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Abstract: The gelation of scallop Patinopecten yessoensis male gonad hydrolysates (SMGHs) and
κ-carrageenan (KC) subjected to pH (2–8, 3–9) and NaCl/KCl stimuli-response was investigated.
SMGHs/KC gels subjected to a NaCl response exhibited an increasing storage modulus G′from
2028.6 to 3418.4 Pa as the pH decreased from pH 8 to 2, with corresponding T23 fluctuating from
966.40 to 365.64 ms. For the KCl-treated group, SMGHs/KC gels showed an even greater G′ from
4646.7 to 10996.5 Pa, with T23 fluctuating from 622.2 to 276.98 ms as the pH decreased from 9 to 3. The
improved gel strength could be ascribed to the blueshift and redshift of hydroxyl groups and amide I
peaks, enhanced enthalpy and peak temperature, and gathered characteristic diffraction peaks from
SMGHs, KC, NaCl, and KCl. The CLSM and cryo-SEM images further reflected that SMGHs/KC
gels showed more flocculation formation and denser and more homogeneous networks with smaller
pore sizes in more acidic domains, especially when subjected to the KCl response. This research
gives a theoretical and methodological understanding of the construction of salt- and pH-responsive
SMGHs/KC hydrogels as novel functional soft biomaterials applied in food and biological fields.

Keywords: scallop; κ-carrageenan; NaCl; KCl; responsive hydrogels

1. Introduction

The physicochemical behavior and the structural conformation of stimuli-responsive
hydrogels could significantly vary when subjected to external responses, including pH,
temperature, light, ionic strength, solvent, redox, and magnetic/electric fields [1]. Stimuli-
responsive hydrogels performing as “smart” materials have the advantages of great water
content, 3D porous networks, and flexible shapes [2], allowing potential applications in
biosensors [3], actuators [4], controlled drug delivery carriers with new hydrogel struc-
tures [5,6], tissue scaffolds [7], and regenerative medicine [8]. However, traditional stimuli-
responsive hydrogels typically experience restrictions such as responding to single stimuli
with resultant weak rheological strength. In this case, multi-stimuli-responsive hydrogels
have been recently reported with stronger rheological properties, as represented by salep
glucomannan/xanthan gum with a pH/temperature response [9], alginate/Ag/Fe3O4 with
a pH/magnetic response [10], starch/alginate with a pH/amylase response [11], hyaluro-
nan with a redox/pH response [12], and guar gum with a pH/salt response [13]. However,
multi-stimuli-responsive hydrogels are still limited, and the appropriate tailoring of these
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hydrogels based on food materials would promise multi-stimuli-responsive, strong gel
behaviors, as well as biocompatibility in polymer networks.

The scallop (Patinopecten yessoensis), as a type of bivalve species, has exhibited continu-
ously increasing production since 1982, when it was first introduced in China. It contains
abundant protein content with a yield of 1.79 million tons in 2022 and represents an im-
portant pillar industry associated with aquaculture. Previously, scallop P. yessoensis male
gonad hydrolysates (SMGHs) have been demonstrated to perform as weak gels subjected
to enzymolysis. It contains abundant essential amino acids, including cationic amino acids
of lysine and arginine, anionic amino acids of glutamic acid and aspartic acid, and the
neutral amino acid of glycine making up the major proportion. Moreover, the rheological
and microstructural behaviors of SMGHs are greatly improved with the combination of
κ-carrageenan (KC) [14], low-acyl gellan gum [15], xanthan gum, guar gum, locust bean
gum, ι-carrageenan, sodium alginate, pectin, acacia gum, and agar [16]. Among them,
SMGHs and KC reflect the most synergistic combination represented by higher gel strength
and denser microstructure. In addition, KC exhibits outstanding advantages compared
with other polysaccharides including gel stability, electronegativity, and thermoreversible
character [17]. Furthermore, various SMGHs/polysaccharide hydrogels exhibit consid-
erable gel performance upon diverse environmental stimuli, such as pH, mixing ratios,
and different salts and strengths [18,19]. Therefore, it is essential to further construct
SMGHs/KC-based multi-stimuli-responsive hydrogels with improved rheological and
microstructural moieties for large-scale food and biomedical applications.

