18 −0.22 0.45 0.12
Bifidobacterium longum 0.48 0.02 0.02 0.01 0.96 0.25 −0.04 0.84 0.22 −0.28 0.33 0.09
Bacteroidetes −0.23 0.29 0.11 0.45 0.03 0.05 −0.13 0.53 0.10 0.03 0.91 0.25
Bacteria (unidentified phylum) −0.09 0.69 0.23 −0.20 0.37 0.14 0.17 0.40 0.03 0.43 0.12 0.06
F:B ratio 0.16 0.46 0.20 −0.25 0.26 0.09 0.12 0.56 0.12 0.06 0.84 0.19
Clostridium Bolteae 0.25 0.26 0.09 0.60 <0.001 0.03 0.04 0.86 0.24 −0.06 0.85 0.21
Firmicutes 0.09 0.67 0.22 −0.43 0.04 0.06 0.12 0.57 0.15 0.05 0.87 0.24
Flavonifractor plautii 0.27 0.21 0.08 0.60 <0.001 0.02 0.02 0.90 0.25 −0.27 0.35 0.10
Clostridium difficile 0.23 0.29 0.13 0.03 0.90 0.23 −0.05 0.80 0.21 0.67 0.03 0.03
Bacteroides uniformis 0.18 0.41 0.19 0.15 0.49 0.20 −0.05 0.79 0.19 −0.43 0.12 0.07
Bacteroides (unidentified species) −0.37 0.09 0.05 0.12 0.58 0.22 0.21 0.29 0.01 0.85 <0.001 0.01
Faecalibacterium Prausnitzii 0.19 0.38 0.14 −0.15 0.49 0.17 −0.10 0.63 0.16 0.55 0.04 0.04
Bifidobacterium adolescentis 0.29 0.17 0.06 −0.23 0.28 0.11 0.12 0.56 0.13 −0.09 0.77 0.16
Proteobacteria 0.07 0.76 0.25 −0.33 0.13 0.08 0.16 0.43 0.07 −0.15 0.61 0.13
Fusobacteria − − − − 0.13 0.51 0.09 −0.05 0.86 0.22
Verrucomicrobia 0.18 0.41 0.16 −0.15 0.49 0.19 −0.17 0.40 0.06 0.08 0.78 0.18
Akkermansia muciniphila 0.18 0.41 0.17 −0.18 0.41 0.16 −0.17 0.40 0.04 0.09 0.77 0.15

1 Data are presented as Pearson correlation coefficients adjusted for age. F:B: Firmicutes to Bacteroidetes; HWM:
high white meat intake; LWM: low white meat intake; (i/m) Q: Benjamini-Hochberg critical value for a false
discovery rate of 0.25. High white meat intake is >25 g/1000 kcal for the obese group, low white meat intake is
≤25 g/1000 kcal for the obese group, high white meat intake is >34 g/1000 kcal for the non-obese group, and
low white meat intake is ≤34 g/1000 kcal for the non-obese group. The hyphens in cells indicate that gut flora is
not present in these categories or that the number of observations for this group is not high enough to report a
correlation coefficient.
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In the obese group, there was a positive correlation between HWM intake and Bac-
teroides (unidentified species) (p ≤ 0.001), Faecalibacterium Prausnitzii (p = 0.04), and Clostridium
difficile (p = 0.03) (Table 3).

3.2.2. Red Meat Intake and Gut Flora

In the non-obese group, HRM intake correlated positively with Flavonifractor plautii
(p ≤ 0.001) and inversely with Akkermansia muciniphila (p = 0.05) (Table 4).

Table 4. Correlations between gut flora and red meat intake in obese and non-obese groups 1.

