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Abstract: Traditional fermented milk from the western Sichuan plateau of China has a unique flavor
and rich microbial diversity. This study explored the quality formation mechanism in fermented milk
inoculated with Lactobacillus brevis NZ4 and Kluyveromyces marxianus SY11 (MFM), the dominant
microorganisms isolated from traditional dairy products in western nan. The results indicated that
MFM displayed better overall quality than the milk fermented with L. brevis NZ4 (LFM) and K.
marxianus SY11 (KFM), respectively. MFM exhibited good sensory quality, more organic acid types,
more free amino acids and esters, and moderate acidity and ethanol concentrations. Non-targeted
metabolomics showed a total of 885 metabolites annotated in the samples, representing 204 differential
metabolites between MFM and LFM and 163 between MFM and KFM. MFM displayed higher levels
of N-acetyl-L-glutamic acid, cysteinyl serine, glaucarubin, and other substances. The differential
metabolites were mainly enriched in pathways such as glycerophospholipid metabolism, arginine
biosynthesis, and beta-alanine metabolism. This study speculated that L. brevis affected K. marxianus
growth via its metabolites, while the mixed fermentation of these strains significantly changed
the metabolism pathway of flavor-related substances, especially glycerophospholipid metabolism.
Furthermore, mixed fermentation modified the flavor and quality of fermented milk by affecting cell
growth and metabolic pathways.

Keywords: Lactobacillus brevis; Kluyveromyces marxianus; fermented milk; untargeted metabolomics;
physicochemical analysis; mechanism; quality

1. Introduction

Western Sichuan presents unique microbial resources due to its specific geographical
and climatic conditions. Naturally fermented yak yogurt contains abundant lactic acid
bacteria (LAB) and yeasts, contributing a unique flavor and texture to fermented dairy
products on the western Sichuan plateau of China. Screening and utilizing the dominant
strains can help develop fermented dairy products with regional characteristics and provide
nutritional enrichment.

Fermented dairy products are popular with consumers due to their rich nutritional
value and unique flavor. Commercial fermented milk is mainly produced using LAB
as a starter, while traditional products like milk dregs and kefir primarily use yeasts in
addition to LAB, such as Kluyveromyces marxianus and Saccharomyces cerevisiae [1–3]. Ni [4]
studied the yeast diversity in traditionally fermented products in Xinjiang and Qinghai.
The results showed that the yeast species and quantity varied in different regions, with
K. unisporus (49.43%) and K. marxianus (26.44%) dominating in Xinjiang, and P. fermentans
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(41.89%), S. cerevisiae (27.02%), and K. marxianus (24.32%) being the most abundant in
Qinghai. K. marxianus is widely present in traditional fermented dairy products. Screening
and applying these yeasts as starters or co-starters can help develop new dairy products
with local characteristics.

In milk, lactose represents the main carbohydrate. When LAB and yeast are simultane-
ously inoculated into fermented milk, they can utilize lactose metabolites in complementary
ways. Therefore, mixed fermentation is widely used in dairy products [5,6]. The interaction
between LAB and yeast during the fermentation process is extremely complex and includes
the complementation of their metabolites, influence on cell growth, and impact on the
population sensing phenomenon [7–10]. The complementarity between LAB and yeast
in metabolic products is the most common. Arakawa [11] found that LAB uses lactose to
produce galactose, which is utilized by yeast to produce pyruvate, while LAB and yeast
use pyruvate to form lactic acid.

Sun [12] used metabolomics to compare the metabolite changes during single and
mixed fermentation with L. casei M2-L2 and S. cerevisiae M4-Y2, revealing that mixed
fermentation produced more long-chain fatty acids. Higher methionine, phenylalanine,
tyrosine, and arginine levels were found in the mixed fermentation system, confirming that
amino acids might promote LAB proliferation.

Therefore, this study uses quality analysis and metabolomics technology to examine
small- and medium-sized molecular metabolite production during LAB and yeast fermen-
tation while analyzing the metabolic pathways involved in the fermentation process using
the bioinformatics database [13] and assessing the mechanism behind flavor substance
formation. This may provide a basis for accurately regulating the flavor of LAB- and
yeast-fermented milk.

