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Abstract: While sea cucumber is a food delicacy in Asia, these food resources are less exploited
in Europe. The aim of this study was to determine the chemical composition and potential food
applications of the less exploited orange-footed sea cucumber (Cucumaria frondosa). In particular, the
antioxidative capacity and free amino acids associated with the umami flavor released by enzymatic
hydrolyses by either Bromelain + Papain (0.36%, 1:1) or Alcalase (0.36%) were studied. Fresh C.
frondosa contained approximately 86% water, and low levels of ash (<1%) and lipids (<0.5%). The
protein content was 5%, with a high proportion of essential amino acids (43%) and thus comparable
to the FAO reference protein. The high concentration of free amino acids associated with umami, sour,
sweet, and bitter may contribute to flavor enhancement. Hydrolysis by Bromelain + Papain resulted
in the highest protein yield, and the greatest concentration of free amino acids associated with umami
and sour taste. All samples showed promising antioxidant capacity measured by FRAP, ABTS, DPPH
and ORAC compared to previous reports. The inorganic arsenic concentration of fresh C. frondosa
ranged from 2 to 8 mg/kg wet weight and was not affected by processing. This is comparable to
other seafood and may exceed regulatory limits of consumption.

Keywords: seafood; marine organisms; in vitro biological activity; sea cucumber; enzymatic hydrolysis;
functional food; peptide; amino acid

1. Introduction

Marine organisms are in general perceived as a healthier food choice compared to
terrestrial organisms, contributing with omega-3 fatty acids, micronutrients, proteins as
well as bioactive peptides [1,2]. In some populations, aquatic food provides as much as
50 percent of dietary animal protein, and globally, aquatic food provides about 17 percent
of animal protein [3]. The harvest of lower tropic marine sources has been suggested as a
strategy to contribute to food security [4], and a further shift in human diets from terrestrial
protein sources, with higher footprints, to plant-based and marine lower-food-web sources
is warranted to reduce dietary footprint [5]. A challenge to this shift has been suggested
to be the lack of umami taste in vegetable foods [6]. A flexitarian diet may be a solution,
as it is a moderate transition from meat-based diets to a greener diet and thereby reduces
the consumption of animal food [7,8]. To safeguard the natural resources and prevent the
depletion of commonly harvested fish stocks [3], underutilized marine resources such as
sea cucumber, seaweeds and algae may be good alternatives [7,9–11].

Sea cucumbers are valued in Asia as a nutritious and luxury food component, and have
been a part of the traditional Asian diet for generations [11–13]. Although not traditionally
consumed in Nordic countries, it is harvested commercially and exported fresh or dried, or
as nutraceutical and pharmaceutical extracts [11,12].
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Cucumaria frondosa (C. frondosa) has a broad distribution in the frigid waters of the
North Atlantic Ocean and near the shore of the Russian Federation in the Barents Sea. C.
frondosa is the species of sea cucumber that is most prevalent in northern countries [11].
In North America and in Canada, C. frondosa has been harvested for decades [14]. The
potential for commercial harvest in Norway was surveyed in 2018 [15,16]. However, no
commercial harvest is ongoing yet [17]. In addition to nutrients, non-essential elements
such as heavy metals may be present in sea cucumbers. Inorganic arsenic is present on
the ocean bed and has negative effects on human health [18]. The content of inorganic
arsenic in C. frondosa has been reported to vary with some individuals containing high
levels [16,19] or levels exceeding regulatory limits of consumption [20]. Thus, the inorganic
arsenic concentration should be monitored [16,18]. One way to exploit C. frondosa is to
extract and utilize bioactive components, through the help of enzymatic hydrolysis [11,21].
Different food-grade enzymes [22] such as Bromelain, Papain or Alcalase, could be used
to increase the bioavailability of small peptides that might contribute to an increase in
antioxidant capacity [23]. Bromelain, Papain and Alcalase are commonly used in the food
industry to assist the tenderization of meat, fish sauce production, baking, dairy product
processing, and cheese processing [24–26]. Bromelain + Papain (1:1, 0.1%) has previously
been used in combination to produce saithe (Pollachius virens) protein hydrolysates (pH 6,
50 ◦C, 60 min) [27]. In addition, Alcalase (4000 U/g substrate) has previously been used to
produce hydrolysates from orange-footed sea cucumber (C. frondosa) viscera (pH 10, 50 ◦C,
60 min) [28].

Previous in vitro studies of C. frondosa have shown several bioactive properties [11],
such as antioxidant capacities and antihypertensive properties, implying that this sea
cucumber might be used as a potential functional food ingredient [21,29–31].

This study was conducted with the aim of analyzing the chemical composition of the
underutilized orange-footed sea cucumber (C. frondosa) and exploring its potential food
applications. In particular, the antioxidative capacity and free amino acids associated with
umami released by enzymatic hydrolyses by either Bromelain + Papain (0.36%, 1:1) or
Alcalase (0.36%) were studied.

2. Materials and Methods
2.1. Raw Material

C. frondosa (n = 5), weighting 480 ± 91 g, were caught by divers in February 2021 off
the coast of Tromsø, (69◦ 35.795 N 18◦ 56.047 E) at a 15 m depth. Whole sea cucumbers were
kept in seawater and frozen within a few hours, before being sent to NTNU and stored at
−80 ◦C. C. frondosa was freeze-dried at −40 ◦C at 0.040 mBar using Labconco FreeZone 12
(Labconco Corporation, Kansas City, MO, USA,−50 ◦C, <13.3 Pa), homogenized to powder
by a kitchen blender (Electrolux, ESB2600, 600 W 50 hz, Stockholm, Sweden) and stored at
−80 ◦C for further analysis.

2.2. Study Design

The study design of C. frondosa consisted of processes such as freeze-drying, homoge-
nization of freeze-dried sample and enzymatic hydrolysis (Figure 1). The comparison of
freeze-dried samples was carried out in terms of proximate composition, minor constituents
and antioxidative properties with hydrolysate sample.

2.3. Proximate Composition

Water and ash content were analyzed and calculated gravimetrically as described in
the official method [32]. The protein content of freeze-dried sample was determined as
described by the AOAC [33], while the method used to determine the protein content of the
hydrolysates involved calculating the total sum of all amino acids, taking into account that
the molecular weight of water was removed. This approach is in line with the guidelines
set forth by the Food Agricultural Organization of the United Nations (FAO) [34]. Lipid
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was extracted and the total amount calculated gravimetrically as described by the Bligh
and Dyer [35] method. The analysis was performed in triplicate.
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Figure 1. Schematic overview of analyses performed to characterize freeze-dried and hydrolysate
samples of Cucumaria frondosa.

