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Abstract: To improve the quality of the characteristics of yellow alkaline noodles and enrich their
nutritional value, konjac glucomannan (KGM) with or without chitosan coating were added to
noodles, and their application effects were investigated in terms of color, texture, water absorption,
starch digestion, total plate count (TPC) and microstructure. Chitosan–konjac glucomannan (CK)
complex was firstly prepared by embedding konjac powder with chitosan sol. After embedding, the
hydrophilicity of KGM decreased significantly. Then, either CK or native KGM were mixed evenly
with flour before saline water, and soda was subsequently added to produce noodles. Compared
with native KGM, CK provided the noodles with a higher brightness and a lighter yellow color. In
terms of texture properties, although the firmness of CK noodles was weaker than that of KGM
noodles, the tensile properties were enhanced. After embedding, the water absorption of CK noodles
decreased and the content of resistant starch (RS) in the noodles increased. During storage, the TPC
in CK noodles was significantly lower than that in KGM noodles. At a CK content of 5%, the noodles
presented a lightness of 87.41, a b value of 17.75, a shear work of 39.9 g·cm, a tensile distance of
84.28 cm, a water absorption of 69.48%, a RS content of 17.97% and a TPC of 2.74 lg CFU/g at 10 days.
In general, KGM with chitosan coating could improve the physicochemical qualities of noodles and
extend their shelf life to a certain extent.

Keywords: chitosan; konjac glucomannan; texture; total plate count; yellow alkaline noodles

1. Introduction

Yellow alkaline noodles (YANs) are very popular in Asian countries, and the consump-
tion of wheat flour in these countries accounts for approximately 30% [1]. It presents a clean
yellow surface with a firm and chewy texture [1,2]. At present, more attention is being
given to further improve the palatability and nutritional values of YANs. It is a common
way to supplement dietary fiber in noodles [3–5].

As a native water-soluble dietary fiber, konjac glucomannan (KGM), derived from
the tuber of konjac, has the advantages of lowering cholesterol, controlling blood sugar
levels and promoting digestion [6]. KGM comprises mannose and glucose in a ratio of
1:1.6 or 1:1.4, linked by β-1, 4-glucoside bonds. Its feature of having an acetyl group is
randomly distributed in the molecular chain [7]. It was reported that KGM improved the
stability, functionality and water retention of wheat gluten by changing the water retention,
secondary structure, free sulfhydryl group and disulfide bond contents [8]. The addition
of KGM to surimi dough enhanced the starch–gluten–surimi network, and improved the
cooking quality and texture of the noodles. It had a major impact on optimizing the macro-
and micro-characteristics of dough and noodles [9]. KGM limited the mobility of bound
water and immobile water, which hindered starch retrogradation in the noodles [10].

The above research showed that KGM could improve the quality of noodles, and the
amount of KGM had a significant effect on the texture. Yu et al. [11] found that, compared
with other dietary fiber components, KGM had a greater impact on the hardness of cooked
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noodles than green banana flour. Park et al. [12] pointed out that with the increased content
of KGM, the hardness of noodles decreased from 2726 g to 1850 g. He et al. [13] stated that
the hardness of steamed bread first declined and then rose with the increasing substitution
of KGM. At a substitution level of 5% KGM, the TPA parameters changed dramatically.
Scanning electron microscopy proved that the addition of KGM affected the grain structure
of cooked starch and the development of the gluten network [14]. In general, sufficient
dietary fiber could be appended to improve the nutrition of noodles, but it would result in
undesirable negative effects on the texture of noodles.

Chitosan is a natural cationic polysaccharide extracted from crustaceans such as shrimp
and crab. Due to its antibacterial, antioxidant and biodegradation qualities, chitosan is
applied in food processing, food ingredients, food preservation, etc. [15,16]. Zhang et al. [17]
found that 0.25–2% chitosan greatly enhanced the structure, water holding capacity and
antibacterial activity of purple highland barley noodles. Chen et al. [18] investigated the
remarkable preservation effect of chitosan oligosaccharides on fresh and wet noodles.
Chitosan oligosaccharides could prolong the shelf life of fresh and wet noodles for 3–6 days
at 4 ◦C, and effectively inhibited the growth of acidity value. Tantala et al. [19] suggested
that the combination of 0.1% chitosan and −0.1% potassium sorbate could inhibit the
growth of mold and microorganisms in fresh noodles at 30 ◦C for more than 28 days,
and showed no adverse effect on the physical properties of noodles, including hardness,
whiteness and water activity.