2. Materials and Methods
2.1. Materials and Equipment

L. brevis NZ4 (OQ660312) and K. marxianus SY11 (MZ144218) were screened from
naturally fermented dairy products in western Sichuan, China. Milk was purchased from
local pasture, while the UHPLC-Q Exactive HF-X was obtained from Waltham, MA, USA.
The pure methanol, acetonitrile, formic acid, and propanol were supplied by Fisher from
Waltham, MA, USA.

2.2. Sample Preparation
2.2.1. Preparation of the Strains

The activated L. brevis NZ4 and K. marxianus SY11 strains were inoculated into the milk
and fermented at 36 ◦C and 28 ◦C, respectively, until set; after which, they were refrigerated
at 4 ◦C as starters.

2.2.2. Preparation of the Fermented Milk

The sterilized milk was inoculated with the starters at a 5% ratio and fermented at
35 ◦C until set. The fermented milks inoculated with L. brevis NZ4, K. marxianus SY11, and
L. brevis NZ4 + K. marxianus SY11 (1:1) were labeled LFM, KFM, and MFM, respectively.
The samples were refrigerated at 4 ◦C for subsequent examination.

2.3. Sensory Evaluation, Physical and Chemical Indicators, and Viable Counts

Ten panelists were selected and trained to evaluate the tissue status, odor, and taste
of the fermented milk. The acidity and ethanol content were determined according to
the GB 5009.239-2016 standard of China and a method described by Wang [14], using
phenolphthalein as the indicator, titration with 0.1 N NaOH, and calculation. The organic
acids content was obtained via HPLC according to the GB 5009.239-2016 standard of China,
while amino acids were determined using an amino acid analyzer, reference GB 5009.14-
2016. The live LAB was counted according to the GB 4789.35-2016 standard of China, using
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the dilution coating plate method, and the same method applied to the counting of yeasts,
but referenced the GB 4789.15-2016 standard of China.

2.4. UHPLC-Q Exactive HF-X Data Acquisition
2.4.1. Sample Pretreatment and Application

Here, 200 mg of the fermented milk and grinding beads was placed in a centrifuge
tube; after which, 400 µL of an extraction solution (methanol: water = 4:1 (v:v)) containing
0.02 mg/mL of internal standard (L-2-chlorophenylalanin) was added for metabolite
extraction. The extract was frozen and ground for 6 min (−10 ◦C, 50 Hz), followed by
low-temperature ultrasound extraction for 30 min (5 ◦C, 40 kHz). The sample was allowed
to stand at −20 ◦C for 30 min and centrifuged for 15 min (4 ◦C, 13,000 r/min); after which,
the supernatant was collected for analysis. The sample metabolites were mixed at equal
volumes to prepare a quality control sample (QC).

2.4.2. Liquid Chromatography Conditions

A UHPLC-Q Exactive HF-X system with an HSS T3 chromatographic column
(100 mm × 2.1 mm i.d., 1.8 µm) was used to separate a 2 µL sample, which was subjected
to mass spectrometric detection. Mobile phase A consisted of 95% water +5% acetonitrile
(containing 0.1% formic acid), while mobile phase B comprised 47.5% acetonitrile +47.5%
isopropanol +5% water (containing 0.1% formic acid). These procedures were performed
using methods described by Meng [15].

2.4.3. Mass Spectrometric Conditions

The mass spectrometric data were collected using a Thermo UHPLC-Q Exactive HF-X
Mass Spectrometer equipped with an electrospray ionization (ESI) source operating in either
positive or negative ion mode. The optimal conditions included a heating temperature of
425 ◦C, a capillary temperature of 325 ◦C, a sheath gas flow rate of 50 arb, an aux gas flow
rate of 13 arb, an ion-spray voltage floating (ISVF) of −3500 V in negative mode and 3500 V
in positive mode, and a normalized collision energy of 20–40–60 V rolling for MS/MS. The
full MS resolution was 60,000, while that of MS/MS was 7500. The data were acquired
in Data-Dependent Acquisition (DDA) mode, while detection occurred in a 70–1050 m/z
mass range. These procedures were performed using methods described by Fang [16].

