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Abstract: Due to the dark red surface of ripe fresh peaches, their internal injury defects cannot
be detected using the naked eye and conventional images. The rapid and accurate detection of
fresh peach defects can improve the efficiency of fresh peach classification. The goal of this paper
was to develop a nondestructive approach to simultaneously detecting internal injury defects and
external injuries in fresh peaches. First, we collected spectral data from 347 Kubo peach samples
using hyperspectral imaging technology (900–1700 nm) and carried out pretreatment. Four methods
(the competitive adaptive reweighting algorithm (CARS), the combination of CARS and the average
influence value algorithm (CARS-MIV), the combination of CARS and the successive projections
algorithm (CARS-SPA), and the combination of CARS and uninformative variable elimination (CARS-
UVE)) were used to extract the characteristic wavelength. Based on the characteristic wavelength
extracted using the above methods, a genetic algorithm optimization support vector machine (GA-
SVM) model and a least-squares support vector machine (LS-SVM) model were used to establish
classification models. The results show that the combination of CARS and other feature wavelength
extraction methods can effectively improve the prediction accuracy of the model when the number of
wavelengths is small. Among them, the discriminant accuracy of the CARS-MIV-GA-SVM model
reaches 93.15%. In summary, hyperspectral imaging technology can accomplish the accurate detection
of Kubo peaches defects, and provides feasible ideas for the automatic classification of Kubo peaches.

Keywords: Kubo peach; defect; CARS-MIV; GA-SVM; nondestructive testing

1. Introduction

“Early maturity Okubo Peach”, referred to as the “Kubo peach”, is a kind of premature
variety of peach that originated in Japan, in Okubo; this fruit type has a fruit weight of
about 230–280 g, dense meat, less fiber, and more juice; contains 16.48% soluble solid
(16.48%); and is high-quality, rich in nutrition, and popular with consumers [1]. In the
growing and harvesting process of Kubo peaches, due to climate and unavoidable collision
in the harvesting process, the Kubo peach is prone to defects such as dark wounds, lesions,
rot, scars, and marks [2,3]. The existence of these defects on the fruit surface will reduce
the quality and market value of the fruit. When purchasing fruits, consumers tend to
choose fruits with a good appearance. However, for obvious external obvious defects such
as scab, rot, and others, peaches can be detected using conventional visual technology.
While mature peaches are mostly red, the naked eye cannot identify damaged peaches, and
ordinary machine vision cannot identify them, which leads to the classification and sorting
efficiency of peaches not being high, affecting the commodity value of the fruit, and then,
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affecting the export and sales of Kubo peaches. At present, the peach fruit on the market
mainly relies on manual grading. Manual classification has the problems of low efficiency
and low accuracy [4]. Therefore, it is of practical value to study a fast and efficient method
for the detection of dark wounds and obvious external defects in Kubo peaches.

Hyperspectral imaging is a non-contact image acquisition technology used to obtain
continuous spectral information for objects in different wavelength ranges. It combines
optical and digital image processing technology to provide rich spectral data and spatial
information, making the detection and analysis of the surface composition, chemical
composition, and specific characteristics of the object more accurate and comprehensive.
Hyperspectral imaging combined with chemometric approaches is proven to be a powerful
tool for the quality evaluation and control of fruits [5,6], as it enables the assessment of
internal properties that cannot be inspected using computer vision, including soluble solid
content [7], acidity [8], and texture [9]. Therefore, to detect fruit quality defects, such as
immaturity [10], bruising [11], etc., it is feasible to use hyperspectral imaging technology to
detect the dark wound defects and external defects of peaches.