In view of a favorable bacteriostasis of chitosan in noodles, we attempted to adopt
KGM be embedded into chitosan to form the chitosan-coated konjac glucomannan (CK)
complex. Whether CK could extend the storage period of noodles was one of our concerns.
Furthermore, the previous study found that CK could significantly reduce the hydrophilic-
ity of KGM and avoid the inconvenience caused by the high viscosity of KGM in food
processing [20]. Herein, whether it could reduce the excessive swelling of noodles caused
by water absorption by KGM during the cooking process was another concern.

Based on the above hypothesis, CK and native KGM were added to YANs, respectively,
and their performance on noodles were compared from the following aspects, such as color,
texture, digestive properties, cooking properties and microbial growth. This study can
furnish the application of CK in noodle products and aid in the development of functionally
healthier noodle products with acceptable qualities.

2. Materials and Methods
2.1. Materials

The commercial wheat flour was procured from Wudeli Group Zhoukou Flour Co.,
Ltd. (zhoukou, China). The contents of moisture, ash, crude protein and wet gluten were
11.95 g/100 g, 0.69 g/100 g, 8.73 g/100 g and 19.58 g/100 g (dry basis, w/w), respectively.
Native KGM powder (purity ≥ 90%; viscosity: 30,000 mPa·s) was kindly provided by
Qiang Sheng Co. Ltd. (Jingmen, China). Chitosan (viscosity: 200 mPa·s; deacetylation
degree: 90%) was offered by Sinopharm Group Chemical Reagent Co., Ltd. (Beijing, China).
D-glucose test kit was from Megazyme Brand and made in Ireland. Pancreatic enzymes
and saccharified enzymes were obtained from Shanghai Yuanye Biotechnology Co., Ltd.
(Shanghai, China). All the chemicals and reagents used were of analytical grade.

2.2. Preparation of Chitosan-Coated Konjac Glucomannan (CK) Powder

CK powder was prepared according to the method of Zhao [20]. First, chitosan was
fully dissolved in acetic acid solution containing 10% (v/v) ethanol. Then, chitosan sol was
slowly added to KGM powder and mixed evenly. After elution and neutraliziation with
45% (v/v) ethanol containing sodium carbonate, the mixture was rinsed with 75% (v/v)
and 100% (v/v) ethanol. Finally, the mixture was vacuum-dried at 80 ◦C for 1 h. Thus,
chitosan sol was successfully coated on KGM powder to obtain CK powder.
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2.3. Preparation of Yellow Alkaline Noodles (YANs)

YANs were prepared according to the method of Fan [21]. The basic ingredients of
YANs were: 100 g flour, 35 g water, 0.6 g soda and 0.8 g salt. The flour was partially replaced
with native konjac powder or CK powder, and other ingredients in YANs remained the
same. Based on the weight of dry flour, the mass fraction of native konjac powder or CK
powder was set as 1%, 3% and 5%, respectively. The composition of the noodles is shown
in Table 1.

Table 1. Ingredients for yellow alkaline noodles (g).

Sample Flour KGM CK Water Soda Salt

Control 100.0 0 0 35.0 0.6 0.8
KGM 1% 99.0 1.0 0 35.0 0.6 0.8
KGM 3% 97.0 3.0 0 35.0 0.6 0.8
KGM 5% 95.0 5.0 0 35.0 0.6 0.8

CK 1% 99.0 0 1.0 35.0 0.6 0.8
CK 3% 97.0 0 3.0 35.0 0.6 0.8
CK 5% 95.0 0 5.0 35.0 0.6 0.8

KGM: konjac glucomannan; CK: chitosan-coated konjac glucomannan.