2.4.4. Data Processing and Metabolite Annotation

The raw LC–MS data were imported into Progenesis QI metabolomics processing
software (Version 2.0, Waters Corporation, Milford, CT, USA) for baseline filtering, peak
recognition, integration, retention time correction, and peak alignment. The mass spec-
trometric information was matched with the HMDB and Metlin databases to obtain the
metabolite data. After searching the database, the data matrix was filled with missing
values after removing them using an 80% rule. The response intensity of the sample mass
spectrum peak was subjected to sum normalization to obtain the data matrix. The variables
with a relative standard deviation (RSD) exceeding 30% in the QC samples were deleted,
and the data matrix was obtained via log10 logarithmization for subsequent analysis.

The preprocessed matrix file was subjected to differential assessment using R software
package ropls (Version 1.6.2) for principal component analysis (PCA) and orthogonal partial
least squares discriminant analysis (OPLS-DA). Differential metabolite selection was based
on the variable importance in projection (VIP) value obtained via OPLS-DA and the p-value
of the Student’s t-test. VIP > 1 and p < 0.05 values indicated differential metabolites, which
were annotated using the KEGG database to determine the related pathways. Python
(Version 3.10) software package scipy.stats was used for pathway enrichment analysis, and
Fisher’s exact test was employed to determine the most relevant biological pathways for
experimental processing.
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3. Results
3.1. The Sensory Description, Physicochemical Indicators, and Viable Counts of the
Fermented Milk

The sensory description, acidity, ethanol content, and viable LAB and yeast count of the
fermented milk are shown in Table 1. The acidity values of all the fermented milk samples
were between 70 and 80 ◦T, which was within the acceptable range for consumers [17].
The acidity of KFM reached 72.34 ◦T without the participation of LAB, indicating that
K. marxianus SY11 displayed a strong acid-producing ability. The low alcohol level in
the fermented milk, ranging between 1 and 4 g/L, indicated that the yeast provided a
mellow flavor to the fermentation system without causing health or other issues due to
high alcohol content. The MFM exhibited a LAB level of 10.35 lg CFU/mL and a yeast
content of 9.86 lg CFU/mL, both at a higher order of magnitude, showing that the two
microorganisms exhibited excellent proliferation in the fermentation system. The sensory
description results indicated that KFM exhibited an uneven, thin texture with bubbles,
whey precipitation, an obvious alcoholic flavor, and a bland, sour taste. Therefore, K.
marxianus SY11 alone was unsuitable for milk fermentation. LFM displayed a smooth,
thick texture with a distinct sour aroma, showing that L. brevis NZ4 was appropriate as
a common yogurt starter. MFM showed a smooth, thick texture with micro-bubbles and
the moderate alcohol, ester, and sour aroma characteristic of fermented milk in western
Sichuan, China. Therefore, combining K. marxianus SY11 and L. brevis NZ4 as a starter
culture is suitable for producing local, uniquely flavored dairy products.

Table 1. Sensory description, physicochemical indicators, and microbial count of the fermented milk.

Item MFM LFM KFM

Acidity (◦T) 76.93 ± 0.48 a 78.25 ± 0.59 a 72.34 ± 0.83 b

Ethanol content (g/L) 3.22 ± 0.03 b 1.56 ± 0.12 c 3.99 ± 0.09 a

LAB (lg CFU/mL) 10.35 ± 0.27 a 10.6 ± 0.13 a —
Yeast (lg CFU/mL) 9.86 ± 0.33 a — 9.09 ± 0.22 b

Sensory description
Appearance Thick, no whey Thick, a small amount

of whey
Thin, a small amount

of whey
Texture Micro-bubble, smooth No bubble, smooth Bubble, unsmooth

Flavor Moderate alcohol, ester,
and sour aroma Obvious sour aroma Obvious alcohol flavor and

mild acid aroma

Note: MFM: milk fermented with L. brevis NZ4 + K. marxianus SY11 (1:1); LFM: milk fermented with L. brevis NZ4;
KFM: milk fermented with K. marxianus SY11; and a, b, and c represent the significant differences in the same
column, p < 0.05.