2.4. Enzymatic Hydrolysis

The enzymatic hydrolysis was performed as described in Hjellnes et al. [27] with
modification. Freeze-dried C. frondosa powder (5.0 ± 0.0 g) was mixed with preheated
water (50 ◦C), a ratio between sample/water of 1:6.5 for 60 min at 50 ◦C with magnetic
stirring (300 rpm). Bromelain (Ananas comosus, 3 U/mg, EC 3.4.22.32, Merck Life Science
AS, Oslo, Norway), and Papain (Carica papaya, 1.5–10 U/mg, EC 3.4.22.2, Merck Life Science
AS, Oslo, Norway) were added in a 1:1 ratio, and Alcalase (from Bacillus licheniformis,
≤2.4 U/g, EC 232.752.2, Sigma-Aldrich, Steinheim, Germany) accounted for 0.36% of the
total mixture. The enzymatic hydrolysis mixture was added in glass bottles with a blue cap
in a water bath (Heto-Holten, Allerød, Denmark). The enzymatic reaction was stopped by
applying heat (90 ◦C, 20 min). The mixture was then distributed into 15 centrifuge tubes
(50 mL) and subjected to centrifugation (3500 g, 30 min, 20 ◦C). After this, the samples were
frozen (−20 ◦C). The frozen samples were then divided into three fractions: oil, hydrolysate,
and sludge, using a scalpel. The protein hydrolysates from C. frondosa were subsequently
freeze-dried using a Labconco FreeZone 12 (Labcono Corporation, Kansas City, MO, USA,
at −50 ◦C, <13.3 Pa). These samples were then stored at −80 ◦C for future analysis. The
enzymatic hydrolysis was performed in duplicate.

2.5. Total Amino Acids

The total amino acids content was determined as described by Blackburn [36]. Freeze-
dried C. frondosa (87.5 ± 7.3 mg) and hydrolysate material (49.7 ± 0.3 mg) had 6 M HCl
(SigmaAldrich, Darmstadt, Germany) added. The samples underwent hydrolysis for a
period of 22 h at a temperature of 105 ◦C. The samples were neutralized to a pH range of
6.5–7.5 using 6 M NaOH (SigmaAldrich, Darmstadt, Germany), filtered using a Whatman
glass microfiber filter GF/C (Cytiva, Washington, DC, USA), diluted 1:500 and passed
through a 0.22 µm syringe filter (VWR, Radnor, PA, USA). The filtered samples were
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then analyzed using an HPLC, Dionex Ultimate 3000 (Dionex, CA, USA) with a Nova-
pak c184 µM 3.9 × 150 mm column (Thermo Fischer Scientific, Waltham, MA, USA).
The analysis was conducted using a fluorescence detector (Rf 200). Diluent phase A is
methanol (VWR, Rosny-sous-Bois, France) and diluent phase B is sodium acetate (Alfa
Aaser, Kandel, Germany) with flow rate 0.9 mL/L. Alpha-aminobutyric acid served as the
internal standard in this analysis. The analysis was repeated two times for each sample.

2.6. Free Amino Acids

The content of free amino acids was assessed as described in Osnes and Mohr [37].
Water-soluble proteins were extracted (0.1 ± 0.0 g dry weight in 5 mL dH2O) by mixing
and centrifuging freeze-dried or hydrolysate material of C. frondosa. Water-soluble protein
extracts (1 mL) were then transferred to microcentrifugation tubes and added sulphosali-
sylic acid (0.25 mL, 10%, VWR, Oslo, Norway). The samples were vortexed, left in a cold
room (4 ◦C) for 30 min before centrifuging for 10 min at 18,000× g. The supernatant was
diluted 1:25, filtered and analyzed using HPLC, Dionex Ultimate 3000 (Dionex, CA, USA).
The same system parameters were applied as in the Total amino acid method. The analysis
was repeated two times for each sample.

2.7. Inorganic Arsenic Analysis

The concentration of inorganic arsenic was examined using HPLC-ICPMS by an ac-
credited external laboratory (Institute of marine research, Bergen) [38–40]. Pooled sampling
was done on hydrolysates without enzyme, Bromelain + Papain and Alcalase. The analysis
was performed five times for freeze-dried C. frondosa and one time for pooled sampling
for hydrolysates without enzyme, hydrolysate using Bromelain + Papain and hydrolysate
using Alcalase.

2.8. Molecular Weight Distribution

The analysis of the molecular weight distribution for both the freeze-dried and hy-
drolysate materials was conducted using High-Performance Liquid Chromatography
(HPLC), following a method that has been previously described [27]. The analysis was
performed one time for each sample.

2.9. Antioxidant Assays

The antioxidant activity of both freeze-dried and hydrolysate material were analyzed
by 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl
(DPPH), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity
(ORAC). ABTS was performed as described in Re et al. [41] and Nenadis et al. [42,43].
The ABTS assay measures the ability of a compound to neutralize reactive oxygen species
(ABTS+• radical, green-blue color) by electron transfer, to a stable ABTS molecule (pale
color). The paler the color gets, the higher the antioxidant capacity of the sample [41–43].
DPPH was carried out as previously described by Thiansilakul et al. [44] and Nenadis
et al. [43]. The DPPH method measures the ability of a compound to neutralize reactive
oxygen species (DPPH+• radical, dark purple color) by hydrogen transfer, to a stable DPPH
molecule (pale yellow color). The paler the color gets, the higher antioxidant capacity of
the sample [43–45]. FRAP was conducted as previously described by Benzie and Strain [46]
with modifications described by Jensen et al. [47]. The FRAP method measures the ability
of a compound to reduce ferric (Fe3+) to ferrous (Fe2+) iron by electron transfer (pH 3.6)
and the sample solution would result in a deep blue color due to the formation of the
ferrous–tripyridyltriazine complex [46]. ORAC was performed as described by Dávalos
et al. [48] with modifications described by [47]. The ORAC assay is based on the oxidation
of a fluorescent probe due to the free radical initiator (2,2′-azobis-(isobuttersa ureamidin)-
dihydroclorid (AAPH)) which in turn leads to a decay of the fluorescence probe. Thus, the
ORAC assay measures the ability of a compound to delay the oxidation of the fluorescent
probe by reacting with peroxyl radicals by hydrogen transfer [48]. Trolox (Acros Organics,
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Geel, Belgium) was used as the reference compound for FRAP and ORAC. Propyl gallate
(Sigma-Aldrich, Steinheim, Germany) was used as the reference compound for ABTS and
DPPH. The results were presented in terms of µmol/g propyl gallate equivalents or µmol/g
Trolox equivalents, respectively. The analysis was repeated two times for each sample.