2.4. Color

Refer to the method of Koh et al. [22]. Tristimulus values of L (lightness), a (red–green
axis) and b (yellow–blue axis) parameters from the noodles were evaluated on a colorimeter
(UltraScan XE HunterLab, Reston, VA, USA). Before measurement, the colorimeter was
standardized with white and black standard tiles.

2.5. Texture

Refer to the method of Yu et al.—with a small modification [11]. The firmness of
noodles was measured via the shear mode of a TA-XT plus Texture Analyzer (Stable
Microsystems Ltd., Surrey, UK). The probe was selected as A/LKB-F. The pre-test speed,
test speed and post-test speed were 1 mm/s, 2 mm/s and 2 mm/s, respectively. The
distance was 0.5 mm and the load cell was 5 kg.

The tensile strength of noodles was determined by the tensile mode. The noodles
were fixed on the probe of A/SPR. The initial spacing between probes was controlled to
be 15 mm. The speed before, during and after the test were set as 2 mm/s, 1 mm/s and
10 mm/s, respectively.

2.6. Water Absorption

Refer to the method of Zhang et al. [23]. After the noodles were cooked in boiling water
for different periods of time, water was removed from the surface of the noodles with filter
paper, and the mass of noodles was recorded as mt. Before cooking, the mass of noodles
was noted as m0. Water absorption rate of noodles was calculated using the formula:

Water absorption rate (%) = (mt − m0)/m0 × 100% (1)

2.7. Low-Field Nuclear Magnetic Resonance (LF-NMR)

Refer to the method of Ge et al.—with a small modification [10]. The water distribution
of semi-dried noodles was determined via a nuclear magnetic resonance imaging analyzer
(MesoQMR23-060H, Niumag Electric Corporation, Shanghai, China). About 7 g of samples
of about 3 cm in length were placed in the NMR tube and sealed with cling film to prevent
moisture evaporation. Parameters measured were SW of 200 kHz, TW of 100 ms, TD of
24022, NS of 8 and NECH of 600.
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2.8. In Vitro Digestion Properties

Refer to the method of Sun et al.—with a small modification [24]. Noodles were cut
into pieces, added with 10 mL enzyme solution and 10 mL buffer solution (pH5.3), and
stirred thoroughly at 37 ◦C. At various time points (0 min, 20 min and 120 min), 2 mL of
the mixture was taken out and immediately placed in boiling water to stop the reaction.
After cooling and centrifugation, 0.1 mL supernatant was collected, mixed with 3.0 mL
GOPOD reagent and incubated at 45 ◦C for 20 min. The absorption value of the blend was
determined at 510 nm. RDS (rapidly digestible starch), SDS (slowly digestible starch) and
RS (resistant starch) contents were calculated via the following equations:

Gt = Asample/Astandard × 100 (2)

RDS (%) = 0.9 × (G20 − G0)/TS × 100% (3)

SDS (%) = 0.9 × (G120 − G20)/TS × 100% (4)

RS (%) = 100 − RDS − SDS (5)

where Asample and Astandard represent the absorbance values of samples and glucose stan-
dard solutions, respectively; Gt stands for glucose content at any time; G0, G20 and G120 are
the glucose contents at 0 min, 20 min and 120 min, respectively. TS represented the content
of total starch.

2.9. Total Plate Count (TPC)

Refer to the method of Zhang et al. [17]. The noodles were blended with 0.85% (w/v)
sterile saline solution and homogenized. A series of 10-fold diluents were prepared for the
homogenized samples with the sterile saline. A total volume of 1 mL of the solution was
added into the plate count agar, and incubated at 36 ◦C for 48 ± 2 h. TPC was counted
directly through final colony units on the plate.

2.10. Scanning Electron Microscope (SEM)

Refer to the method of Ghoshal et al. [25]. SEM (TM 4000 Plus, Hitachi, ORE, Japan)
was used to observe the microstructure of the transverse cross-section of noodles. Prior to
being photographed for observation, the noodles were freeze-dried and coated with gold
in a sputter coater.