The volatile flavor compounds in the three kinds of fermented milk samples detected
via GC–MS are shown in Table 2. A total of thirty-one volatile flavor compounds were
identified, including eight acids, five alcohols, nine esters, three alkanes, and six other
volatile components. The order of the volatile substance types and quantities in the
fermented milk was MFM (16 types) > LMF (14 types) = KFM (14 types). Acids represented
the main volatile components in LMF, while KFM contained mostly acids and alcohols,
and MFM consisted primarily of acids and esters. These results indicated a higher aroma
compound abundance when combining L. brevis and K. marxianus for milk fermentation,
while the acids reacted with the alcohol to increase the ester content.
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Table 2. Relative content of volatile flavor compounds in the fermented milk.

Volatile Substances
Relative Content (%)

MFM LFM KFM

Acids

Acetic acid 25.16 ± 2.65 17.72 ± 3.49 28.28 ± 1.02
Butanoic acid — 6.51 ± 0.72 —
Pentanoic acid 6.16 ± 0.90 9.10 ± 0.74 12.27 ± 0.68

n-Decanoic acid 13.72 ± 0.51 11.76 ± 1.49 15.19 ± 2.48
Octanoic acid 12.21 ± 1.24 11.60 ± 1.40 —

Propanedioic acid — — 6.68 ± 0.52
Hexanoic acid, 4-methyl- — 5.29 ± 0.28 —

6-Hydroxy-2-naphthoic acid 2.57 ± 0.23 — —

Alcohols

Ethanol 10.33 ± 2.81 — —
3-Nonanol, 3-methyl- 7.27 ± 0.76 — —
3-Pentanol, 3-methyl- — 4.02 ± 0.20 —
1-Propanol, 3-chloro- — — 0.28 ± 0.04

4-Methoxy-4-methyl-2-pentanol — — 5.46 ± 0.27

Esters

2-Chloroethyl benzoate 13.18 ± 2.43 10.41 ± 1.13 16.30 ± 2.49
Butanoic acid, 3-methyl- — 2.54 ± 1.76 —

Oxalic acid, cyclobutyl hexyl ester — 2.20 ± 0.46 —
1-Propen-2-ol, formate 1.61 ± 0.04 — —

Benzeneacetic acid, α-oxo-, methyl ester 5.67 ± 0.57 — —
Ethyl hydrogen oxalate 8.40 ± 0.48 — —

Ethyl oxamate 10.27 ± 0.57 — —
Ethanol, 2-methoxy-, acetate — — 3.64 ± 0.57
2-Propenoic acid, butyl ester — — 4.07 ± 0.45

Taxanes
Pentane, 2,3,3,4-tetramethyl- — 4.59 ± 0.57 —

Cyclobutane, methoxy- 0.70 ± 0.27 — —
3-Pentanamine — — 0.79 ± 0.09

Qthers

Acetoin 6.98 ± 2.53 22.77 ± 2.41 13.88 ± 2.42
Acetone 2.32 ± 0.89 2.14 ± 0.88 3.74 ± 0.24

2-Propanamine, N-methyl- — 0.25 ± 0.18 —
Toluene 0.77 ± 0.17 — —

Formic acid hydrazide — — 2.50 ± 0.07
Acetamide, N-methyl- — — 1.72 ± 0.13

As shown in Table 3, seven common organic acids were detected in the three kinds
of fermented milk. The lactic acid content was highest in MFM, followed by acetic acid,
citric acid, succinic acid, oxalic acid, malic acid, and tartaric acid. MFM also displayed the
highest organic acid levels. The malic acid content in KFM was 0.28 mg/100 g, significantly
lower than the other two fermented milk samples. Some studies have shown that yeast
degrades malic acid [18]. In addition, malic acid is an intermediate product of the TCA
cycle. Other research has revealed that malic acid is completely metabolized during mixed
L. brevis and K. marxianus fermentation, while acetic acid is produced in large quantities [19],
which is consistent with the malic and acetic acids change trend in this study.

Table 3. Organic acid content of the fermented milk.