In recent years, hyperspectral imaging technology has been widely applied to the
external quality detection of fruits and vegetables, and the research subjects mainly in-
clude dates, cucumbers, cherries, citrus fruits, apples, peaches [12–22], etc. Most scholars
have combined hyperspectral imaging technology with the related stoichiometry, and
have obtained relatively scientific research results. In terms of internal quality detection,
Li et al. [13] combined hyperspectral imaging technology with a multiple linear regression
model to predict the soluble solid content of Hami jujubes, and the correlation coefficient
of the prediction set reached 0.857. Li. et al. [14] combined hyperspectral technology with
the CARS method to detect cucumber hardness and water loss, two indexes representing
cucumber freshness. The final correlation coefficient of the PLSR model for hardness was
0.942, and that of the PLSR model for moisture was 0.822. Pullanagari et al. [15] combined
hyperspectral imaging technology with a partial least-squares regression (PLSR) model
and a Gaussian process regression (GPR) model to detect the hardness and total soluble
solids of sweet cherries. Finally, the correlation coefficient of total soluble solids predicted
using the GPR model was 0.88. The correlation coefficient of hardness prediction was 0.60.
He et al. [16] combined hyperspectral imaging technology with multiplicative scattering
correction, Savitzky–Golay, and first-order derivative pretreatment methods to establish
a PLSR model to predict the water content of dried purple potatoes, and the correlation
coefficient of the final model reached 0.975. In terms of defect detection, Tang et al. [17]
fitted the hyperspectral imaging data of apples with different damage levels using piece-
wise nonlinear curves, studied the spectral data of damaged apples within the band range
of 386–1016 nm, and concluded that the final score detection accuracy of this method
reached 97.33%. Xu et al. [18] combined hyperspectral imaging technology with a par-
tial least-squares regression model to detect the relationship between the damage degree
and internal attribute quality of mangos, and graded mangos according to the damage
degree. The final classification accuracy was 77.8%. WANG et al. [19] selected different
pretreatment methods to establish an LS-SVM model based on the spectral data of the
upper and lower surfaces of citrus leaves with yellow dragon disease. The results showed
that the recognition rates of the upper and lower surfaces of citrus leaves were 100% and
92.5%, respectively, when the second derivative was selected as the pretreatment method.
Zhang et al. [20] used mean-PC image, an improved watershed segmentation algorithm,
and hyperspectral technology to distinguish normal oranges from defective oranges, and
the overall classification accuracy reached 97.73%. Based on mean-PC5 and the simple
global threshold method, rotten oranges and intact oranges were identified, and the recog-
nition rate reached 100%. Zhang H. et al. [21] used hyperspectral imaging technology to
detect scab, black spot, root rot, and brown disease in citrus, with a 94% final discrimination
rate. Chen Si et al. [22] used hyperspectral imaging technology and the band selection
method to propose defect region segmentation and recognition algorithms for peach brown
rot and scab, with final recognition efficiencies of 96.9% and 88.4%, respectively.
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These studies used hyperspectral imaging technology to model and analyze the in-
ternal qualities and external defects of fruits; they achieved good results with research
methods primarily based on one or more single-feature wavelength extraction methods,
which have wavelength redundancy problems or wavelengths that are too small. The
wavelength combination method can maximize useful information from samples and
improve detection accuracy. There are few reports regarding using the CARS-MIV combi-
nation method to extract characteristic wavelengths and establish GA-SVM and LS-SVM
classification models to detect peach dark wound defects.

Based on the above problems, this study aimed to use hyperspectral imaging technol-
ogy combined with stoichiometric methods to achieve rapid, efficient, nondestructive batch
identification of the Kubo peach. This study’s specific process included the following:

(1) Collecting Kubo peach fruit with different defect types and obtaining hyperspectral
image data between 900 nm and 1700 nm;

(2) Selecting the appropriate pretreatment method by establishing a partial least
squares (PLS) model;

(3) Introducing the CARS-MIV group method to extract the feature wavelength and
compare the results with other classical feature wavelength extraction methods;

(4) Introducing the GA-SVM discriminant model and comparing it with the classical
LS-SVM model to select the best prediction model.

In this study, HSI imaging technology provided a new research method for the rapid,
efficient batch identification of Kubo peach external defects and the accurate classification
of Kubo peach fruit.