2.11. Statistics Analysis

Data were expressed as average ± standard deviation (SD). Figures were drawn using
the Origin 2021 software (Origin Lab, Inc., Northampton, MA, USA). Statistical analysis was
carried out using SPSS 21.0 software (IBM Inc., Armonk, NY, USA). Different letters indicate
significant differences (p ≤ 0.05). All experiments were measured at least three times.

3. Results
3.1. Color Analysis

Color is an important index that affects the sensory qualities of noodles. In general,
YANs appear yellow because the alkali causes flavonoids in the flour to produce a color
shift [26]. The effect of different amounts of native KGM or CK on the color of the noodles
is shown in Table 2. Increasing values of L, a and b meant that the noodles turned bright,
red and yellow, respectively. Conversely, decreasing values of L, a and b indicated that the
noodles turned dark, green and blue, respectively [27]. There were significant differences
in three chromaticity values of the noodles made from native KGM and CK at any point of
the same addition. Compared to native KGM, noodles with CK had larger values of L and
a, with smaller values of b at the same amount. From the appearance, CK provided the
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noodles with a higher brightness and a weaker yellow. The color difference (seen in ∆E
values) of the noodles occurred regardless of the amounts of KGM or CK powder. It might
be from color differences between native KGM powder and CK powder. Furthermore,
it was speculated that the two powders could cause differences in the noodles’ gluten
network structure, which would consequently affect the reflectivity of light and finally
result in color changes [22].

Table 2. Chrominance values of yellow alkaline noodles with different levels of native KGM or CK.

Sample L a b ∆E

Control 88.50 ± 0.02 a −1.40 ± 0.02 b 20.38 ± 0.23 b

KGM 1% 86.03 ± 0.17 f −1.41 ± 0.01 b 22.55 ± 0.31 a 3.29 ± 0.17 b

KGM 3% 86.73 ± 0.01 e −1.50 ± 0.05 a 19.69 ± 0.21 c 1.91 ± 0.21 c

KGM 5% 85.47 ± 0.01 g −1.53 ± 0.03 a 18.40 ± 0.24 d 3.63 ± 0.02 a

CK 1% 87.85 ± 0.01 b −1.38 ± 0.03 b 20.19 ± 0.26 b 0.68 ± 0.03 f

CK 3% 87.09 ± 0.11 d −1.13 ± 0.02 c 20.38 ± 0.33 b 1.45 ± 0.13 e

CK 5% 87.41 ± 0.03 c −0.93 ± 0.01 d 17.75 ± 0.32 e 2.89 ± 0.09 d

L, lightness; a, redness–greenness; b, yellowness–blueness; ∆E, color difference; KGM, konjac glucomannan; CK,
chitosan-coated konjac glucomannan. Different superscript letters denote significant difference (p ≤ 0.05).

3.2. Texture Analysis

The texture properties of the noodles were determined via two methods: shear
and tensile. The effects of KGM and CK on the texture of the noodles are presented in
Figures 1 and 2. With the increased amounts of KGM or CK, all of the shear work applied
to any kind of noodles increased, but the tensile distances of noodles showed a downward
trend. When the proportion of konjac powder in flour reached 5%, the shear work required
by the KGM noodles and CK noodles were 48.9 g·cm and 39.9 g·cm, respectively, which
were higher than that of the control, while the stretching distances of KGM noodles and CK
noodles were 55.56 cm and 84.28 cm, respectively, which were lower than that of the control.
At the same amount, the shear work of the noodles with KGM was higher than that of CK,
but the tensile property of the noodles with KGM was smaller than that of CK. Because the
hydrophilicity of KGM and CK was obviously different, a large number of hydroxyl groups
existed in the molecular chain of KGM, which had strong hydrophilicity. During the dough
production, KGM easily competed with wheat protein for water. As for CK powder, it was
obtained by wrapping insoluble chitosan sol in native KGM powder, so the hydrophilicity
of CK declined significantly. This meant that the ability of CK to combine with water in the
dough was relatively weaker. In brief, compared to CK, KGM could largely prevent wheat
protein from binding to water, resulting in damage to the gluten network structure [14,28].
In the preparation of YANs, it was obviously observed that when the mass fraction of KGM
reached 5%, undissolved dry powder clumps occurred in the noodles, and the extruded
noodles became very dry and crisp. Moreover, hydrated KGM filled the gluten network
and increased the firmness of the dough, manifesting as an enhanced shear work [29]. As a
spatial barrier, KGM was prone to cause discontinuity in the network structure of gluten,
leading to a decline in the ductility or tensile properties of the dough [30].