2.10. Statistical Analysis

All results are presented as average ± standard deviation of n = 5 parallels, unless
stated otherwise. Significant differences were assessed using Microsoft Excel and IBM SPSS
Statistics, version 27 (IBM, New York, NY, USA) between hydrolysates with different en-
zyme. It was assumed that all data were normally distributed, and ANOVA was conducted
with Tukey’s post hoc test.

3. Results and Discussion
3.1. Proximate Composition of C. frondosa

The biochemical composition of C. frondosa (Table 1) was comparable to previous
studies, except for ash content which was lower when compared to previous results [49,50].
The ash content is reported to vary with mineral deposits in sea cucumber [51].

Table 1. Proximate composition of Cucumaria frondosa (percentage of wet weight). The results are
presented as mean ± standard deviation (n = 5).

Sample Water Ash Protein Lipid

C. frondosa [%] 86.2 ± 1.5 0.6 ± 0.1 4.7 ± 0.4 0.5 ± 0.5

3.2. Total and Free Amino Acid Composition of C. frondosa

The amino acids glutamic acid, glycine/arginine and aspartic acid together constituted
43% (130 mg/g dry weight) of the total amino acid of C. frondosa (305 mg/g dry weight,
Table 2). This is comparable to previously findings by Zhong et al. [49].

Table 2. Total amino acids and free amino acids of hydrolysates of Cucumaria frondosa. The results
are presented as mean ± standard deviation (n = 5). The total and free amino acids content was
calculated without the water molecule.

Total Amino Acids Free Amino Acids

Amino Acids (mg/g Wet Weight) (mg/g Dry Weight) (mg/g Wet Weight) (mg/g Dry Weight)

Alanine 3.5 ± 0.6 25.3 ± 4.3 0.16 ± 0.09 1.14 ± 0.66
Asparagine 0.1 ± 0.0 0.5 ± 0.1 0.00 ± 0.00 0.01 ± 0.00

Aspartic acid 5.5 ± 0.7 39.7 ± 4.9 0.01 ± 0.01 0.09 ± 0.04
Glutamic acid 6.8 ± 0.9 49.0 ± 6.7 0.33 ± 0.06 2.37 ± 0.44

Glutamine 0.1 ± 0.0 0.5 ± 0.1 0.07 ± 0.01 0.48 ± 0.08
Glycine/Arginine 5.7 ± 1.3 41.4 ± 9.4 0.32 ± 0.28 2.31 ± 2.03

Histidine 1.0 ± 0.0 7.0 ± 0.3 0.00 ± 0.00 0.01 ± 0.00
Isoleucine 2.2 ± 0.2 15.6 ± 1.1 0.00 ± 0.00 0.03 ± 0.01
Leucine 2.1 ± 0.2 15.4 ± 1.2 0.01 ± 0.00 0.07 ± 0.02
Lysine 3.8 ± 0.3 27.3 ± 2.1 0.08 ± 0.03 0.57 ± 0.25

Methionine 0.2 ± 0.0 1.6 ± 0.3 0.00 ± 0.00 0.02 ± 0.02
Phenylalanine 2.5 ± 0.2 18.2 ± 1.5 0.01 ± 0.00 0.05 ± 0.02

Serine 3.0 ± 0.4 21.5 ± 2.8 0.01 ± 0.00 0.10 ± 0.02
Threonine 2.9 ± 0.2 21.0 ± 1.7 0.01 ± 0.01 0.10 ± 0.05
Tyrosine 1.9 ± 0.2 13.4 ± 1.2 0.01 ± 0.00 0.04 ± 0.01

Valine 1.0 ± 0.1 7.4 ± 0.5 0.01 ± 0.00 0.05 ± 0.01

∑Total amino acids 42.2 ± 5.3 304.7 ± 38.3
∑Free amino acids 1.0 ± 0.5 7.4 ± 3.7

During the process of acid hydrolysis, tryptophan is eliminated and, therefore, it is not detected. Taurine, proline
and cysteine are not detected by this method. Arginine/Glycine are not separated by this method. During the
process of acid hydrolysis, asparagine and glutamine underwent deamination. As a result, they are accounted for
in the quantities of aspartic acid and glutamic acid, respectively.
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Glutamic acid and glycine/arginine, together with alanine were also the dominating
free amino acids, constituting about 78% (5.8 mg/g dry weight) of the free amino acid
raw material (7.4 mg/g dry weight, Table 2). This is comparable to previous studies
by Song et al. [52]. Furthermore, in the study by Sroyraya et al. [53] on sea cucumber
Holothuria scabra, glutamic acid made out the highest level of the free amino acids analyzed.
Glycine/Arginine and alanine were also previously reported to be dominating. It should,
however, be emphasized that habitat location and seasonal variations could influence the
concentration of these compounds [54].

3.3. Protein Content and Protein Yield of C. frondosa Hydrolysates

The protein content in the hydrolysates was determined by calculating the sum of
amino acids, taking into account that the molecular weight of the water was removed [34].
Hydrolysate from the use of Bromelain + Papain resulted in the highest protein yield fol-
lowed by hydrolysate using Alcalase and hydrolysate without additional enzyme (Table 3).
The hydrolysate using Bromelain + Papain showed a significantly higher (p < 0.05) pro-
tein content compared to freeze-dried raw material, whereas the protein contents in hy-
drolysates using Alcalase and without enzyme treatment gave a lower protein content
compared to freeze-dried sample.

Table 3. Protein content (mg/g dry weight) and protein yield (% protein recovered in the aqueous
phase) of hydrolysates of Cucumaria frondosa. The results are displayed as the mean ± standard
deviation (n = 5). Within the same row, means that are marked with different superscript lowercase
letters signify significant differences (p < 0.05).

Sample Hydrolysate without Enzyme Bromelain + Papain Alcalase

Protein content [mg/g] 133.8 ± 35.3 a 321.4 ± 52.0 b 182.5 ± 43.8 a

Protein yield [%] 8.3 ± 2.6 a 36.8 ± 6.6 b 11.8 ± 2.9 a

Papain from Carica papaya has an optimum pH and temperature between 6.0 to 7.0 and
65 ◦C, respectively. The enzyme has a specific activity at 10 units/mg protein [55]. Papain
mainly cleaves peptide bonds consisting of arginine, lysine and residues succeeding pheny-
lalanine [55–57]. Bromelain from pineapple stem has an optimum pH and temperature
at 7.0 and 50 ◦C, respectively. The enzyme has a specific activity around 3 units/mg pro-
tein [58]. Bromelain cleaves at the carbonyl end of glycine, tyrosine, alanine and lysine [59].
Alcalase from Bacillus licheniformis is active between pH 6.5 and 8.5 and has an optimum
temperature at 60 ◦C [60]. The enzyme has a specific activity 2.4 × 10−3 units/mg protein.
Alcalase cleaves peptide bonds on the carboxyl side of glutamine, lysine, tyrosine, leucine,
methionine, and glutamic acid [61].