The objective of this report was to fabricate pH-/salt-stimulated SMGHs/KC hydro-
gels with appreciable gelation performance. The gelation characterization and mechanism
were investigated by rheometry, low-field NMR (LF-NMR) relaxometry, Fourier transform
infrared (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), magnetic
resonance imaging (MRI), and confocal laser scanning microscopy (CLSM) coupled with
cryo-scanning electron microscopy (cryo-SEM). The data from this content could support
the construction of SMGHs/KC-based multi-stimuli-responsive hydrogels as effective soft
materials with extensively applicable pH and ionic ranges in food and biomedical fields.

2. Materials and Methods
2.1. Materials and Chemicals

Scallop P. yessoensis male gonads were donated by Zoneco Co., Ltd. (Dalian, China).
The fresh gonads were washed, boiled to inactivate endogenous enzymes, and freeze-
dried to obtain the resultant powders, which were stored at −30 ◦C and subjected to seal
preservation before the experiment.

κ-Carrageenan was obtained from Aladdin Co., Ltd. (Shanghai, China). Trypsin and
rhodamine B isothiocyanate (RITC) were provided by Sigma-Aldrich Co., Ltd. (St. Louis,
MO, USA). NaCl and KCl were purchased from Sangon Biotech Co., Ltd. (Shanghai, China).
All other chemical reagents were of analytical quality.

2.2. Scallop Male Gonad Hydrolysates (SMGHs) Preparation

Gonad powders were dispersed in ultrapure water with a protein content of 4% (w/v).
Briefly, enzymolysis was started by trypsin addition (3000 U/g protein) at pH 8.0 and 37 ◦C.
Then, the system was incubated at pH 8.0 with 0.5 M NaOH adjustment and 37 ◦C for
3 h. Finally, a 10 min boiling water bath was applied to inactivate the trypsin, and the
hydrolysates were freeze-dried to obtain the corresponding powders, which were preserved
at −30 ◦C before the experiment. SMGHs always showed negative zeta potential values
of approximately around −36 mV at pH 2–9 without isoelectric points, and possessed
molecular weights of 0.2–14.3 kDa, with the main fraction of 3 kDa.

2.3. Sample Preparation

SMGHs (50 mg/mL) and KC (13.8 mg/mL) stock solutions were separately fabricated
by dissolving powders in ultrapure water, the pH of which was regulated to pH 8, 5, and 2
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for NaCl-stimulated systems, and pH 9, 6, and 3 for KCl-stimulated systems. The pH was
adjusted by 0.5 M NaOH and 1 M HCl. Then, SMGHs and KC were blended together with
a final mass ratio of 1:1 (w/w) and a total solid content of 18 mg/mL at the same pH. After
total blending, NaCl or KCl was added to the SMGHs/KC system with an eventual salt
concentration of 0.2 M. The pre-SMGHs/KC gels were stored at 4 ◦C for 16 h to achieve
sufficient hydration and gelation.

2.4. Rheological Measurement

The rheological properties of various pH-/salt-stimulated SMGHs/KC hydrogels were
examined via a Discovery HR-1 rheometer (TA Instruments Menu Co., Ltd., New Castle,
DE, USA) equipped with parallel plate geometry (d = 40 mm). In frequency sweeps, the
storage modulus G′ and loss modulus G′′ within 0.1–10 Hz were detected with a strain,
gap value, and temperature of 0.5%, 1000 µm, and 25 ◦C, respectively. A 0.5% strain was
obtained from the linear viscoelastic region via an oscillatory stress sweep model from 0.1
to 1000%.

2.5. LF-NMR Measurement

Water migration properties were detected based on an NMR analyzer (MesoMR23-
060V-1, Niumag Analytical Instrument Co., Ltd., Suzhou, China) with a resonance frequency,
magnetic field strength, and operating temperature of 22.4 MHz, 0.5 T, and 32 ◦C, respectively.

2.6. Magnetic Resonance Imaging (MRI) Measurement

A magnetic resonance imaging technique was employed to detect the proton density
images of T1 and T2 of samples, in which the corresponding set parameters of offset slice,
thickness of each layer, and slice gap were 28.3 mm, 3.0 mm, and 2.0 mm, respectively.