Gut Flora
Non-Obese Obese

LRM HRM LRM HRM

R p (i/m) Q R p (i/m) Q R p (i/m) Q R p (i/m) Q

Actinobacteria −0.16 0.48 0.05 0.01 0.95 0.23 0.27 0.14 0.04 0.55 0.10 0.02
Bifidobacterium longum −0.13 0.57 0.06 −0.16 0.44 0.13 0.30 0.10 0.01 0.46 0.18 0.04
Bacteroidetes 0.04 0.85 0.19 0.05 0.83 0.19 0.06 0.74 0.19 −0.35 0.32 0.05
Bacteria (unidentified phylum) 0.00 0.99 0.23 0.21 0.32 0.08 0.10 0.59 0.18 0.34 0.33 0.07
F:B ratio −0.02 0.94 0.22 −0.01 0.98 0.25 −0.15 0.41 0.15 0.31 0.38 0.09
Clostridium Bolteae −0.04 0.87 0.20 0.21 0.32 0.06 −0.14 0.45 0.16 −0.29 0.41 0.11
Firmicutes −0.07 0.77 0.17 −0.05 0.82 0.17 −0.16 0.38 0.12 0.20 0.59 0.13
Flavonifractor plautii −0.08 0.73 0.16 0.74 0.00 0.02 −0.06 0.75 0.21 −0.17 0.64 0.14
Clostridium difficile −0.08 0.72 0.14 −0.19 0.37 0.09 0.01 0.95 0.25 −0.17 0.64 0.16
Bacteroides uniformis 0.01 0.99 0.25 −0.19 0.38 0.11 −0.04 0.82 0.22 0.14 0.69 0.18
Bacteroides (unidentified species) −0.20 0.38 0.03 0.07 0.74 0.16 −0.04 0.84 0.24 −0.13 0.72 0.20
Faecalibacterium Prausnitzii −0.09 0.69 0.13 −0.15 0.49 0.14 0.23 0.20 0.07 0.12 0.75 0.21
Bifidobacterium adolescentis −0.13 0.57 0.08 0.03 0.90 0.22 0.26 0.16 0.06 0.07 0.85 0.23
Proteobacteria 0.28 0.20 0.02 −0.04 0.84 0.20 0.16 0.40 0.13 0.02 0.96 0.25
Fusobacteria - - - - −0.30 0.10 0.03 - - -
Verrucomicrobia 0.09 0.68 0.11 −0.37 0.08 0.05 −0.18 0.34 0.09 - - -
Akkermansia muciniphila 0.09 0.68 0.09 −0.40 0.05 0.03 −0.17 0.37 0.10 - - -

1 Data are presented as Pearson correlation coefficients adjusted for age. F:B: Firmicutes to Bacteroidetes; HRM:
high red meat intake; (i/m) Q: Benjamini-Hochberg critical value for a false discovery rate of 0.25; LRM: low red
meat intake. High red meat intake is > 11 g/1000 kcal for the obese group, low red meat intake is ≤ 11 g/1000 kcal
for the obese group, high red meat intake is > 16 g/1000 kcal for the non-obese group, and low red meat intake
is ≤ 16 g/1000 kcal for the non-obese group. The hyphens in cells indicate that gut flora is not present in these
categories or that the number of observations for this group is not high enough to report a correlation coefficient.

In the obese group, there were no significant correlations between HRM intake and
gut flora (p > 0.05) (Table 4).

3.2.3. Correlation between Gut Flora and Hs-CRP and Lipid Profile

In the total sample, hs-CRP was inversely correlated with Bifidobacterium adolescentis
(p = 0.04) (Table S1). Lipid profile, including TC, HDL-C, LDL-C, TC/HDL ratio, and TG
did not show significant correlations with gut bacteria.