The enzymatic hydrolysis of C. frondosa using Bromelain + Papain resulted in a higher
protein yield (36.8 ± 6.6%) compared to the study by Slizyte et al. [62] on fish protein
hydrolysates from defatted salmon backbones, which found Bromelain + Papain to have
17% protein yield, however, with a higher enzyme substrate ratio.

In this study, all the enzymatic hydrolysis was performed at temperature 50 ◦C which
may explain why enzymatic hydrolysis using Bromelain + Papain resulting in a higher
protein yield, thus giving it a higher protein content, compared to enzymatic hydrolysis
using Alcalase and enzymatic hydrolysis without enzyme. Hence, the Alcalase was outside
its optimum temperature. In addition, this study does have certain limitations, including an
incomplete total amino acid profile. The lack of cysteine and tryptophan in the assessment
leads to an underestimation of the protein content.

3.4. Total and Free Amino Acid Composition of C. frondosa Hydrolysates

The major amino acids of all three hydrolysates were glutamic acid, glycine/arginine,
and aspartic acid, constituting from 44 to 52% of the total amino acids (Table 4). This is
comparable to previous findings [21,28].
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Table 4. Total and free amino acids (mg/g dry weight) in hydrolysates of Cucumaria frondosa by
Bromelain + Papain (0.36 %, 1:1) or Alcalase (0.36 %). The results are presented as mean ± standard
deviation (n = 5). Different superscript letters in the same row and within the same analysis indicate
significant differences between hydrolyses (p < 0.05).

Total Amino Acids Free Amino Acids

Amino Acids Without
Enzyme

Bromelain +
Papain Alcalase Without

Enzyme
Bromelain +

Papain Alcalase

Alanine 10.4 ± 2.1 a 27.8 ± 5.8 b 16.5 ± 4.5 a 2.54 ± 1.73 a 2.53 ± 1.11 a 2.90 ± 1.57 a

Asparagine 0.2 ± 0.1 ab 0.3 ± 0.1 b 0.1 ± 0.1 a 0.01 ± 0.00 a 0.07 ± 0.03 b 0.02 ± 0.01 a

Aspartic acid 15.8 ± 4.3 a 39.4 ± 5.2 b 21.9 ± 4.5 a 0.17 ± 0.06 a 0.13 ± 0.06 a 0.36 ± 0.13 b

Glutamic acid 26.1 ± 2.8 a 54.3 ± 9.8 b 37.7 ± 5.2 ab 5.16 ± 1.71 a 3.93 ± 1.36 a 4.91 ± 1.24 a

Glutamine 0.2 ± 0.1 a 0.4 ± 0.1 a 0.2 ± 0.1 a 1.18 ± 0.11 a 1.18 ± 0.30 a 1.01 ± 0.16 a

Glycine/Arginine 17.5 ± 6.8 a 52.2 ± 15.2 b 34.3 ± 12.9 ab 4.71 ± 3.55 a 4.29 ± 2.72 a 4.61 ± 3.19 a

Histidine 2.2 ± 0.9 a 5.5 ± 0.6 b 2.5 ± 0.4 a 0.07 ± 0.01 a 0.15 ± 0.05 b 0.10 ± 0.03 a

Isoleucine 5.7 ± 2.0 a 12.0 ± 1.1 b 6.0 ± 1.6 a 0.13 ± 0.02 a 0.33 ± 0.09 b 0.21 ± 0.06 a

Leucine 9.7 ± 3.0 a 20.3 ± 2.9 b 10.3 ± 3.1 a 0.26 ± 0.07 a 1.95 ± 0.47 b 0.59 ± 0.20 a

Lysine 10.0 ± 2.2 a 21.8 ± 2.9 b 10.1 ± 1.7 a 1.18 ± 0.47 a 1.28 ± 0.58 a 1.30 ± 0.54 a

Methionine 2.0 ± 0.7 a 6.0 ± 0.5 b 2.3 ± 0.6 a 0.14 ± 0.03 a 0.71 ± 0.16 b 0.24 ± 0.09 a

Phenylalanine 5.9 ± 2.2 a 11.8 ± 1.4 b 5.6 ± 1.6 a 0.22 ± 0.05 a 0.93 ± 0.21 b 0.36 ± 0.11 a

Serine 8.1 ± 2.0 a 22.2 ± 3.5 b 11.5 ± 2.4 a 0.37 ± 0.06 a 0.55 ± 0.15 a 0.48 ± 0.13 a

Threonine 8.6 ± 2.3 a 19.7 ± 1.1 b 10.4 ± 2.2 a 0.37 ± 0.05 a 0.62 ± 0.16 b 0.50 ± 0.08 ab

Tyrosine 4.6 ± 1.8 a 10.7 ± 0.8 b 4.8 ± 1.2 a 0.17 ± 0.03 a 0.82 ± 0.19 b 0.32 ± 0.08 a

Valine 6.7 ± 2.0 a 17.0 ± 1.0 b 8.2 ± 1.7 a 0.20 ± 0.04 a 0.62 ± 0.17 b 0.30 ± 0.09 a

∑Total amino acids 133.8 ± 35.3 321.4 ± 52.0 182.5 ± 43.8
∑Free amino acids 16.9 ± 8.0 20.1 ± 7.8 18.2 ± 7.7

During the process of acid hydrolysis, tryptophan is eliminated and, therefore, it is not detected. Taurine, proline
and cysteine are not detected by this method. Arginine/Glycine are not separated by this method. During the
process of acid hydrolysis, asparagine and glutamine underwent deamination. As a result, they are accounted for
in the quantities of aspartic acid and glutamic acid, respectively.

The major free amino acids were the same, glutamic acid, glycine/arginine, and
alanine, in all hydrolysates. Together, these amino acids constituted about 54% of the free
amino acids in hydrolysate using Bromelain + Papain, 68% in hydrolysate using Alcalase
and 74% in hydrolysate without enzyme (Table 4). The results in this study are similar to a
previous study [63].

The enzymatic hydrolysis using Bromelain + Papain gave a higher total amino acid
content compared to hydrolysate using Alcalase and hydrolysate without enzyme. This could
be explained by the optimum condition of the different enzymes as previously described.