2. Materials and Methods
2.1. Sample Collection

The sample consisted of Kubo peaches harvested on 12 July 2022, from Xi shan di
Village, Jin zhong City, Shanxi Province, China. To ensure accuracy, the principles of
uniform size (single fruit weight 170–180 g) and complete defect types (intact peaches,
scab peaches, and rotten peaches) were selected during harvest. Damaged Kubo peach
samples were placed in a paper box to simulate collision during harvest and transportation.
After selection and analysis, 347 Kubo peaches were chosen for spectral data analysis.
Selected Kubo peaches were left at room temperature for 24 h, and the three sample
types were randomly divided into 259 correction sets and 88 prediction sets according to
the Kennard–Stone algorithm ratio of 3:1. Figure 1 shows sample images of four Kubo
peach types.
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2.2. Hyperspectral Imaging System

Hyperspectral imaging technology combines spectral information with spatial infor-
mation [23]. It has hyperspectral and spatial resolution, and higher resolution and accuracy
for the surface components, component distribution, and feature extraction of objects [24].
The hyperspectral sorting instrument adopted in this study is shown in Figure 2, and the
specific parameters of the hyperspectral sorting instrument are shown in Table 1.
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Figure 2. Hyperspectral sorter.

Table 1. Hyperspectral sorter’s parameters.

Name Parameter

Model number ZOLIX Gaia Sorter-type “Gaia” hyperspectral sorter

Main instrument parts
Image-lambda-n17e spectral camera, camera
obscura, electronic control platform, bromo-tungsten
lamp (4), external computer

Sample exposure time 20 ms
Lens distance from sample height 22 cm
Forward speed of the electronically
controlled mobile platform 2 cm/s

As the spectrum was affected by changes in light intensity and the dark current in
the lens [25] during the acquisition process, the acquired images were not clear, so it was
necessary to perform black-and-white correction before spectrum acquisition [26].

The following calculation formula was used for black-and-white correction.

R =
IR − ID
IW − ID

(1)

Note: R—corrected image; IR—original image; ID—blackboard correction image;
IW—whiteboard correction image.

2.3. Main Data Processing Methods
2.3.1. CARS-MIV Feature Variable Extraction Method

The competitive adaptive reweighting algorithm (CARS) is an unstable algorithm;
the regression coefficient R of the variable set changes as the sample numbers change [27].
Therefore, the absolute value of the regression coefficient R cannot effectively reflect a
variable’s importance, and the feature variable extracted by a single CARS algorithm
will occupy approximately 1/3 of the spectral data’s full wavelength. Modeling data are
not concise enough. Therefore, the average influence value algorithm (MIV) [28] was
introduced in this study to conduct secondary screening of characteristic wavelengths
screened using the CARS algorithm, further simplifying the data and improving the
model’s accuracy. The average impact value algorithm (MIV) was used for feature selection.
It evaluated the features’ importance by calculating their average influence value on the
predicted results, and then, carried out feature selection. The MIV algorithm process was
as follows (Figure 3):



Foods 2023, 12, 3593 5 of 17

Foods 2023, 12, x FOR PEER REVIEW 6 of 19 
 

 

2.3. Main Data Processing Methods 

2.3.1. CARS-MIV Feature Variable Extraction Method 

The competitive adaptive reweighting algorithm (CARS) is an unstable algorithm; 

the regression coefficient R of the variable set changes as the sample numbers change [Er-

ror! Reference source not found.]. Therefore, the absolute value of the regression coeffi-

cient R cannot effectively reflect a variable’s importance, and the feature variable extracted 

by a single CARS algorithm will occupy approximately 1/3 of the spectral data’s full wave-

length. Modeling data are not concise enough. Therefore, the average influence value al-

gorithm (MIV) [Error! Reference source not found.] was introduced in this study to con-

duct secondary screening of characteristic wavelengths screened using the CARS algo-

rithm, further simplifying the data and improving the model’s accuracy. The average im-

pact value algorithm (MIV) was used for feature selection. It evaluated the features’ im-

portance by calculating their average influence value on the predicted results, and then, 

carried out feature selection. The MIV algorithm process was as follows (Figure 3): 

Step 1: Use the original sample set to establish the Shenjing network training model 

Svmtrain. 

Step 2: Increase and decrease the original P1 and P2 by 10%, respectively, to form 

new training set samples, P1 and P2. 

Step 3: Use the new training set samples, P1 and P2, as the neural network’s input 

model, and obtain two output results, y1 and y2. 

Step 4: The difference between the two output results (y1–y2) is the impact value (IV) 

on the output variable after changing the original input variable. 