2.7. FTIR Measurement

FTIR spectra of samples were obtained using a PerkinElmer infrared spectrometer
(Spectrum 100, Waltham, MA, USA). Initially, the freeze-dried sample was thoroughly
blended and ground with KBr at a mass ratio of 1:100 using a mortar pestle. Then, the
mixture was pressed to form a pellet using a pelleting instrument. The FTIR tests were
conducted at room temperature with a wavenumber range of 4000–400 cm−1, spectral
resolution of 4 cm−1, and total scans of 32.

2.8. DSC Measurement

The thermal properties of the samples were analyzed using DSC (DSC-60 plus,
Shimadzu, Kyoto, Japan). A total of 5–10 mg of the sample was accurately weighed
and placed in an aluminum crucible and sealed in aluminum pans. They were scanned
between 30 and 200 ◦C, with a heating rate of 10 ◦C/min.

2.9. XRD Measurement

The crystal structures of the samples were measured with XRD (7000S, Shimadzu,
Kyoto, Japan) with a Bragg–Brentano geometry using Cu Kα radiation. The data were
collected over the 2θ range from 10◦ to 80◦ at a scanning speed of 5◦/min.

2.10. CLSM Measurement

A Leica TCS SP8 (Leica, Wetzlar, Germany) was used to capture the CLSM images
of the samples at room temperature. Initially, 1 mL of the sample (9 mg/mL) was labeled
with 50 µL of RITC (1 mg/mL). Then, the stained mixture was placed on a glass bottom
cell culture dish and closed with a cover slip. The incident light was excited at 561 nm and
the laser beam was emitted within 550–750 nm wavelengths in helium/neon laser mode.
The images were acquired with a 40× oil immersion objective.
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2.11. Cryo-SEM Measurement

SU8010 SEM (Hitachi Co., Ltd., Tokyo, Japan) was applied to obtain cryo-SEM images.
Various gels were immobilized in a copper holder and then frozen and subjected to liquid
nitrogen slush, which was quickly delivered to a cryo-preparation chamber (PP3010T
cryo-SEM preparation system, Quorum Technologies, Hertfordshire, UK) under vacuum.
Various samples were further subjected to freeze-fracture, sublimation (−60 ◦C, 40 min),
and Pt spraying (10 mV, 60 s). Finally, cryo-SEM images were captured at a 10.0 kV
accelerating voltage.

2.12. Statistical Analysis

All results are presented as the mean ± standard deviation (n = 3). The data of LF-
NMR and proton density were evaluated via Student’s t test, and a level of p < 0.05 was
recognized as statistically significant.

3. Results and Discussion
3.1. Rheological Properties of pH/Salt-Responsive SMGHs/KC Hydrogels

Ion and pH are two dominant factors that induce the gelation of protein/polysaccharide
composite hydrogels, mainly based on the mediation of electrostatic forces. As reported,
KC is especially sensitive to monovalent salts while IC prefers divalent salts during gelation,
especially in terms of viscoelastic properties of gels [20], for which reason monovalent
salts were chosen for this work. In a previous study, we obtained the pH state diagram of
SMGHs/KC complexes as a function of NaCl/KCl concentrations containing mixed poly-
mers, soluble complexes, and insoluble coacervates [19]. According to the phase boundaries
of pHc and pHϕ1, pH 8, 5, and 2 have been selected as representative points for hydrogels
stimulated by NaCl, and pH 9, 6, and 3 have been selected as representative points for
hydrogels stimulated by KCl. Different from SMGHs/KC fabricated by Yan et al. [19] only
subjected to acidic pH, SMGHs/KC with 0.2 M NaCl/KCl stimulation were developed in a
wide pH range from pH 9 to 2 in this work. SMGHs/KC without NaCl/KCl stimulation
exhibit only relatively weak gel strength, with G′ ranging from 200 to 1000 Pa within pH
9–3 [18], which is significantly lower than that of SMGHs/KC gels with both salt and pH
stimulation in this work.