In the amino acid determination established by Blackburn [36], the amount of amino
acid residues in the sample are analyzed after acid hydrolysis of peptide bonds, and the
protein content is determined by adding up the individual amino acid residues, after
subtracting the molecular mass of water [64]. This calculation aligns with the guidelines
provided by the Food and Agricultural Organization of the United Nations (FAO) for
protein determination in food [34]. The process efficiently hydrolyses most of the peptide
bonds; however, the protein content may be underestimated due to the destruction or
reduction of some amino acids prior to the HPLC analysis [64]. Thus, tryptophan and
cysteine were not evaluated due to their instability during the process of acid hydrolysis.
As a result, if the protein content is to be calculated based on the total amino acid content,
these two amino acids should be analyzed separately and added on.

3.5. Protein Quality

The Food and Agriculture Organization of the United Nations (FAO) and World
Health Organization (WHO) has established recommended intake values for essential
amino acids, which are compared to a reference protein [65]. These values are based
on the mean nitrogen requirement which should be sufficient to maintain body nitrogen



Foods 2023, 12, 3685 8 of 21

homeostasis in healthy adults [65]. The concentration of essential amino acids in freeze-
dried sample and hydrolysate without enzyme, hydrolysate using Bromelain + Papain
or Alcalase (dry weight, Figure 2) were higher when compared to the reference protein
(chemical score >1.0) [65]. Furthermore, freeze-dried sample, hydrolysate without enzyme,
hydrolysate using Bromelain + Papain or Alcalase (dry weight) contained a higher concen-
tration of essential amino acids compared to the findings of a previous study conducted by
Kendler et al. [66] on flounder, lemon sole, megrim plaice and thornback ray. In addition,
the levels of essential amino acids (dry weight) in this study were higher compared to the
essential amino acids content of conventional Atlantic salmon [67], indicating that both
freeze-dried and hydrolysates of C. frondosa could serve as excellent sources of essential
amino acids due to its superb quality proteins.
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Figure 2. Concentration of essential amino acid (EAA, mg/g protein) in freeze-dried raw material and
hydrolysates of Cucumaria frondosa, compared to a reference protein [65]. The results are presented
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different letters are significantly different (p < 0.05).

The protein content of raw material based on wet weight is lower compared to other
conventional seafood products (Table 5). However, freeze-dried sample, hydrolysate
without enzyme, and hydrolysate using Bromelain + Papain or Alcalase (dry weight) have
similar or higher protein content compared to the conventional seafood products, indicating
that there is a high quality of proteins in C. frondosa after processing. In addition, both
freeze-dried C. frondosa and the hydrolysates (dry weight) contained a higher concentration
of essential amino acids compared to ‘Honeycrisp’ apple flesh [68] and banana (Grand
niene) [69]. It is worth mentioning that tryptophan was not detected in the study by Wang
et al. [68], Gurav and Jadhav [69] or in this present study.
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Table 5. Protein content of raw (g/100 g wet weight and g/100 g dry weight) and hydrolyzed
(g/100 g dry weight) Cucumaria frondosa (mean ± standard deviation, n = 5) as well as various
conventional seafood products on the market [70].

Unhydrolyzed Raw Material Hydrolyzed Raw Material

Without Enzyme Bromelain + Papain Alcalase

Sample Wet Weight Dry Weight Dry Weight Dry Weight Dry Weight

C. frondosa 4.2 ± 0.5 30.5 ± 0.4 13.4 ± 0.4 32.1 ± 0.5 18.3 ± 4.4

Conventional
seafood products

Protein content
(g/100 g wet weight)

Tuna
19.5–26.5

Salmon
9.6–14.7

Caviar
10.0–22.3

Calamari
6.1–11.0

Shrimps
14.5–17.0

3.6. Umami

The free amino acids of freeze-dried and hydrolysate without enzyme, hydrolysate
with Bromelain + Papain and hydrolysate with Alcalase of C. frondosa (Figure 3) have been
categorized based on their flavor profiles, as described in the studies by Sarower et al. [71],
Kirimura et al. [72] and Fuke and Konosu [73], and as presented in Kendler et al. [66].
According to the study by Wang et al. [74], glutamic acid, glycine and alanine are identified
among the most important umami taste contributors in seafood.
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Cucumaria frondosa, without enzyme, with Bromelain + Papain and with Alcalase. The distribution
is grouped in taste perceptions sweet (a), bitter (b), umami/sour (c) and other (d). The results are
presented as mean ± standard deviation (n = 5). Columns with distinct lower case letters within the
same amino acids are significantly different (p < 0.05).
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In the ‘sweet’ group, the concentration of glycine/arginine ranked highest of free
amino acids followed by alanine and lysine. Serine from freeze-dried sample was sig-
nificantly lower (p < 0.05) compared to the hydrolysates. In the ’bitter’ group, the free
amino acid concentration of phenylalanine, tyrosine, valine, methionine, and histidine
varied. All amino acids, apart from histidine in the ‘bitter’ group of hydrolysates using
Bromelain + Papain were significantly different (p < 0.05) compared to freeze-dried sample,
hydrolysate without enzyme and hydrolysate using Alcalase. In the ‘umami/sour’ group,
glutamic acid represented the highest free amino acid concentration followed by aspartic
acid. In addition, compared to other hydrolysates and the freeze-dried sample, the aspartic
acid content of the hydrolysate produced using Alcalase was significantly higher (p < 0.05).
When sodium salts like monosodium glutamate (MSG) are present, these amino acids may
contribute to the umami flavor [66,74].

The concentration of free amino acids (dry weight), which could contribute to sweet,
umami and sour flavor in this study, exceeded the free amino acid concentration in Atlantic
salmon (dry weight) up to 3 times [75], indicating there is a high concentration of such
flavor components in freeze-dried and hydrolysate samples. In addition, the concentration
of free amino acids contributing to bitter flavor was 20 times less in this study compared
to Atlantic salmon (dry weight) [75]. However, the composition and properties of small
peptides and umami free amino acids play an important role eliciting the characteristic
taste of food [66,71,76].

According to the study by Hoehl et al. [77] on recognition threshold for basic taste in
deionized water, 70 females from Germany recognized the flavor of sweet, salty bitter and
umami at 0.2, 0.05, 0.08 and 0.09 mg/L, respectively. In this study, the result exceeded the
minimum requirements to taste sweet, salty, bitter and umami. Therefore, the freeze-dried
and hydrolysates of C. frondosa could potentially be used as a “condiment” and contribute
with the umami taste that is lacking from vegetable foods. This could ease the transition
from a meat-based diet to a greener diet and potentially reduce the consumption of animal
food. However, in this study, it is important to note that umami and sour flavor could
not be separated. Additionally, it is vital to remember that the threshold of perception of
taste varies with age, sex and body mass in different countries with different food and
cultures [78].