Type (mg/100 g) MFM LFM KFM

Oxalic acid 17.58 ± 0.18 c 21.44 ± 0.14 b 23.04 ± 0.14 a

Tartaric acid 1.89 ± 0.01 c 2.02 ± 0.004 b 2.52 ± 0.01 a

Malic acid 6.57 ± 0.03 b 8.51 ± 0.18 a 0.28 ± 0.02 c

Lactic acid 224.29 ± 1.67 a 200.05 ± 1.50 b 190.83 ± 0.57 c

Acetic acid 88.50 ± 0.73 b 91.74 ± 0.52 a 92.93 ± 1.53 a

Citric acid 55.88 ± 0.37 b 60.92 ± 0.97 a 59.71 ± 0.41 a

Succinic acid 27.76 ± 1.21 a 25.26 ± 1.10 a 26.82 ± 2.20 a

Total 422.46 ± 3.33 a 409.94 ± 2.08 b 396.13 ± 1.34 c

Note: a, b, and c represent the significant differences in the same column, p < 0.05.
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The amino acid determination results are shown in Table 4. A total of 17 free amino
acids were detected in the three types of fermented milk. The total free amino acid content
was significantly higher in MFM and KFM than in LFM and included seven essential
amino acids: threonine, valine, methionine, isoleucine, leucine, phenylalanine, and lysine.
These amino acids must be obtained from food due to limited synthesis in the human
body. Of these, the lysine levels were the highest, reaching 30.15 mg/100 mL in MFM.
Lysine is generally higher in animals than cereal proteins and is vital for promoting human
growth and development and regulating metabolic balance [20]. Although arginine can be
synthesized in the human body, the synthesis rate is slow. Therefore, it is also known as a
semi-essential amino acid [21]. The arginine content in the three fermented milk samples
ranged from 0.38 mg/100 mL to 0.51 mg/100 mL.

Table 4. Free amino acid content of the fermented milk.

Type
Free Amino Acid Content (mg/100 mL)

MFM LFM KFM

Aspartic acid 10.81 ± 0.16 a 7.13 ± 0.10 c 9.89 ± 0.29 b

Threonine 2.49 ± 0.12 c 4.10 ± 0.15 a 3.14 ± 0.23 b

Serine 1.37 ± 0.10 a 0.70 ± 0.23 b 1.08 ± 0.09 ab

Glutamic acid 40.22 ± 0.28 a 35.67 ± 0.50 b 38.95 ± 0.87 a

Glycine 6.63 ± 0.04 b 7.03 ± 0.05 a 6.79 ± 0.17 ab

Cysteine 0.61 ± 0.26 a 0.28 ± 0.01 a 0.91 ± 0.37 a

Alanine 0.30 ± 0.03 b 0.64 ± 0.18 ab 0.84 ± 0.15 a

Valine 0.55 ± 0.21 b 0.45 ± 0.01 b 0.90 ± 0.05 a

Methionine 2.45 ± 0.71 a 2.15 ± 1.04 a 3.90 ± 1.10 a

Isoleucine 4.03 ± 0.15 b 4.08 ± 0.20 b 5.09 ± 0.03 a

Leucine 6.11 ± 0.07 b 4.36 ± 0.06 c 6.45 ± 0.08 a

Tyrosine 3.10 ± 1.18 a 3.58 ± 0.21 a 3.90 ± 0.82 a

Phenylalanine 2.69 ± 0.05 ab 2.27 ± 0.05 b 2.98 ± 0.28 a

Lysine 30.15 ± 1.22 a 24.08 ± 0.30 b 28.72 ± 0.61 a

Histidine 2.21 ± 0.15 a 2.15 ± 0.49 a 2.41 ± 0.01 a

Arginine 0.38 ± 0.04 a 0.45 ± 0.17 a 0.51 ± 0.13 a

Proline 9.10 ± 0.23 a 8.89 ± 0.12 a 9.65 ± 0.47 a

Total 123.19 ± 0.62 a 108.00 ± 1.82 b 126.12 ± 3.82 a

Note: a, b, and c represent the significant differences in the same column, p < 0.05.