As shown in Figure 1, SMGHs/KC hydrogels subjected to NaCl/KCl stimulation
at pH 8–2/9–3 exhibited G′ values that always surpassed G′ ′ values and increased G′

as the frequency increased, representing solid-like and elastic dominant properties. In
detail, SMGHs/KC hydrogels significantly increased from 2028.6 to 3418.4 Pa and from
4646.7 to 10996.5 Pa when subjected to NaCl and KCl stimulation as the pH decreased
from 8 to 2 and 9 to 3, respectively. The enhanced gel strength could be ascribed to
greater electrostatic attractive forces within cationic groups such as lysine and arginine in
SMGHs and anionic sulfate groups (SO4

2−) in KC with much more firmly crowded gel
frameworks [14]. As the pH decreases, a transition from segregative to associative phase
separation would occur continuously within proteins and polysaccharides. In segregative
phase separation, they carry similar net charges and experience electrostatic repulsive
forces, causing separation into both protein-rich and polysaccharide-rich phases. In terms
of associative phase separation, the two biopolymers have opposing charges and experience
electrostatic attractive forces, causing increasing protein/polysaccharide combination [21].
A similar observation has been described for Alaska pollock protein/KG [22], in which
this hydrogel prefers gelation at acidic domains with higher rheological strength due to
stronger electrostatic interactions between KC and proteins. As reported, a relatively
alkaline environment would partially destroy hydrogen bonds in hydrogels, leading to
weakened gel strength [18]. In addition, the physical combination between proteins and
polysaccharides would hold soluble aggregates together and restrict the flexibility of
individual biopolymer chains [23]. Additionally, increasing anionic patches on proteins at
alkaline pH could also lead to stronger repulsions within biopolymers [23].
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Figure 1. Rheological profiles of SMGHs/KC hydrogels in response to pH/salt stimuli. (A) Storage
modulus G′ and loss modulus G′′ curves of SMGHs/KC gels subjected to pH 2–8 and 0.2 M NaCl
stimuli. (B) Storage modulus G′ and loss modulus G′′ curves of SMGHs/KC gels subjected to pH 3–9
and 0.2 M KCl stimuli.

Regarding the participation of NaCl and KCl, SMGHs/KC-based hydrogels exhibited
stronger gel strength with a KCl response than with a NaCl response at a similar pH, with
an almost 2–3-fold increase. In general, the combination of proteins and polysaccharides
involves two steps, named the Veis–Aranyi model [24]. Initially, proteins and polysaccha-
rides possessing contrary charges could generate neutral complexes mainly governed by
electrostatic forces. In addition, some nonelectrostatic forces, including hydrogen bonding,
hydrophobic, and van der Waals forces, could further facilitate these complexes to rear-
range and generate agglomerates, leading to increasing affinity interactions within various
biopolymers [25]. Considering the dominant role of electrostatic interactions, salt ions could
generate salt bridges within proteins and polysaccharides to improve the gel strength, and
the salting-out effect would promote the large generation of protein particles and polysac-
charide chains [19]. As reported, KC could generate a solid gel with the involvement of
metal ions, especially K+, showing a better effect than Na+ [26]. A similar phenomenon has
been reported by Haug et al. [27] where fish gelatin/KC mixtures could exhibit a maximum
gel strength of approximately 25 kPa with 20 mM KCl addition but a lower gel strength of
less than 5 kPa with 20 mM NaCl addition. Indeed, K+ is specifically bound to KC, while
Na+ only affects the carrageenan network via common ionic effects, as the salt-enhanced
effect is much more noticeable with K+ than with Na+ for sulfated polysaccharides [27].
Accordingly, rheological properties have a good correlation with mechanical properties,
in which good rheological strength reflects excellent mechanical strength. This correlation
has been reported in soy protein/chitin [28], oat protein/polysaccharides (carrageenan,
dextrin, and chitosan) [29], and chitosan/alginate/fucoidan complex gels [30]. Therefore, it
is suggested that an acidic medium combined with KCl stimulation is highly favorable for
SMGHs/KC hydrogel construction due to stronger electrostatic interactions within SMGHs
and KC, and more K+ in KC junction zones for specific binding.