3.7. Total Inorganic Arsenic Concentration

An important prerequisite before novel resources can be used, is an assessment of
food safety [20]. Although the organic compound of arsenic is generally present in seafood,
the inorganic compounds of arsenic may be abundant in some organisms. Therefore, it is
necessary to specify each product as some sea cucumbers are an exception to this rule [20].

The freeze-dried and the hydrolysates samples were analyzed for inorganic arsenic
concentration, varying from 4.1 to 7.8 mg/kg wet weight. Protein hydrolysates had higher
content of inorganic arsenic compared to freeze-dried sample (wet weight) (Figure 4). The
results in this study are comparable to previous results [79] (pelagic, 0.01; molluscs, 0.08 and
demersal, 0.008 mg/kg wet weight), but contained a higher level of inorganic arsenic. In
addition, the inorganic arsenic concentration did not change in the hydrolysate during
the freeze-drying process. The same result was observed in the study by Dahl et al. [80]
on stability of arsenic compounds in seafood during processing and storage by freezing.
However, these results must be verified as only one pooled sample was analyzed due to
limited availability of raw materials.
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Figure 4. Inorganic arsenic (µg/kg wet weight) of freeze-dried raw material and hydrolysates of Cu-
cumaria frondosa, protein hydrolysate without added enzyme, hydrolysate using Bromelain + Papain,
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hydrolysates without enzyme, Bromelain + Papain and Alcalase is presented in pooled sampling (n =
1).

The World Health Organization [81] established a limit for human dietary exposure
of seafood. The Provisional Tolerable Weekly Intake (PTWI) for inorganic arsenic was set
to 3 µg/kg body weight [81]. An adult with a body weight of 70 kg should hence not
exceed an intake of 0.21 mg inorganic arsenic. Based on the inorganic arsenic content in the
samples analyzed in this study, it refers to between 27 to 51 g sea cucumber (dry weight).
The level of inorganic arsenic may limit the applicability of C. frondosa as a potential food
ingredient. However, it is crucial to note the low number of samples analyzed in this study.

A recent review on sea cucumbers and food safety [20] documented high levels of
inorganic arsenic concentration, depending on its location [81]. Sea cucumbers live on
different habitats on the ocean floor which leads to a different accumulation of heavy
metals [12]. A previous study has shown that the content of inorganic arsenic in seaweed
was reduced by boiling and soaking in salt solution [82]. This is due to arsenic being
quite water-soluble, and soaking with an increase in salt concentration, the water content
will decrease; thus, the total arsenic concentration will decrease [82]. In another study by
Lin et al. [83], heavy metals such as arsenic and lead were removed from sea cucumber
Acaudina leucoprocta by first hydrolyzing the body wall mucus protein with Papain and
pepsin (0.15% (1:1, w/w) at 37 ◦C for 45 min), and then removing the heavy metals through
immersing in citric acid (0.1 M for 54 h). Acaudina leucoprocta produced a product that had
a darker, more opaque appearance and a looser body wall structure. About 98.22 ± 0.91%
of the arsenic and 94.11 ± 1.08% of the lead were eliminated after 54 h of immersing. The
heavy metal concentrations were < 0.5 mg/kg in all samples. This could maybe be the
solution to reduce the total arsenic concentration in C. frondosa and increase its applicability
as a food ingredient. This should be further investigated before processing C. frondosa.
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3.8. Molecular Weight Distribution

The distribution of molecular weights in freeze-dried and hydrolysate using Bromelain
+ Papain, hydrolysate using Alcalase and hydrolysate without enzyme of C. frondosa ranged
between <0.2 and >20 kDa (Figure 5). Hydrolysate using Bromelain + Papain resulted
in the highest concentration of peptides between <0.2 and 5–10 kDa, while hydrolysate
using Alcalase resulted in the highest concentration of peptides between 10 to >20 kDa.
Hydrolysate without enzyme resulted in a higher amount of <0.2 kDa peptides, although
significantly less (p < 0.05) compared to hydrolysates with enzymes. The concentration of
peptides with molecular size between 1–2 kDa of hydrolysate using Bromelain + Papain
was significantly higher (p < 0.05) compared to hydrolysate using Alcalase, hydrolysate
without enzyme and freeze-dried C. frondosa. Hydrolysate using Alcalase had a significantly
higher peptide concentration (p < 0.05) compared to freeze-dried C. frondosa, hydrolysate
without enzyme and hydrolysate using Bromelain + Papain with a molecular size between
>10 and >20 kDa. In addition, as expected, the peptide concentration of freeze-dried C.
frondosa was low compared to the hydrolysates.
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Figure 5. Molecular weight distribution (mg/g dry weight) of freeze-dried raw material and hy-
drolysates by Bromelain + Papain, hydrolysates by Alcalase or hydrolysates without enzyme of
Cucumaria frondosa. The results are presented as mean ± standard (n = 5). Different letters on columns
indicate significant difference between values (p < 0.05).

There are several explanations why the peptide concentration is lower in samples with
higher protein content. The first explanation could be due to the selection and the limited
detection range of the separation column. Not all peptides could be detected or there could
be other responses in the detector from the original protein. In this study, a column with a
detection range between 0 and 20 kDa was selected. The second explanation could be due
to incomplete enzymatic hydrolysis, or that the peptide chains are too long to be detected.

The peptide’s ability for antioxidant potential obtained from enzymatic hydrolysis
of sea cucumber depends on the molecular length and weight of the peptide (≤20 kDa),
the amino acid composition and the sequences [84]. In addition, the presence of amino
acids such as arginine, histidine, glutamic acid, tyrosine, phenylalanine, and proline may
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improve the antioxidant activity of the bioactive peptides. Furthermore, in order to acquire
bioactive peptides and antioxidant efficacy, the choice of proteases used in the production of
protein hydrolysates is very important [84]. The formation of smaller peptides is dependent
on the enzyme’s optimal conditions during enzymatic hydrolysis as previously described.