Step 5: Average the IV value according to the number of observed cases to obtain the 

MIV of the input to the output variable. A loop structure is used to successively calculate 

each input variable’s MIV, and the characteristic wavelength variables whose contribution 

rates are greater than 95% are screened out according to the descending order of the ab-

solute value. 

 

Figure 3. MIV algorithm flowchart. 

  

Figure 3. MIV algorithm flowchart.

Step 1: Use the original sample set to establish the Shenjing network training
model Svmtrain.

Step 2: Increase and decrease the original P1 and P2 by 10%, respectively, to form new
training set samples, P1 and P2.

Step 3: Use the new training set samples, P1 and P2, as the neural network’s input
model, and obtain two output results, y1 and y2.

Step 4: The difference between the two output results (y1–y2) is the impact value (IV)
on the output variable after changing the original input variable.

Step 5: Average the IV value according to the number of observed cases to obtain
the MIV of the input to the output variable. A loop structure is used to successively
calculate each input variable’s MIV, and the characteristic wavelength variables whose
contribution rates are greater than 95% are screened out according to the descending order
of the absolute value.

2.3.2. GA-SVM Modeling Method

A support vector machine (SVM) is a powerful classification and regression model;
however, it also has some disadvantages. An SVM has relatively low processing efficiency
of large-scale data sets and high-dimensional data, presents difficulty when selecting the
appropriate kernel function for nonlinear problems, requires selection of the appropriate
penalty parameter C, etc. As a classical optimization algorithm, a genetic algorithm has
good applicability, a fast search speed, and high efficiency [29]. In this study, a genetic
algorithm (GA) was used to optimize the C and r parameters of the support vector machine
(SVM). The steps based on the GA-SVM [30] algorithm are as follows; the process is shown
in Figure 4.

Step 1: Set the parameters and reasonably select the genetic algorithm’s operating
parameters and the SVM’s parameter optimization range.

Step 2: Form the initial population, convert the kernel function parameter r and SVM
penalty factor C into genotype data with genetic characteristics via binary coding; randomly
generate the initial population.

Step 3: Calculate each individual’s fitness to evaluate their importance.
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Step 4: Use selection, crossover, and mutation operations in the genetic algorithm
to optimize parameters c and g to determine whether each individual’s fitness meets the
termination criteria. If yes, perform Step 6; otherwise, perform Step 5.

Step 5: Select individuals with high fitness for crossover and mutation operations to
form a new population. Return to Step 3 until the stop criteria are met, ending the loop.

Step 6: Parse the code and output the parameter value.
Step 7: Apply optimal parameters to the SVM model for solution analysis.
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2.4. Model Evaluation Index

In this study, five indexes (namely, the coefficient of determination of the training set
(RC2), the root-mean-square error (RMSEC), the coefficient of determination of the test
set (RP2), the root-mean-square error of the training set (RMSEP) and the discrimination
accuracy of the prediction set) were used to comprehensively evaluate the model. The
closer the correlation coefficient between the correction set and the prediction set is to 1,
the closer the root-mean-square error is to 0, and the higher the discrimination accuracy is,
the better the model is considered to be.

3. Results and Discussion
3.1. Average Spectral Curves of Four Types of Kubo Peach Samples

The ROI region selection should best represent image content features; this can help
reduce the calculation complexity, improve the algorithm’s performance, and provide
increased accuracy [31]. In this study, the ROI region in the center of the equator of intact
peach samples and ROI regions in the defects of damaged peaches, scab peaches, and
scarred peaches were selected. After sorting the spectral data from the four sample types,
average spectral curves for each of the four sample types were drawn using Origin8.5
software, as shown in Figure 5.

As can be seen in Figure 5, there were significant differences in the average spectral
curves of the four Kubo peach sample types. This was due to differences in the skin
thickness and spectral reflectance of intact and defective peaches. Wave peaks at 1100 nm
and 1290 nm of the four sample types were related to the Kubo peach’s excessive reflectivity,
and troughs at 1190 nm and 1450 nm were related to the Kubo peach’s internal water
and sugar absorption, which are O-H third-order and second-order frequency-doubling
characteristic absorption peaks [32]. The four sample types’ overall reflectance showed a
decreasing trend.
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3.2. Spectrum Pretreatment

Spectral pre-processing refers to a series of processing operations on acquired spectral
data to extract useful information or improve data quality [33]. In this study, derivative-
gap-segment (D-GS), standard normalization (SNV), baseline, and a smoothing-median
filter (SMF) were used. Derivative Savitzky–Golay (D-SG) and five pretreatment methods
were used to process the original spectral data, and PLS models were established. The
prediction results are shown in Table 2.