3.2. Metabolite Profiles and Data Analysis
3.2.1. Data Quality Control Analysis

The PCA is shown in Figure 1. The tight QC sample clustering on the PCA map
indicated the stability and high repeatability of the program. The R2X values of the PCA
model in positive and negative ion modes were 0.537 and 0.555, respectively, indicating
high fitting accuracy. The three experimental samples showed significant clustering in the
PCA plots in both positive and negative ion modes, indicating excellent repeatability and
minimal differences in the sample group.
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3.2.2. Overview of the Metabolites

Metabolomics detected a total of 9384 peaks in both positive and negative ion modes.
Of these, 901 metabolites were annotated via the KEGG and HMDB databases. After remov-
ing data with missing values > 20% and QC validation RSD values < 30%, 885 metabolites
were ultimately annotated, including 627 for positive ions and 258 for negative ions. KEGG
annotated a total of 295 metabolic products, mainly including phospholipids (20 types),
fatty acids (14 types), carboxylic acids (12 types), and glycerol phosphate choline (12 types).
HMDB annotated a total of 667 metabolites, primarily including lipids (282 species), or-
ganic acids (136 species), oxygen-containing organic compounds, such as monosaccharides
(70 species), and organic heterocyclic compounds, such as nucleic acids, vitamins, antibi-
otics (69 species), and benzoids (36 species).

3.3. Differential Metabolite Analysis
3.3.1. Overview of the Differences between the Samples

PLS-DA was used to analyze the differences between the samples, as shown in
Figure 2A. Positive ion mode revealed significant differences between MFM, LFM, and
KFM. However, the distance between LFM and KFM was relatively small, possibly due to
the substantial differences between MFM and the other two types. As shown in Figure 2C,
considerable differences were also evident between MFM and LFM or KFM in negative ion
mode, while an intersection was apparent between LFM and KFM. This may be because
the differential metabolites produced by KFM and LFM are mostly volatile substances and
cannot be fully reflected by HPLC–MS. A permutation test confirmed the PLS-DA model
stability (Figure 3B,D). In positive ion mode, PLS-DA produced a cumulative R2X value of
0.7177, a cumulative R2Y value of 0.991, and a cumulative Q2 value of 0.4027. Negative
ion mode produced a cumulative R2X value of 0.754, a cumulative R2Y value of 0.988, and
a cumulative Q2 value of 0.3492, indicating that the PLS-DA models displayed excellent
fitting and high predictive ability.
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Figure 3. Heatmap of the 50 flavor-related differential metabolites identified in fermented milk samples.
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3.3.2. Differential Metabolite and Pathway Screening

OPLS-DA was used to obtain the VIP and Student’s test p-value. VIP values > 1 and
p < 0.05 indicated differential metabolites, of which 204 were evident between MFM and
LFM, 163 between MFM and KFM, and 151 between LFM and KFM. The metabolites related
to the fermented milk flavor (including organic acids, amino acids, sugars, and fatty acids)
were screened. The 50 most abundant metabolites were selected to prepare the cluster
diagram, as shown in Figure 3. The results showed that the flavor-related metabolites of
MFM and KFM were similar, while significant differences were evident between those of
LFM and KFM.

The relevant metabolites were searched in the KEGG database and enriched in the
KEGG pathway. As shown in Figure 4, five metabolic pathways were highly enriched in
the test group, including glycerophospholipid metabolism, arginine biosynthesis, beta-
alanine metabolism, arginine and proline metabolism, and benzoxazinoid biosynthesis.
A glycerophospholipid metabolic pathway map was drawn using Illustrator software
(Version CS5) to further analyze the related upstream and downstream metabolites.
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As shown in Figure 5, the annotated metabolites annotated in this pathway in-
cluded 1-Acyl-sn-glyceeo-3-phosphocholine, CDP-diacylglycerol, and phosphatidyl-L-
serine. Phosphatidyl-L-serine was significantly upregulated in MFM compared with LFM
and KFM, while CDP-diacylglycerol and phosphatidyl-glycerophosphate were substan-
tially higher than in KFM. The 1-Acyl-sn-glyceeo-3-phospholine level in MFM was signifi-
cantly lower than in LFM and KFM, suggesting it represented a precursor of this metabolic
pathway. The phosphate tidylcholine and 1,2-diacyl-sn-glycerol-3P levels were consider-
ably lower in MFM than in KFM. These two substances may play an intermediary role in
the metabolic pathway.
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4. Discussion

Fermented dairy products are highly popular with consumers worldwide. Yeast can
change the quality during the fermentation and ripening of these products. Its high protein
decomposition ability can produce flavor-affecting precursors as well as alcohol and carbon
dioxide that reduce the pH and inhibit harmful bacterial growth [22,23]. Therefore, this
study used mixed L. brevis and K. marxianus fermentation to prepare alcohol-flavored
fermented milk.