3.9. Antioxidative Capacity Measured by FRAP, ABTS, DPPH and ORAC Assays

The FRAP, ABTS, ORAC, and DPPH analyzes were utilized to assess the antioxidative
ability [85]. The FRAP method measures the ability of a compound to reduce ferric (Fe3+)
to ferrous (Fe2+) iron by electron transfer (pH 3.6) and the sample solution would result in
a deep blue color due to the formation of the ferrous–tripyridyltriazine complex [46]. The
ferric reducing antioxidant power of the hydrolysates ranged between 14–26 µmol Trolox
equivalents/g dry weight (Figure 6). Hydrolysate without enzyme and hydrolysate using
Alcalase exhibited similar FRAP values, which was higher compared to the freeze-dried
sample. In a previous study on silkworm pupae (Bombyx mori) [86], hydrolysate using
Alcalase showed a higher FRAP value compared to hydrolysate without enzyme. The
results in this study were comparable to previous studies [27,87,88]. Protein hydrolysate
of red algae (Palmaria palmata) exhibited 1–22 µmol Trolox equivalents/g [87], and protein
hydrolysate of saithe (Pollachius virens) exhibited 5–16 µmol Trolox equivalents/g [27]. In
addition, the ferric reducing antioxidant power in this present study is higher compared to
protein hydrolysate of fried herring (Clupea harengus), which was found to be 3 µmol Trolox
equivalents/g [88]. However, in a recent study [89] on protein isolates of orange-footed
sea cucumber (Cucumaria frondosa), the Trolox equivalents exhibited 80–530 µmol /g. The
reason for this difference is probably due to the isolation of peptides, resulting in a higher
concentration [89,90], compared to the hydrolysates obtained from the present study.

The ABTS assay measures the ability of a compound to neutralize reactive oxygen
species (ABTS+• radical, green-blue color) by electron transfer, to a stable ABTS molecule
(pale color). The paler the color gets, the higher antioxidant capacity of the sample [41–43].
The ABTS radical scavenging activity ranged between 2–13 µmol Propyl gallate equiva-
lents/g dry weight between the samples (Figure 6). Hydrolysate using Bromelain + Papain
showed the highest antioxidant capacity followed by hydrolysate using Alcalase, hy-
drolysate without enzyme and freeze-dried C. frondosa, (p < 0.05).

The result in this study is comparable to a previous study [91]. Different extracts
of far-eastern sea cucumber (Stichopus japonicus) exhibited an ABTS radical scavenging
activity between 7–16 Trolox equivalents/g dry weight [91]. However, protein hydrolysate
of saithe (Pollachius virens) exhibited 42–63 µmol Propyl gallate equivalents/g [27], and
protein hydrolysate using Alcalase on different body parts of C. frondosa exhibited between
21 to 79 µmol Trolox equivalents/g protein [21]. The reasons for those differences may be
due to the use of different species [27], standards [91] and the concentration of peptides [92],
as compared to the hydrolysate obtained in the present study.

The DPPH method measures the ability of a compound to neutralize reactive oxy-
gen species (DPPH+• radical, dark purple color) by hydrogen transfer, to a stable DPPH
molecule (pale yellow color). The paler the color gets, the higher antioxidant capacity of
the sample [43–45]. The DPPH radical scavenging activity ranged between 2 and 5 µmol
Propyl gallate equivalents/g dry weight. Hydrolysate using Alcalase exhibited the highest
DPPH value, followed by hydrolysate using Bromelain + Papain, hydrolysate without
enzyme and freeze-dried C. frondosa (Figure 6). Hydrolysate using Alcalase was found to
exhibit a significant higher (p < 0.05) DPPH value compared to freeze-dried raw material,
hydrolysate without enzyme and hydrolysate using Bromelain + Papain.
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Figure 6. Ferric reducing antioxidant power (FRAP) measured in Trolox equivalents/g, 2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) measured in
propyl gallate equivalents/g dry weight of freeze-dried raw material and hydrolysates of Cucumaria
frondosa, protein hydrolysate without added enzyme, hydrolysate using Bromelain + Papain; hy-
drolysate using Alcalase. The results are presented as mean ± standard deviation (n = 5). Values with
different letters denotes significant difference (p < 0.05) samples within the same antioxidant.

The exhibited DPPH scavenging activities of freeze-dried raw material and all hy-
drolysates were comparable to previous studies [21,49,93]. Coix seed fermented by Monascus
purpureus exhibited 0.4 to 3.3 µmol Trolox equivalents/g [93], protein hydrolysate on differ-
ent body parts of C. frondosa exhibited 7 to 16 µmol Trolox equivalents/g protein [21], and
fresh and processed C. frondosa exhibited 5 to 7 µmol Trolox equivalents/g dry sample [49].
However, the wild bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea
L.) leaves from north-west Romania exhibited 28 mM Trolox equivalents/g and 32 mM
Trolox equivalents/g, respectively, which result in a higher DPPH activity [94] compared to
the result on this present study. It is worth mentioning, the previous study used different
species, standard and methodology to measure DPPH activity. This may account for the
variations in DPPH activity compared to the findings in this present study.

The ORAC assay is based on the oxidation of a fluorescent probe due to the free radical
initiator (2,2′-azobis-(isobuttersa ureamidin)-dihydroclorid (AAPH)) which in turn leads to
a decay of the fluorescence probe. Thus, the ORAC assay measures the ability of a com-
pound to delay the oxidation of the fluorescent probe by reacting with peroxyl radicals via
hydrogen transfer [48]. The antioxidant capacity ranged between 1900–12,000 µmol Trolox
equivalents (TE)/g dry weight (Figure 7). Hydrolysate using Bromelain + Papain showed
the highest antioxidant capacity followed by hydrolysate using Alcalase, hydrolysate with-
out enzyme and freeze-dried C. frondosa (5700, 4000 and 1900 µmol TE/g dry weight,
respectively). Significantly differences (p < 0.05) of ORAC value were found in all sample
groups except between sample hydrolysate without enzyme and Alcalase.
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Figure 7. Oxygen radical absorbance capacity (µmol Trolox equivalents (TE)/g dry weight) of
freeze-dried raw material and hydrolysates of Cucumaria frondosa, protein hydrolysate without
added enzyme, hydrolysate using Bromelain + Papain, hydrolysate using Alcalase. The results are
presented as mean± standard deviation (n = 5). Values with different letters are significantly different
(p < 0.05).

The oxygen radical absorbance capacity in this present study is higher compared to
previous studies. Protein hydrolysate of saithe (Pollachius virens) exhibited 331 to 558 µmol
Trolox equivalents/g [27], protein hydrolysate of Atlantic salmon trimmings exhibited
20 µmol Trolox equivalents/g [95], C. frondosa extract exhibited 140 to 800 µmol Trolox
equivalents/g, and protein hydrolysate of red algae (Palmaria palmata) exhibited 45 to
168 µmol Trolox equivalents/g [87]. The differences could be due to different methodology
to measure the oxygen radical absorbance capacity. Another explanation could be the
different parts of C. frondosa used to measure oxygen radical absorbance capacity.