3.2. Water Migration and Distribution of pH/Salt-Responsive SMGHs/KC Hydrogels

The T2 relaxation time of pH/salt-responsive SMGHs/KC hydrogels is presented in
Figure 2A,B, and Tables S1 and S2. Overall, two obvious peaks appeared at 0.53–0.70 ms
(T21) and 276.98–1086.11 ms (T23) in the SMGHs/KC gels subjected to pH/salt-responsive
stimuli (Figure 2A,B). Typically, T21 represents bound water closely combined with macro-
molecules, and free water is located in the exterior of the gel framework with more flexi-
bility [14]. As presented, the fraction of T23 was detected to be more than 98%, indicating
the predominant part of free water in SMGHs/KC gels subjected to pH/salt-stimuli-
response. Moreover, as pH decreased, T21 was almost unaffected by pH, while T23 initially
increased from 966.40 to 1035.88 ms for the NaCl group and 622.26 to 1086.11 ms for the KCl
group, and then dramatically decreased to 365.64 ms and 276.98 ms, respectively (p < 0.05)
(Figure 2A,B). Accordingly, the T2 relaxation time could indicate the water dynamic state
in protein-derived gels in situ with no external solution removal [14], in which shorter
relaxation times indicate tighter water–biopolymer interactions with higher gel strength.
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In this work, SMGHs/KC gels reflected a shorter T23 at a more acidic domain and with
a KCl response, corresponding well to the rheological data that SMGHs/KC gels exhib-
ited the highest G′ values of even 10,996.5 Pa when subjected to pH 3 and 0.2 M KCl
(Figures 1 and 2B,C). To some extent, with the response of acidic pH and KCl, SMGHs/KC
gels tended to limit the flexibility of water molecules and enhance the binding strength
of water in the gel [14]. Therefore, it is suggested that T23 undergoes a fluctuation as the
pH drops from 8 to 2 and 9 to 3 in pH/salt-responsive SMGHs/KC hydrogels, in which
SMGHs/KC with KCl and more acidic pH responses could restrict water mobility and
therefore support stronger rheological strength.
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Figure 2. Water migration and water distribution profiles of SMGHs/KC hydrogels in response to
pH/salt stimuli. (A) T2 relaxation time curves of SMGHs/KC gels at pH 2–8 and 0.2 M NaCl. (B) T2

relaxation time curves of SMGHs/KC gels at pH 3–9 and 0.2 M KCl. (C) T1 and T2 weighted images
of SMGHs/KC gels upon pH 2–8 and 0.2 M NaCl stimulus response. (D) T1 and T2 weighted images
of SMGHs/KC gels upon pH 3–9 and 0.2 M KCl stimulus response.

T1 and T2 proton density images relating to the bound and free water distribution of
pH/salt-stimuli-responsive SMGHs/KC hydrogels are presented in Figure 2C,D. Accord-
ingly, the red color represents a high proton signal density with more hydrogen protons
and the blue color represents a low proton signal density [31]. Obviously, the water was
unevenly spatially distributed within the pH/salt-responsive SMGHs/KC hydrogels, and
the T2 group reflected a brighter and redder signal density than the T1 group (Figure 2A,B),
indicating the dominant part of free water in the composite gels. However, when compar-
ing T1 and T2 weighted images separately, they showed comparable quantitative signal
intensity with no significant difference when subjected to various pH and salt responses.
Thus, it could be assumed that the water distribution in SMGHs/KC gels is steadily sub-
jected to pH and NaCl/KCl responses, and free water occupies the dominant part in the
composite gels with denser hydrogen protons.