3.2.4. Meat Intake and Gut Flora (Alpha and Beta Diversity)

Gut flora diversity results showed no significant differences in alpha diversity (p = 0.09)
between total meat intake in the obese and non-obese groups (Figure S1). However, there
was a significant difference in beta diversity (p = 0.05) between total meat intake in the obese
and non-obese groups (Figure 1). Moreover, there were no significant differences in Alpha
diversity (p > 0.05) between high and low white meat intake in the obese and non-obese
groups (Figure S2). There were no significant differences in Alpha diversity (p > 0.05)
between high and low red meat intake in the obese and non-obese groups (Figure S3).
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4. Discussion
4.1. Main Findings

In this study, we found significant correlations between types of meat intake and
certain gut bacteria among the total participants, independent of adiposity. We also found
significant correlations between types of meat intake and specific gut bacteria which
differed among obese and non-obese groups. There was a significant difference in beta
diversity between total meat intake in the obese and non-obese groups, but not in alpha
diversity. Further, we found that the hs-CRP level correlated negatively with Bifidobacterium
adolescentis. No significant relationship was observed between lipid profile and gut flora.

4.2. Comparison with Previous Studies

Our findings show that Actinobacteria, Bacteroides (unidentified species), and
Flavonifractor plautii correlated positively with total red meat intake, while both Bac-
teroides (unidentified species) and Faecalibacterium Prausnitzii correlated positively with
total white meat intake among the total participants, indicating that these associations are
independent of adiposity.

A previous cross-sectional study that included 98 healthy volunteers aged between
2 and 50 years showed that Bacteroides correlated directly with animal protein, implying
that meat consumption is characterized by this enterotype. Furthermore, Bacteroidetes and
Actinobacteria phyla were positively associated with fat intake, whereas Firmicutes and
Proteobacteria showed inverse associations [20].

To get a clearer understanding of the relation between gut flora and different types
of meat relative to obesity, we stratified the participants by both adiposity level and type
of meat. In the non-obese group, Bifidobacterium longum was positively correlated with
LWM. These findings are in agreement with a study by Reyeset et al., which reported that
an abundance of Bifidobacterium longum was positively correlated with unsaturated fat
intake, and that it was more abundant in the lean group than in the overweight and obese
groups [43]. We also found that in the non-obese group, Flavonifractor plautii was positively
correlated with both HWM and HRM intakes. In contrast, a previous RCT that determined
the influence of fried meat intake on gut microbiota showed that fried meat intake reduced
microbial richness and Flavonifractor abundance [44]. However, the cooking method, such
as frying or grilling, may itself have influenced the level of this bacteria [45,46]. We also
observed that for the non-obese group there was an inverse correlation between HRM
intake and Akkermansia muciniphila. A previous animal study reported differences in
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the responses of Akkermansia muciniphila to the intake of two different types of protein
(chicken protein and soy protein) [47], with the chicken protein-based diet maintaining
the Akkermansia muciniphila level in the gut and the soy protein-based diet decreasing the
abundance of this bacteria [47]. Nevertheless, several human and animal studies have
reported that many types of food and medications may affect Akkermansia muciniphila [48].
Thus, more studies are needed to identify the mechanism behind the effect of red meat on
Akkermansia muciniphila while considering other factors that might influence this bacterium.
Furthermore, in the non-obese group, there was a positive correlation between LWM intake
and Actinobacteria, in contrast to an animal study in which rats fed a high amount of chicken
protein had a greater abundance of Actinobacteria than other protein groups [49].

In the obese group, we found that HWM intake was positively correlated with Clostrid-
ioides difficile, a finding consistent with a study by Heise et al. (2021) in which 364 different
fresh poultry products were screened and 15.80% of samples were shown to have positive
levels of Clostridioides difficile [50]. Further, we observed that in the obese group HWM intake
was directly correlated with Faecalibacterium prausnitzii. However, a previous prospective
observational study showed that following a ketogenic diet that included protein from
animal sources such as meat and poultry for three months did not alter Faecalibacterium
prausnitzii levels [51]. Faecalibacterium prausnitzii is one of the main butyrate producers in
the intestine and it plays a crucial role in gut physiology and host wellbeing [52]. It is the
main energy source for colonocytes and confers protective properties against colorectal
cancer and inflammatory bowel diseases. However, Faecalibacterium prausnitzii levels have
depleted considerably over the past few years [52]. Further investigations into which gut
factors modulate its presence are warranted.