Table 2. PLS models established using different pretreatment methods.

Pretreatment Method
Correction Set Prediction Set

RC2 RMSEC RP2 RMSEP

Primary spectrum 0.72 0.60 0.86 0.45
DGS 0.74 0.57 0.83 0.47
DSG 0.75 0.56 0.85 0.45

Baseline 0.71 0.61 0.82 0.51
SMF 0.72 0.60 0.85 0.45
SNV 0.65 0.67 0.72 0.62

As shown in Table 1, the model pre-treated using DSG had relatively high accuracy
and a relatively low standard deviation. Its correction set determination coefficient was
0.75 with a standard deviation was 0.56, and its prediction set determination coefficient
was 0.85 with a standard deviation was 0.45. Therefore, data pre-processed using DSG
were selected for the follow-up study.

3.3. Selection of Characteristic Wavelength Variables
3.3.1. CARS Competitive Adaptive Weighting Algorithm

The CARS competitive adaptive reweighting algorithm is a sampling algorithm based
on adaptive weights, and is often used to solve data imbalance problems. In data imbalance
problems, the training set has a large difference in the number of samples from different
classes, which may cause the classifier to tend to predict classes that occur more frequently,
while the prediction effect is poor for rare classes. The CARS algorithm aims to solve this
problem. By adaptively adjusting sample weights and iteratively updating sample weights
and model parameters, the CARS algorithm can achieve a state of dynamic balance and
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improve the prediction accuracy of rare categories [34]. The CARS feature wavelength
extraction process is illustrated in Figure 6.
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Pre-processed spectral characteristic variables were extracted based on the CARS
algorithm, and the number of Monte Carlo samplings was set to 50. Figure 6a shows the
attenuation function selection process; the number of variables showed a trend of rapid
decline at first, and then, a steady decline with an increase in sampling times. Figure 6b
shows that the root-mean-square error of cross-validation first slowly decreased, and
then, rapidly increased with an increase in sampling times. Figure 6b shows that the
root-mean-square error of cross-validation (RMSE) was smallest at the 25th sampling time,
and its minimum value was 0.6190. Figure 6c shows the change process of the regression
coefficient’s path value with an increase in sampling times. A total of 24 characteristic
wavelengths were screened out by running the CARS algorithm 25 times.

3.3.2. Feature Wavelength Extraction Using the CARS-MIV Method

The average influence value (MIV) algorithm can screen out variables with high
correlation for modeling analysis. In this study, 24 feature variables were screened using
the CARS algorithm, and feature variables with contribution rates greater than 95% were
screened using the MIV algorithm to achieve a secondary screening, so that the feature
wavelength variables were more representative. Selected wavelengths were sorted in
descending order, and 11 characteristic wavelength variables were finally selected for
subsequent modeling analysis. The MIV screening process is shown in Figure 7, the
selected characteristic wavelength is shown in Figure 8, and the cumulative contribution
rate of the characteristic wavelength is shown in Figure 9.
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3.3.3. Feature Wavelength Extraction Using the CARS-SPA Method

There was a data imbalance problem among the 24 characteristic-wavelength-adjacent
variables formed using the CARS algorithm. Therefore, the SPA method of screening
characteristic wavelengths was used to reduce the dimension twice. Data imbalances in
CARS extraction variables could be eliminated. The variation range of the number of char-
acteristic spectrum variables was set to 1–25. The SPA algorithm reduced the dimensions
of 24 characteristic spectra, and seven characteristic variables were extracted when the
RMSEC was 0.62033. The characteristic wavelength variables are shown in Figure 10.
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3.3.4. Feature Wavelength Extraction Using the CARS-UVE Method