The occurrence of the above phenomenon might be from the interaction among KGM–
gluten protein, KGM–starch, CK–gluten protein and CK–starch. In addition to hydroxyl, the
amino group, as a special group on chitosan, also interacted covalently and non-covalently
with protein and starch in noodles, thus affecting the structure of the gluten network [17,31].
It was reported that chitosan could improve the gel network strength as well as the ductility
of the noodles [25]. The structure change of gluten protein was simply a non-negligible
aspect for the textural difference of noodles.



Foods 2023, 12, 3569 6 of 12

Foods 2023, 12, x FOR PEER REVIEW 6 of 12 
 

 

gluten network [17,31]. It was reported that chitosan could improve the gel network 
strength as well as the ductility of the noodles [25]. The structure change of gluten protein 
was simply a non-negligible aspect for the textural difference of noodles.  

 
Figure 1. Shear work of yellow alkaline noodles with different levels of native KGM or CK. KGM: 
konjac glucomannan; CK: chitosan-coated konjac glucomannan. Different letters denote significant 
difference (p ≤ 0.05). 

 
Figure 2. Tensile distance of yellow alkaline noodles with different levels of native KGM or CK. 
KGM: konjac glucomannan; CK: chitosan-coated konjac glucomannan. Different letters denote sig-
nificant difference (p ≤ 0.05). 

3.3. Water Absorption Analysis 
In order to evaluate the cooking quality of noodles, the water absorption rate of YANs 

was measured by cooking noodles in boiling water for different periods of time [32]. As 
shown in Figure 3, the water absorption rate of noodles increased with the extension of 
time. In the cooking process, the hydration of starch and protein occurred, accompanied 
by the gelatinization of starch and the expansion of the gluten network. When the cooking 
time was as short as 1 min and the amount of KGM reached 3% and 5%, the water absorp-
tion rate of the noodles was about 20%. When the time was extended to 5 min, the noodles 
appeared in the semi-cooked state, and the water absorption rate of the noodles was 
around 45%. When further boiled for another 10 min, the noodles were fully cooked and 
the water absorption rate was close to 80%. Throughout the entire boiling process, the 
konjac noodles absorbed more water than the control, and the water absorption rate of CK 
noodles was lower than that of KGM noodles at the same dosage. Especially at higher 
levels, such as 3% and 5%, the difference between the water absorption rate of CK noodles 
and KGM noodles seemed to be obvious as KGM is highly hydrophilic and so easily com-
petes for water with wheat protein in dough, resulting in an incompletely hydrated gluten 

Figure 1. Shear work of yellow alkaline noodles with different levels of native KGM or CK. KGM:
konjac glucomannan; CK: chitosan-coated konjac glucomannan. Different letters denote significant
difference (p ≤ 0.05).

Foods 2023, 12, x FOR PEER REVIEW 6 of 12 
 

 

gluten network [17,31]. It was reported that chitosan could improve the gel network 
strength as well as the ductility of the noodles [25]. The structure change of gluten protein 
was simply a non-negligible aspect for the textural difference of noodles.  

 
Figure 1. Shear work of yellow alkaline noodles with different levels of native KGM or CK. KGM: 
konjac glucomannan; CK: chitosan-coated konjac glucomannan. Different letters denote significant 
difference (p ≤ 0.05). 

 
Figure 2. Tensile distance of yellow alkaline noodles with different levels of native KGM or CK. 
KGM: konjac glucomannan; CK: chitosan-coated konjac glucomannan. Different letters denote sig-
nificant difference (p ≤ 0.05). 