3.3. FTIR Spectra of pH/Salt-Responsive SMGHs/KC Hydrogels

The intermolecular interactions within SMGHs and KC subjected to various pH values
and salts were characterized by FTIR (Figure 3A). Obviously, pH and salts could mainly
change the O–H stretching vibration of hydroxyl groups and the absorption peaks of amide
I bands. The original spectra of KC and SMGHs showed O–H and amide I peaks at 3444 and
1642 cm−1 and 3300 and 1647 cm−1, respectively (Figure 3A). With the stimulation of pH
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and salt, SMGHs/KC exhibited corresponding peaks within 3300 and 3444 cm−1, and 1642
and 1647 cm−1, respectively (Figure 3A), indicating the good compatibility and interaction
between SMGHs and KC. A similar phenomenon has also been found by Guo [32] where
FTIR peaks of pea protein/high methoxyl pectin complexes are composed of representative
peaks in single protein and polysaccharide, speculating the effective interactions existing
in the complexes. Moreover, as the pH decreased from 8 to 2, the O–H stretching bands
in NaCl-responsive SMGHs/KC showed a decreasing trend (3435–3428 cm−1), while the
amide I peaks showed an increasing trend (1637–1647 cm−1) (Figure 3A). However, O–H
stretching bands and amide I peaks in NaCl-responsive SMGHs/KC gels showed a contrary
tendency (Figure 3A). As reported, the blueshifts of O–H stretching bands and amide I peaks
represent stronger hydrogen bonds and electrostatic interactions, respectively [33]. Thus, it
is assumed that hydrogen bonds are more dominant in NaCl-stimulated SMGHs/KC hy-
drogels while electrostatic interactions are more favorable for KCl-stimulated SMGHs/KC
hydrogels as the pH decreases.
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3.4. DSC Curves of pH/Salt-Responsive SMGHs/KC Hydrogels

The DSC thermograms of various pH/salt-responsive SMGHs/KC hydrogels are
presented in Figure 3B. All samples showed a broad endothermic peak characteristic dur-
ing heating. Single SMGHs and KC exhibited an endothermal peak at approximately
84.3 ◦C and 104.9 ◦C, respectively. With the stimulation of pH/salt, SMGHs/KC hydrogels
exhibited a relatively lower endothermal peak of approximately 63 ◦C and enthalpy of
approximately 152.7 J/g upon NaCl treatment and 76.2 ◦C combined with 213.8 J/g upon
KCl treatment. Obviously, in comparison to the NaCl-treated group, KCl significantly
increased the denaturation temperature and enthalpy of SMGHs/KC hydrogels. This result
indicated that stimulation with KCl greatly increased the thermal stability of SMGHs/KC
hydrogels compared with NaCl stimulation. These results were consistent with rheological
data showing that KCl was more favorable for SMGHs/KC hydrogel construction. There-
fore, it is suggested from a thermodynamic point of view that the beneficial effect of KCl
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could increase the difficulty of destroying the internal structure of SMGHs/KC at high
temperatures.

3.5. XRD Spectra of pH/Salt-Responsive SMGHs/KC Hydrogels

XRD measurements were applied to investigate the changes in the crystallinity of the
pH/salt-responsive SMGHs/KC mixtures. SMGHs and KC exhibited one wider hump
at 2θ values of approximately 20◦ and 21◦ (Figure 3C), indicating the amorphous nature
of the SMGHs and KC. NaCl and KCl presented characteristic diffraction peaks at 31.7
and 66.2◦, 28.3◦, and 58.6◦ (Figure 3C), respectively, indicating the crystalline structure of
salts. Collectively, various pH/salt-responsive SMGHs/KC mixtures exhibited amorphous
structures with broad peaks in the vicinity of 28.3◦ and 50.2◦, as well as some narrow peaks,
consistent with those of SMGHs, KC, and salts. These results indicated that SMGHs and
KC might have good compatibility and interaction, thus modifying the original crystal
structure of SMGHs/KC. A similar phenomenon has also been found by Guo et al. [32]
where crystallization peaks of CaCl2-induced pea protein/high methoxyl pectin complexes
are consistent with those of single pea protein, high methoxyl pectin, and CaCl2. Thus, it is
assumed that SMGHs and KC, upon pH/salt-responsiveness, have good compatibility in
complex gel systems, maintained by intermolecular interactions.