MFM and LFM displayed high LAB levels at about 1010 CFU/mL. The yeast content
was significantly higher in MFM than in KFM, while the ethanol level was lower. This may
be because the ethanol in MFM is utilized by LAB or esterified with other substances. Some
studies have shown that ethanol and lactic acid esterification can reduce the damage to their
own cells to a certain extent [24]. The types and relative content of the esters in the volatile
MFM flavor compounds were higher than in KFM and LFM, further indicating a higher
number of esterification reactions between the acids and alcohols in MFM. In addition, lactic
acid has a chelating effect on cations and can reduce their impact on yeast cells [25,26]. LAB
and yeast interact directly or indirectly. Wang [27] revealed that K. marxianus significantly
promoted L. casei proliferation, while L. lactis substantially encouraged K. marxianus growth.

The free amino acid content was significantly higher in MFM and KFM than in LFM.
The nutritional factors required for LAB growth were relatively abundant, with many
amino acids consumed during fermentation. Moreover, the free amino acid content was
low in LFM since its protein hydrolase enzyme system was not as rich as MFM, which
exhibited a higher amino acid level due to protein hydrolyzation by K. marxianus. Since
the amino acids produced by K. marxianus were used by L. brevis to maintain growth and
metabolism, the free amino acid content was slightly lower in MFM than in KFM. The
analysis of the basic physical and chemical indexes showed that L. brevis and K. marxianus
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eventually improved the quality of fermented milk by promoting cell growth and causing
changes in other indexes.

The flavor substance sources in fermented milk are mostly represented by fat, lactose,
and protein as precursors, producing amino acids, sulfur-containing amino acids, peptides,
lipids, sugars, and other substances under the action of microorganisms. Since these sub-
stances further constitute the flavor components in fermented milk [28], amino acids and
their derivatives, organic acids, sugars, and fatty acids are important analytical targets. In
this study, the overall abundance of the flavor-related metabolites was higher in KFM than
in LFM and included N-acetyltryptophan, methionyl-threonine, and cysteinyl-proline, most
of which represented amino acid derivatives. Studies have shown that yeast increases the
amino acids in the mixed fermentation system to maintain LAB growth and metabolism [29].
Using transcriptome technology, some studies found significant changes in the biosynthesis
or degradation and the transport and metabolism of amino acids and other gene pathways
in milk fermented with LAB and yeast [30]. From genotype to phenotype, LAB and yeast
may interact using amino acids as a medium during the co-fermentation process. In addi-
tion, significant changes in the amino acid metabolism pathway were evident in fermented
sourdough, indicating that this phenomenon is widespread and not limited to fermented
dairy products [31]. Nopaline acid, neryl rhamnosyl-glucoside, oleyl alcohol, sphingo-
sine, 19-hydroxycinnamyl 19-glucoside blumenol CO-[rhamnosyl-(1->6)-glucoside], and
other substance levels, which mostly represented glycosides, were higher in LFM than in
MFM. The glycosides produced via L. brevis metabolism provided the carbon source for
K. marxianus growth. Kadyan [32] used non-targeted metabolomics to determine the key
L. plantarum and K. lactis metabolites during single and mixed fermentation. The results
indicated a lower sugar content in the mixed fermentation system, possibly improving
the sugar utilization rate. Liu [33] revealed that mixed L. paracasei and K. marxianus fer-
mentation significantly changed sucrose metabolism, glycolysis, and other pathways by
stimulating sugar utilization by microorganisms. The flavor metabolites in MFM included
N-acetyl-L-glutamic acid, cysteine-serine, glaucarubin, maleic acid, and serotonin, with
fatty acid metabolism-related substances being the most abundant at a total of 97 types.
Tian [34] tested the lipase activity of five yeast products, revealing that K. maximus lipase ac-
tivity was the highest, and speculated that yeast participated in protein and fat metabolism,
accelerating decomposition and producing various fatty and amino acids. This represents
the main source of many flavor substances in fermented foods [35]. Other studies have
shown that mixed milk fermentation using LAB and yeast increased the total fatty acid and
free fatty acid content and the degree of protein hydrolysis, which is consistent with the
results of this study [36].