The uninformative variable elimination (UVE) algorithm is a band selection algorithm
based on the regression coefficient of the PLS model. The value of the regression coefficient
is used to measure whether or not a variable is valid. A new matrix can be obtained by
randomly setting a noise matrix and placing it after the spectral matrix. The PLS regression
process is performed on the new matrix using the leave-one-interaction-out verification
method. The reliability of each variable can be obtained by comparing the PLS results with
the standard deviation and average value of the regression coefficients. Then, according to
the reliability value, feature wavelengths with large reliability values are screened out [35].
The UVE algorithm can delete uninformative variables in the spectral information, but
when the number of bands is large, the number of feature wavelengths selected by the
algorithm remains large, which is not conducive to the development of spectral equipment.
Therefore, the UVE algorithm is often combined with other algorithms to further screen
feature variables [36]. In this study, the CARS algorithm was combined with the UVE
algorithm. On the basis of 24 feature variables screened using the CARS algorithm, the
UVE algorithm was used to screen 15 feature wavelengths twice. The filtering process is
shown in Figure 11.

The dotted blue horizontal lines in Figure 11 are the upper and lower limits of the
thresholds, and the variables between these lines are information unrelated to the Kubo
peach classification prediction, which require deletion. The 15 variables outside the dotted
line are the selected feature variables.

3.4. Modeling Results and Analysis
3.4.1. Least-Squares Support Vector Machine (LS-SVM) Model

The principle of the LS-SVM modeling method is to take RBF as the model’s kernel
calculation function, use a grid-search method on the basis of cross-validation, and adopt
a global optimization method for the main SVM target parameters γ and δ2. The princi-
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ple [37] that minimizes the root-mean-square error RMSEC was used to optimize the target
parameters’ design.
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3.4.2. Support Vector Machine (GA-SVM) Parameter Optimization Model Based on the
Genetic Algorithm

The genetic algorithm is an optimization algorithm based on the survival of the fittest
and the natural selection mechanism in biological evolution. It has the characteristics of
strong fitness, high optimization efficiency, and fast searching ability. In the GA-SVM
model used in this study, the maximum number of genetic iterations was set to 100, the
population size was set to 20, and the method of five-fold cross-validation was adopted to
obtain the optimal penalty factor (cost) as C and core parameter (gamma) as γ. In this study,
the feature wavelength sample data extracted using the four methods were normalized.
After the initial training was complete, training sample data were input into the GA-SVM
model for model training, and then, the prediction set sample was input into the trained
model to obtain the training results. By comparing the predicted training results with the
real predicted results, confusion matrices of the discriminant samples were obtained.

The prediction data results of the two models established using the four feature
wavelength extraction methods are shown in Tables 3–6.

Table 3. Confusion matrices of CARS-GA-SVM and CARS-LS-SVM models.

GA-SVM Model LS-SVM
Good
Peach

Internal
Injury Peach

Scab
Peach

Rotten
Peach Classification Good

Peach
Internal

Injury Peach
Scab

Peach
Rotten
Peach

49 0 0 0 Good
peach 49 0 0 0

0 7 1 1 Internal injury peach 0 4 5 0

0 0 16 1 Scab
peach 0 6 11 0

0 0 2 11 Rotten
peach 0 0 3 10

49 9 17 13 Total 49 9 17 13

100 77.7 94.12 84.62 Discriminant
Rate 100 44.44 64.71 76.92

89.11
Total

Discriminant
rate

71.52
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Table 4. Confusion matrices of CARS-MIV-GA-SVM and CARS-MIV-LS-SVM models.

GA-SVM Model LS-SVM
Good
Peach

Internal
Injury Peach

Scab
Peach

Rotten
Peach Classification Good

Peach
Internal

Injury Peach
Scab

Peach
Rotten
Peach

49 0 0 0 Good
peach 49 0 0 0

0 8 1 0 Internal injury peach 0 4 5 0

0 1 16 0 Scab
peach 0 5 12 0

0 0 1 12 Rotten
peach 0 0 3 10

49 9 17 13 Total 49 9 17 13

100 88.9 91.4 92.3 Discriminant
Rate 100 44.44 70.59 76.92

93.15
Total

Discriminant
rate

71.52

Table 5. Confusion matrices of CARS-SPA-GA-SVM and CARS-MIV-LS-SVM models.