From a gut diversity perspective, our study showed that significant differences in gut
flora diversity were found only in beta diversity between varying amounts and types of
meats. Alpha and beta diversity were measured to observe the richness and variability of
gut microbiota composition, respectively [42]. The results of the current study are consistent
with a previous study by David et al. (2014), which revealed that no significant differences
in alpha diversity were detected between plant- or animal-based diets. However, there
was a significant difference in beta diversity that was specific to animal-based diets [17].
Nevertheless, several other factors may influence gut microbes more than diet effects [53].
For example, two large-scale observational population studies recognized 69 and 126 factors
related to inter-individual and health traits associated with the gut microbiota [53,54].
Obesity was determined to be one of the important influential factors that affect gut
microbiota [55], and low gut microbiota diversity and richness were correlated with an
increased risk of obesity [56].

Regarding hs-CRP and gut flora, our results showed a significant inverse correlation
between the hs-CRP level and Bifidobacterium adolescentis. A study by Rajkumar et al. (2014)
showed that participants with a high hs-CPR level (>3 mg/L) had significantly lower bifi-
dobacteria and lactobacilli compared with those who had a low hs-CRP level (<3 mg/L) [57].
Moreover, a systematic review of 14 observational studies that investigated the association
between gut microbiota and hs-CPR level showed that inflammatory markers such as hs-
CRP and IL-6 were inversely correlated with Bifidobacterium, Faecalibacterium, Ruminococcus,
and Prevotella [58]. The inverse correlation between the hs-CRP level and Bifidobacterium
adolescentis may be explained by the association of some Bifidobacterium taxa with reduced
systemic inflammation [59,60]. Further, our study showed no significant correlation be-
tween lipid profile and gut flora in contrast with other studies that showed significant
correlations between different gut flora and lipid profiles [61,62], which may be because
specific operational taxonomic units reported to be associated with lipid profiles did not
exist in the participants in our study. Moreover, other factors may influence the lipid profile
besides the gut flora, such as age, sex, and genetics [61].

The main limitation of this study is the generalizability of these results, as the study
population included only females with a specific age range. Moreover, this study is based on
observations, and therefore causality is not possible. Furthermore, even with the extensive
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measures used in the data collection process, there was still a possibility of recall bias,
instrument error, and confirmation bias. One of the study’s strengths is its use of the WGS
technique, the gold standard method for identifying the gut flora composition, showing the
highest sensitivity compared with other techniques [63]. Moreover, the design of the study
allowed us to identify the differences in the intake of various amounts and types of meat
in relation to gut flora. Additionally, to our knowledge, our work is the first to examine
associations between types of meat intake, gut flora, lipid profile, and hs-CRP in females
in the Middle Eastern region. Furthermore, precautions such as repeated measurements,
trained staff, and interview-based multi-pass dietary assessment methods were used to
increase the accuracy and precision of the data collection process.

5. Conclusions

In conclusion, our findings suggest that certain bacteria are correlated with meat intake
(by type of meat), independent of adiposity. We also found significant correlations between
types of meat intake and specific gut bacteria which differed among obese and non-obese
groups. Further investigations are needed to explore the correlations we reported, which
are not explained in the literature, between meat intake and different gut bacteria, includ-
ing Flavonifractorplautii, Actinobacteria, Bifidobacteriumlongum, Clostridiumbolteae, Firmicutes,
Faecalibacterium prausnitzii, Clostridioides difficile, Akkermansia muciniphila, and Bacteroides
with unidentified species. Moreover, the relationship between gut flora and meat intake
can differ in beta diversity between obese and non-obese groups, but not in alpha diversity.
Future studies with a larger number of participants of different ages, from both genders,
and from various regions are recommended.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12020245/s1, Figure S1: Total meat intake across obese and
non-obese groups (alpha diversity-Shanon); Figure S2: High and low white meat intake across cases
and controls (Alpha diversity- Shannon); Figure S3: High and low red meat intake across cases and
controls (Alpha diversity- Shannon). Table S1: Correlation between gut flora and lipid profile.
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