3.6. Microstructural Properties of pH/Salt-Responsive SMGHs/KC Hydrogels

Confocal images of pH/salt-responsive SMGHs/KC hydrogels are shown in Figure 4A.
As the pH decreased, SMGHs were gradually protonated, leading to more SMGH aggrega-
tion. Moreover, increasing cationic SMGH patches containing lysine and arginine could
electrostatically interact with anionic sulfate groups in KC, leading to more SMGHs/KC
coacervates. Collectively, the denser and larger SMGH aggregates and SMGHs/KC coac-
ervates led to continuous, homogeneous, and dispersed flocculation, coupled with the
formation of salt bridges and phase separation. These phenomena could be ascribed to
greater binding between SMGHs and KC with the stimulation of pH and salt, especially
KCl, as reflected by rheological, water migration, FTIR, and DSC data. Therefore, it is
suggested that a more acidic pH combined with NaCl/KCl stimulation would be beneficial
to the flocculation of SMGHs/KC, as revealed by more RITC staining corresponding to
diameter and density, which are favorable for dramatically enhanced rheological properties.

The cryo-SEM images of pH/salt-stimuli-responsive SMGHs/KC hydrogels are shown
in Figure 4B. Overall, as the pH decreased, the network of SMGHs/KC gels became denser
with decreased pore sizes and thicker network walls, exhibiting a honeycomb-like well-
distributed network. Moreover, in comparison to NaCl stimulation, KCl stimulation could
induce SMGHs/KC gels with even smaller pore sizes and homogeneous networks. In
general, the pore size of the gel network is well associated with the interaction between
biopolymers and water, in which smaller pore sizes could contribute to stronger water–
biopolymer interactions, with less water leaving [34]. Additionally, the smaller pore size
would cause a more specific surface of the gel skeletal architecture, allowing a smaller
hydration space in which SMGHs/KC and water molecules could closely combine. Thus,
water in SMGHs/KC gels would hardly migrate at lower pH and KCl stimulation due to
smaller pores, leading to stronger cross-linking within SMGHs and KC with enhanced gel
toughness and less T2 relaxation time as shown in Figures 1 and 2A,B. In contrast to our
observation, Yan et al. [35] have observed that the microstructures of corn fiber gum/soy
protein hydrogels convert from coarse and irregular to smooth and ordered as the pH
increases from 5.0 to 7.5 with excellent textural properties. Indeed, as the pH is distant
from the pI (4.5–5.2) of soy protein, the increase in the net charges on the surface of the two
polymers could enhance interactions between corn fiber gum and soy protein, contributing
to the formation of more stable and regular networks. Collectively, SMGHs/KC gels could
generate denser and more well-distributed networks subjected to more acidic pH and KCl
responses, and thereby energetically lock more water to construct gel networks with greater
rheological strength.
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4. Conclusions

SMGHs/KC gels were constructed and subjected to pH (2–8, 3–9) and NaCl/KCl
stimuli-response. Collectively, SMGHs/KC gels exhibited stronger rheological strength and
shortened water migration in an acidic medium due to stronger electrostatic interactions
between SMGHs and KC. In addition, the KCl stimulus response contributed to higher rhe-
ological strength and thermal stability because of more K+ in KC junction zones for specific
binding. Moreover, water distribution in SMGHs/KC gels was steadily subjected to pH
and NaCl/KCl response, and free water occupied the dominant part with denser hydrogen
protons. Hydrogen bonds were more dominant in NaCl-stimulated SMGHs/KC hydrogels
while electrostatic interactions were more favorable for KCl-stimulated SMGHs/KC hydro-
gels as the pH decreased, leading to good compatibility in gelation between SMGHs and
KC. Furthermore, SMGHs/KC gels exhibited denser and more homogeneous networks
with more flocculation formation when subjected to more acidic pH and KCl responses
to support gel frameworks with stronger gel strength. The current work proposed that
SMGHs/KC gels could be developed as potential materials with appreciable rheological
strength and microstructural networks. Therefore, they contribute to the development of
encapsulation of bioactive components, modification of textural and sensory properties,
fabrication of edible and antibacterial coatings, and construction of fat replacers in food
and biological fields.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/foods12193598/s1, Table S1: T2 relaxation time curves of
SMGHs/KC gels subjected to pH 2–8 and 0.2 M NaCl-stimuli-response; Table S2: T2 relaxation time
curves of SMGHs/KC gels subjected to pH 3–9 and 0.2 M KCl-stimuli-response.

https://www.mdpi.com/article/10.3390/foods12193598/s1
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