GA-SVM Model LS-SVM
Good
Peach

Internal
Injury Peach

Scab
Peach

Rotten
Peach Classification Good

Peach
Internal

Injury Peach
Scab

Peach
Rotten
Peach

49 0 0 0 Good
peach 49 0 0 0

2 6 0 1 Internal injury peach 0 4 5 0

1 1 15 0 Scab
peach 0 6 11 0

0 0 0 13 Rotten
peach 0 0 2 11

49 9 17 13 Total 49 9 17 13

100 66.67 88.24 100 Discriminant
Rate 100 44.44 64.71 84.62

88.73
Total

Discriminant
rate

73.44

Table 6. Confusion matrices of CARS-UVE-GA-SVM and CARS-MIV-LS-SVM models.

GA-SVM Model LS-SVM
Good
Peach

Internal
Injury Peach

Scab
Peach

Rotten
Peach Classification Good

Peach
Internal

Injury Peach
Scab

Peach
Rotten
Peach

49 0 0 1 Good
peach 49 0 0 0

0 6 2 0 Internal injury peach 0 7 2 0

0 0 17 12 Scab
peach 0 4 13 0

0 0 1 13 Rotten
peach 0 0 4 9

49 9 17 13 Total 49 9 17 13

100 66.67 100 92.31 Discriminant
rate 100 77.77 76.47 69.23

89.75
Total

Discriminant
rate

80.87

Note: This is an example to explain the methods listed in the table: CARS-MIV means that the average influence
value MIV algorithm was used to reduce the dimensions of 24 spectral variables extracted using the CARS
method twice.

According to the discrimination results presented in Tables 3–6, the discrimination
rate accuracy of the GA-SVM model established using the four methods of extracting
characteristic wavelengths was much higher than that of the LS-SVM model. Therefore,
the GA-SVM model was chosen as the optimal discrimination model. The comprehensive
discrimination rates of GA-SVM models established using the CARS, CARS-SPA, and
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CARS-UVE methods were 89.11%, 88.73%, and 89.75%, respectively. The comprehensive
discriminant rate of the GA-SVM model established using the CARS-MIV method was
93.15%, and it had the best discriminant effect. Therefore, the CARS-MIV-GA-SVM model
was chosen as the optimal discrimination model. The highest discriminant rate of an intact
peach was 100%. One scab peach was misjudged as a dark wound because some scab
peaches have a certain degree of dark wound inside, which is not visible to the human
eye, so miscalculations can occur. One black peach was misjudged as a scab peach; due to
the depth of the black wound, the sample’s color characteristics showed obvious changes,
resulting in machine identification as a scab peach. One rotten peach was misjudged as a
scab peach; its rotten area was too small, resulting in machine identification as a scab peach.
The GA-SVM model’s optimization process and prediction results established using four
feature wavelength extraction methods are shown in Figures 12–15, respectively.
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optimization process, (b) training results, and (c) test results.