The selected flavor-related differential metabolites in the KEGG metabolic pathway
showed that glycerophospholipid metabolism displayed the highest enrichment. Eight test
group substances were enriched into the pathway. Glycerophospholipid metabolism included
two sub-pathways, namely phosphatidylcholine and phosphatidylethanolamine biosynthesis,
while the substances in the test group were mainly enriched in phosphatidylethanolamine
biosynthesis, including four compounds, as shown in Figure 5, of which phosphatidylserine
played the most significant role. Phosphatidylserine is formed by phosphatidylserine syn-
thase with L-serine and CDP-diacylglycerol as precursors and is widely found in bacterial,
yeast, and mammalian cell membranes. It represents the primary acidic phospholipid in
human cell membranes and usually forms part of the cell membrane lobule. It accounts for
about 2–20% of the total phospholipid mass in human plasma and cell membranes [37,38].
Some studies have shown that phosphatidylserine displays excellent anti-inflammatory
and anti-depression properties and improves cognitive brain function [39]. Zhang [40]
screened 94 lipid-related differential metabolites in sheep’s milk using lipomics. In addition,
glycerophospholipid metabolism represents a vital fatty acid metabolism pathway and
plays a crucial role in product flavor formation. Zhang [41] measured the flavor changes
during cheese fermentation in Inner Mongolia, screening 37 different metabolites and six
key metabolic pathways. The metabolic pathway was closely related to lipid catabolism,
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indicating that the catabolic lipid activity during the cheese production process affected its
flavor formation. Chen [42] analyzed the flavor precursor changes in purple-leaf tea during
different production processes using a lipomics system. The results revealed alpha-linolenic
acid metabolism and glycerolipid metabolism as critical lipid metabolism pathways in the
raw tea and subsequent products, respectively.

Of the other metabolic pathways noted in this experiment, arginine biosynthesis, beta-
alanine metabolism, arginine and proline metabolism, and benzoxazinoid biosynthesis
exhibited a higher abundance, most of which were related to amino acid synthesis and
metabolism. Yang [43] revealed that the total amino acid content initially increased when
mixing Lactobacillus sanfranciscensis (L. sanfranciscensis) and Saccharomyces cerevisiae (S.
cerevisiae) to ferment sourdough, followed by a decline. It is speculated that the two
microorganisms consume a large number of amino acids during the initial fermentation
stage, while the lower pH in the dough during the later fermentation stage increases the
protease activity in the flour, promoting amino acid degradation. Furthermore, S. cerevisiae
and L. sanfranciscensis were exposed to metabolic activity, such as protein hydrolysis, where
the protein was decomposed into amino acids, increasing the amino acid content in the
dough [44,45].

In conclusion, mixed L. brevis and K. marxianus fermentation promotes the metabolism
of milk proteins, carbohydrates, and fats. The significant enrichment of differential metabo-
lites in the glycerophospholipid metabolism pathway can explain the mechanism behind
the changes in fermented milk quality caused by mixed fermentation.

5. Conclusions

This study reveals the quality formation in fermented milk inoculated with Lactobacil-
lus brevis NZ4 and Kluyveromyces marxianus SY11, the dominant microorganisms isolated
from traditional dairy products. MFM displays a better overall quality with good sensory
characteristics, more organic acid types, higher levels of free amino acids and volatile
substance esters, and lower acidity and ethanol concentrations than LFM and KFM. The
differential metabolites in MFM are mainly enriched in pathways such as glycerophos-
pholipid metabolism, arginine biosynthesis, beta-alanine metabolism, arginine, and pro-
line metabolism. The mixed fermentation of these two strains significantly changes the
flavor-related substance metabolism pathway. The results will pave the way for industrial
production and flavor regulation of local special fermented milk.
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