3.3. Water Absorption Analysis 
In order to evaluate the cooking quality of noodles, the water absorption rate of YANs 

was measured by cooking noodles in boiling water for different periods of time [32]. As 
shown in Figure 3, the water absorption rate of noodles increased with the extension of 
time. In the cooking process, the hydration of starch and protein occurred, accompanied 
by the gelatinization of starch and the expansion of the gluten network. When the cooking 
time was as short as 1 min and the amount of KGM reached 3% and 5%, the water absorp-
tion rate of the noodles was about 20%. When the time was extended to 5 min, the noodles 
appeared in the semi-cooked state, and the water absorption rate of the noodles was 
around 45%. When further boiled for another 10 min, the noodles were fully cooked and 
the water absorption rate was close to 80%. Throughout the entire boiling process, the 
konjac noodles absorbed more water than the control, and the water absorption rate of CK 
noodles was lower than that of KGM noodles at the same dosage. Especially at higher 
levels, such as 3% and 5%, the difference between the water absorption rate of CK noodles 
and KGM noodles seemed to be obvious as KGM is highly hydrophilic and so easily com-
petes for water with wheat protein in dough, resulting in an incompletely hydrated gluten 

Figure 2. Tensile distance of yellow alkaline noodles with different levels of native KGM or CK. KGM:
konjac glucomannan; CK: chitosan-coated konjac glucomannan. Different letters denote significant
difference (p ≤ 0.05).

3.3. Water Absorption Analysis

In order to evaluate the cooking quality of noodles, the water absorption rate of YANs
was measured by cooking noodles in boiling water for different periods of time [32]. As
shown in Figure 3, the water absorption rate of noodles increased with the extension of time.
In the cooking process, the hydration of starch and protein occurred, accompanied by the
gelatinization of starch and the expansion of the gluten network. When the cooking time
was as short as 1 min and the amount of KGM reached 3% and 5%, the water absorption
rate of the noodles was about 20%. When the time was extended to 5 min, the noodles
appeared in the semi-cooked state, and the water absorption rate of the noodles was around
45%. When further boiled for another 10 min, the noodles were fully cooked and the water
absorption rate was close to 80%. Throughout the entire boiling process, the konjac noodles
absorbed more water than the control, and the water absorption rate of CK noodles was
lower than that of KGM noodles at the same dosage. Especially at higher levels, such as 3%
and 5%, the difference between the water absorption rate of CK noodles and KGM noodles
seemed to be obvious as KGM is highly hydrophilic and so easily competes for water
with wheat protein in dough, resulting in an incompletely hydrated gluten protein. After
KGM was coated with chitosan and applied to noodles, the effect of the water absorption
rate of the noodles decreased significantly, indicating that chitosan could inhibit the water
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absorption ability of KGM and slow down the destruction of the gluten protein by KGM to
a certain extent.
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3.4. Water Distribution Analysis

The water state and water distribution in food were measured via LF-NMR. Changes
of water distribution in YANs with different levels of native KGM or CK are shown in
Table 3. The water state can be divided into three categories, such as bound water, weakly
bound water and free water. They are denoted by T21, T22 and T23, respectively. The
smaller the T2 value, the more tightly water binds to macromolecules [13]. There were
two states of water in YANs, including bound water and weakly bound water. With the
increased amount of KGM and CK, T21 and T22 both showed a downtrend. All T2 values of
konjac noodles were almost lower than those of the control. It meant that KGM and CK
redistributed the water in the noodles, and the water was more tightly locked in the gluten
network structure. At the same dosage, the T2 values of KGM samples were all smaller
than CK samples. Compared to CK, KGM more strongly restricted the movement of water
molecules and reduced the relaxation time due to the strong hydrophilicity and high water
binding capacity of KGM. The hydroxyl group on the molecular chain reduced the mobility
of adsorbed water through proton exchange.

Table 3. Relaxation times (T21 and T22) of yellow alkaline noodles with different levels of native
KGM or CK.