3.5. Discussion

In this experiment, we applied the CARS-MIV combination method to extract feature
wavelengths and establish a detection model capable of simultaneously evaluating the
internal and external qualities of Kubo peaches. Spectral data pre-processed using DSG
were screened using four characteristic wavelength extraction methods: CARS, CARS-MIV,
CARS-SPA, and CARS-UVE. Compared with other feature variable screening methods,
the two models based on the CARS-MIV method had higher discriminant rates. Based
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on the principle of the feature variables’ importance, the CARS-MIV method was used
as a secondary screening method after feature variables were screened based on CARS.
First, a neural network training model was established according to selected characteris-
tic variables, and a new independent variable was formed by adding and reducing 10%,
respectively, based on the original independent variable; the difference value could be
calculated by inputting the original independent variable into the trained neural network
model to obtain the variable‘s influence change value. According to this principle, the
importance of the selected variable was screened twice. Important wavelength variables
can be screened more accurately. Xu L. [38] used hyperspectral imaging technology to
nondestructively detect kiwi fruit’s sugar content, a single feature wavelength extraction
method, and a combination of multiple feature wavelengths to extract the feature wave-
length, and then, carried out a comparative analysis. The research results showed that
the model established using (CARS + IRIV)-SPA to extract the feature wavelength had the
best prediction effect. This shows that it is feasible to use hyperspectral technology and a
composition method to extract characteristic wavelengths and establish models to predict
sugar content. Compared with the above studies, this experiment’s combination algorithm
added a step to sort according to wavelength importance, so that feature variables with
higher importance could be screened more accurately.
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GA-SVM is also an optimization model that uses the classical genetic algorithm (GA) to
optimize the C and γ parameters of SVM. Su J. [39] used the GA-SVM model formed using
the GA optimization of SVM parameters to classify dried jujube varieties. Their research
results showed that, compared with the traditional SVM model, the classification accuracy
of the GA-SVM model was improved by more than 20%. Dan S. [40] used near-infrared
spectroscopy and the GA-SVM model to study citrus-producing areas in 16 regions; their
research results showed that the GA-SVM model’s recognition rate for citrus-producing
areas reached 94.58%. Compared with the above studies, in this study, the GA-SVM model
was used for the first time to distinguish the external quality classification of the Kubo
peach. The results presented in Tables 2–5 show that the discrimination rate accuracy
of the GA-SVM model established using the four methods of extracting characteristic
wavelengths was much higher than that of the LS-SVM model. Therefore, the GA-SVM
model was chosen as the optimal discrimination model. The comprehensive discrimination
rates of the GA-SVM model established using CARS, CARS-SPA, and CARS-UVE were
89.11%, 88.73%, 89.75%, and 88.59%, respectively. The comprehensive discriminant rate of
the GA-SVM model established using CARS-MIV was 93.15%, and its discriminant effect
was the best. Therefore, the CARS-MIV and GA-SVM models were combined to determine
the Kubo peach’s external quality.

In this study, we applied this model to identify the external quality of only one peach
variety; it is not universal in the detection of the external quality of other peach varieties.
Therefore, in a future study, we will use more fruit varieties to realize the model’s potential
detection capabilities, and to improve its universality.

4. Conclusions

To quickly detect Kubo peach internal injury defects and realize their accurate classifi-
cation, Kubo peach internal and external defects were studied using hyperspectral imaging
technology. A variety of pretreatment methods were used to process original spectral
data, and the optimal pretreatment method was selected. The MIV algorithm was used to
double-screen feature variables extracted using CARS according to their importance, GA
was used to optimize the C and γ parameters of SVM to obtain the GA-SVM optimization
model, and the optimized algorithm was compared with a single algorithm. Finally, it was
concluded that combining CARS-MIV feature wavelength extraction with the GA-SVM
model had the highest discrimination accuracy, optimized the external quality detection
model for the Kubo peach, and provided a new research idea for the realization of Kubo
peach quality detection. The conclusions drawn are as follows:

(1) The DSG spectral pretreatment method could better optimize spectral data, and
spectral data after pretreatment could establish the PLS model with relatively high accuracy
and low standard deviation. The correction set determination coefficient Rc2 was 0.7521,
and the root-mean-square error RMSEC was 0.5693. The prediction set determination
coefficient Rp2 was 0.8463, and the root-mean-square error RMSEP was 0.4563. Therefore,
the data pre-processed using DSG were selected for the follow-up study.

(2) The data pre-treated using DSG were modeled and analyzed using four feature
wavelength screening methods, namely, CARS, CARS-MIV, CARS-SPA, and CARS-UVE.
The established GA-SVM model had a better discriminative effect than the LS-SVM model.
Compared with the feature wavelength screening and model building methods, the GA-
SVM model based on CARS-MIV-extracted feature wavelength data had the best prediction
effect, and its discrimination accuracy reached 93.15%. Therefore, the CARS-MIV-GA-SVM
model was selected as the optimal model to detect the Kubo peach’s external quality.

In summary, we proposed a detection method based on hyperspectral imaging tech-
nology to simultaneously detect the internal injury and external defects of fresh Kubo
peaches. We introduced the idea of extracting feature wavelengths by combining CARS-
MIV, CARS-SPA, CARS-UVE, and other methods. We combined the feature wavelength
algorithm and the optimization model (GA-SVM) to enhance the classification model’s
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accuracy. This approach addressed the limitations of existing peach grading methods that
solely rely on appearance and overlook internal damage in peaches.
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