Hydrolysate using Bromelain + Papain appears to exhibit the highest antioxidant
activity (followed by hydrolysate using Alcalase and without enzyme), while freeze-dried
C. frondosa in general exhibited lower antioxidative capacity. It has previously been docu-
mented that some amino acids exhibit antioxidative activity. Amino acids such as proline,
methionine, leucine, glycine histidine, tyrosine, lysine, cysteine, tryptophan and argi-
nine showed a greater total antioxidant capacity compared to other amino acids [96,97].
Hydrolysate using Bromelain + Papain contained the highest concentration of leucine,
tyrosine, histidine, methionine, and phenylalanine, followed by hydrolysate using Alcalase,
hydrolysate without enzyme and freeze-dried sample, based on the content of free amino
acids. This could explain the high antioxidant capacity of hydrolysate using Bromelain +
Papain compared to other samples. However, proline, cysteine, tryptophan could not be
detected, and arginine and glycine could not be separated in this study.

Both tyrosine and tryptophan can scavenge free radicals by electron donation [96]. In
addition, the indole sidechain of tryptophan could contribute to the chelation of prooxidant
metal ions [98]. The sidechain of cysteine and methionine could both act as an antioxidant
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where reactive oxidative species oxidizes the sidechain by electron donation [99,100].
Arginine and lysine both have free radical scavenging properties [100,101]. Moreover, the
imidazole ring of histidine could chelate prooxidant metal ions and prevent the generation
of radicals [102].

Hydrolysate using Bromelain + Papain exhibited the highest ABTS and ORAC activity
compared to other samples, suggesting that the high content of specific free amino acids
contributes to antioxidant activity as previously described. However, hydrolysate using
Bromelain + Papain resulted in a lower FRAP and DPPH activity compared to other
samples. A previous study reported hydrolysate using Papain resulted in low values
of FRAP activity [103], while hydrolysate using Bromelain resulted in a higher FRAP
activity, suggesting that hydrolysate using Papain could be due to the lower ability to
reduce ferric ion to its ferrous form. However, other studies have found the opposite;
hydrolysate using Papain resulted in a higher FRAP activity compared to hydrolysate
using Bromelain [104,105]. It could be other mechanism involve of the antioxidant activity
in the hydrolysate.

The FRAP and the ORAC activity determined in this study result in a higher antioxi-
dant capacity compared to previous studies, indicating a potential use to contribute to food
preservation. However, more studies are needed as the DPPH and ABTS radical scavenging
activity value resulted in a lower radical scavenging activity compared to previous studies.

The analyses produced substantial variances in the observed antioxidant activity
assays. According to the study by Hjellnes et al. [27] on Saithe (Pollachius virens), it could be
challenging to evaluate results from different antioxidant assays both between and within
assessments. The comparison of antioxidant capacity between these methods (FRAP, ABTS,
ORAC, and DPPH) is difficult due to different use of standard (e.g., Propyl gallate and
Trolox equivalents). Furthermore, methods are conducted between different conditions
such as temperature, pH and solvents, and are measuring different mechanisms [106]. In
addition, the degree of hydrolysis, the selection of enzymes used for hydrolysis, the size
and solubility of the peptides, and the number of free amino acids that have antioxidant
ability determine the antioxidant activity [29,107]. In this study, the molecular weight
of peptides in the majority for all samples, was found to be in the region of <0.2 kDa.
According to the studies by Je et al. [108] and Šližytė et al. [109] on hydrolyzed fish proteins,
the antioxidant activity may be associated with a high concentration of small peptides.
Most of the small peptides from freeze-dried C. frondosa, hydrolysate using Alcalase and
without enzyme lies in the size <0.2 kDa, except for hydrolysate using Bromelain + Papain
where it had the highest concentration of smaller peptides between 1–2 kDa. The results
from ABTS activity regarding the peptide size in this study agrees with what was found in
a previous study [110]. The same result was found for ORAC activity of hydrolysate using
Bromelain + Papain, where the content of smaller peptides gave a greater ability to donate
electrons and interact with the free radical compared to the larger peptides.

The result in that study shows the orientation of the molecular size which could con-
tribute to the antioxidant capacity lies between 0 to 5 kDa. High levels of smaller peptides
were found with a peptide size <1 kDa. This is in accordance with previous studies showing
that the concentration of the smaller peptides in the hydrolysates produced from enzymatic
hydrolysis exhibit antioxidant properties [111–113]. The antioxidant activity based on
FRAP, ABTS, DPPH and ORAC may not be primarily acting on the high concentration
of smaller peptides [27]. It may also be reliant on several features, such as the interaction
between the bigger peptides and the smaller peptides of the sample. Furthermore, it can
also rely on the sea cucumber species, harvesting region, dietary preference, body part, and
processing techniques used [84]. The antioxidant capacity could be linked to the smaller
peptides. In addition, no clear connection was found between high amino acid content and
high levels of smaller peptide sizes gave higher antioxidant capacity. A suggestion would
be to do more studies at this topic.
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4. Conclusions

This study investigated the chemical composition and potential food applications of
orange-footed sea cucumber (Cucumaria frondosa). In particular, the antioxidative capacity
and free amino acids associated with umami released by enzymatic hydrolyses by either
Bromelain + Papain (0.36%, 1:1) or Alcalase (0.36%) were studied.

Despite low protein content (5%) in fresh C. frondosa, it is of high quality. The essential
amino acids were high compared to the reference protein (chemical score > 1.0), and the
high concentration of free amino acids associated with umami, sour, sweet and salty may
contribute as a flavor enhancer. Hydrolysate using Bromelain + Papain provided the
highest protein yield and the highest antioxidant activity, probably explained by the fact
that the enzymatic hydrolysis was performed at optimum temperature for these enzymes.

The inorganic arsenic concentration of fresh C. frondosa was not affected by processing.
Due to a limited number of samples, these results must be verified.

The hydrolysate of C. frondosa, produced by the addition Bromelain and Papain,
exhibited a promising antioxidant capacity as indicated by the ferric reducing antioxidant
power (FRAP) and oxygen radical absorbance capacity (ORAC). However, 2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical scavenging activities were found to be lower compared to what has been observed
in previous studies. This study demonstrates that C. frondosa may provide interesting
functional properties such as taste enhancement and antioxidant capacity, and be a potential
functional ingredient; however, more studies are recommended to verify the antioxidant
capacity in C. frondosa.
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