Sample T21/ms T22/ms

Control 2.58 ± 0.00 a 44.49 ± 0.02 a

KGM 1% 1.96 ± 0.00 b 19.34 ± 0.13 b

KGM 3% 1.48 ± 0.01 c 14.65 ± 0.09 c

KGM 5% 1.29 ± 0.00 d 11.90 ± 0.40 d

CK 1% 3.18 ± 0.01 e 31.44 ± 0.23 e

CK 3% 2.25 ± 0.00 f 27.36 ± 1.00 f

CK 5% 1.59 ± 0.00 g 16.83 ± 0.10 g

T21 and T22 represent the relaxation time of bound water and weakly bound water, respectively. KGM: konjac
glucomannan; CK: chitosan-coated konjac glucomannan. Different superscript letters denote significant difference
(p ≤ 0.05).

3.5. Starch Digestion Analysis

As seen in Table 4, with the increased amount of KGM or CK, RDS showed a down-
ward trend and SDS showed an upward trend. The RSD content of konjac noodles were
obviously lower than that of control, and SDS content and RS content were higher than
that of control. This indicated that no matter what form of KGM was added, the digestion
rate of starch could be effectively reduced. Glucomannan delayed the starch digestion
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rate via the strong interaction of KGM–amylose and blocking the binding of amylopectin
chains [12].

Table 4. Starch digestion indexes of yellow alkaline noodles with different levels of native KGM or
CK.

Sample RDS (%) SDS (%) RS (%)

Control 73.64 ± 0.10 a 9.55 ± 0.10 g 16.82 ± 0.11 c

KGM 1% 64.98 ± 0.12 d 16.96 ± 0.10 d 18.06 ± 0.16 a

KGM 3% 63.70 ± 0.11 f 18.63 ± 0.09 b 17.67 ± 0.14 b

KGM 5% 62.66 ± 0.11 g 19.76 ± 0.11 a 17.58 ± 0.16 b

CK 1% 69.33 ± 0.12 b 12.46 ± 0.09 f 18.21 ± 0.15 a

CK 3% 66.06 ± 0.09 c 15.86 ± 0.08 e 18.08 ± 0.12 a

CK 5% 64.08 ± 0.12 e 17.95 ± 0.08 c 17.97 ± 0.14 a

RDS: rapidly digestible starch; SDS: slowly digestible starch; RS: resistant starch; KGM: konjac glucomannan; CK:
chitosan-coated konjac glucomannan. Different superscript letters denote significant difference (p ≤ 0.05).

Moreover, no significant difference occurred in the RS content in noodles as the CK
amount changed. However, the RS content of CK noodles was slightly higher than that
of KGM noodles at the same addition. It was suggested that a small amount of chitosan
distributed in CK might interact with linear macromolecular chains through hydrogen
or covalent bonds during heat treatment to form a thin film that covered the surface of
starch particles, thus protecting the starch from amylase attacks and increasing the RS
content [33]. Alternatively, chitosan might form a complex with starch through interaction,
and its structure was not easily hydrolyzed by amylase during digestion [34]. The increase
in RS was conducive to the stability of glucose metabolism and the control of diabetes.

3.6. Total Plate Count (TPC) Analysis

TPC is an essential indicator to evaluate the shelf life of food that can reflect the
microbial growth of food during storage [35]. After fresh and wet YANs were stored at
4 ◦C for different time periods, the TPC values of noodles with KGM or CK were altered, as
illustrated in Figure 4. TPC values increased with time, indicating that the microorganisms
in the noodles continued to multiply and grow throughout the storage. The TPC values
of control were notably higher than that of konjac noodles during the entire storage. At a
lower dosage of 1%, there was no significant difference in TPC value between CK noodles
and KGM noodles. However, when the dosage reached 5%, the TPC value of CK noodles
was much lower than that of KGM noodles. The phenomenon was observed in the whole
storage. It was attributed to the positively charged amino group on the molecular chain
of chitosan, which interacted with the cell membrane of the microbial and prevented
the transport of molecules inside and outside the cell, making the microbial unable to
maintain basic metabolism. It also led to the leakage of cellular components such as
microbial proteins, and inhibited the normal growth of microorganisms [16,36]. Therefore,
it was concluded that the storage performance of CK noodles was better than that of KGM
noodles. The presence of small amounts of chitosan in KGM could help to extend the shelf
life of noodles.
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3.7. Microstructure Analysis

The internal structure of noodles is closely related to the quality of the noodles [23].
The microstructure and morphology of the noodles added with different amounts of
KGM and CK are shown in Figure 5. At the addition of KGM as low as 1%, the noodles
presented a compact structure with a relatively flat cross-section, and a large number of
starch particles were embedded in the protein network structure. With a greater content
of KGM, the cross-section of noodles changed from flat to rough, and the porosity of the
cross-section increased. At the highest dose of 5%, it was clearly observed that the protein
matrix seemed to be in a torn state with a discontinuous network structure. At this time,
the gluten network could no longer wrap the starch particles well, and most of the starch
particles were exposed. This was primarily due to the fact that KGM competed to absorb
water in the dough, causing the inadequate hydration of wheat protein and blocking the
formation of the gluten protein network structure [14,37]. Compared with KGM noodles,
CK noodles displayed less flat cross-sections. Except for the starch particles, a large number
of small fragments was found in the gluten protein matrix. It was speculated that the
fragments were CK powder with poor water solubility that would not only affect the
network structure of gluten protein by interaction, but also fill the network structure in a
physical barrier.
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4. Discussion

As a soluble dietary fiber, KGM has strong hydrophilicity and produces high viscosity.
It was found that when the proportion of KGM in flour reached 5%, the dough became dry
and rough due to the difficult gluten formation, and the stretching property of the noodles
decreased significantly. During the cooking process, the noodles absorbed too much water
and became fat, showing an unattractive appearance. This awful phenomenon is attributed
to the fact that KGM competed to adsorb the water in the dough, resulting in not enough
water participating in the formation of the gluten network structure.

However, the hydrophilicity of KGM decreased significantly after it was embedded
with chitosan sol. When CK powder was added to the noodles, the quality of the noodles
changed. Compared with KGM noodles, CK noodles presented a higher tensile property
and lower hardness, and the swelling of the noodles was alleviated. It was mainly due to
the fact that chitosan reduced the hydrophilicity of KGM, preventing KGM from binding
with water in the dough to some extent. This was well confirmed in the experiment
of water distribution. It was also speculated that the presence of a small amount of
chitosan in noodles altered the gluten network structure through the interaction between
the characteristic amino group on a molecular chain with starch or protein in dough.

It was noteworthy that CK noodles owned other advantages. In the experiment of
starch digestion, it was observed that the content of resistant starch in CK noodles increased,
which had a positive effect on the regulation of blood glucose. The increased content of
resistant starch in noodles once again proved the interaction between chitosan and starch
along with the change of starch structure. Furthermore, CK noodles appeared brighter
and in a lighter yellow hue—characteristics which are more accepted and preferred by
consumers. The appearance discrepancy of the noodles was due in part to color differences
between CK powder and KGM powder. Another reason could be that the two different
konjac powders brought about different network structures of the gluten, which affected the
light reflection and led to color changes in the noodles. Moreover, compared to that of KGM
noodles, the TPC value of CK noodles declined during storage. This meant that the shelf
life of the noodles was extended with the help of the antibacterial action of chitosan. It was
reported that positively charged amino groups from the molecular chain of chitosan could
interact with the microbial cell membrane and prevent the transport of molecules inside
and outside the cells, so that the microorganisms could not maintain basic metabolism, lead
to the leakage of microbial proteins and other cellular components, and thereby inhibit
the normal growth of microorganisms. In general, the physicochemical properties and
storage properties of CK noodles were superior to those of KGM noodles. The current
study provided potential for the application of CK as a new dietary fiber in food processing.
It also helped to improve the qualities of traditional flour products. In the future, the
digestion process of CK noodles in the stomach and small intestine will be the focus of our
study. A relationship between noodle digestion and satiety is expected to be established to
provide reference for health food.

5. Conclusions

KGM powder that was coated with chitosan sol could further improve the qualities of
noodles. The noodles appeared brighter and in a lighter yellow hue. As for texture, the
firmness of the noodles reduced, but the tensile properties rose. In the cooking process, the
water absorption of the noodles decreased. In addition, the resistant starch content of the
noodles increased. During the storage period, the decrease in TPC in the noodles indicated
that the shelf life of the noodles was successfully prolonged.
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