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Abstract: The acid-induced gelation of pectin in potato cell walls has been gradually recognized to be
related to the improvement in the cell wall integrity after heat processing. The aim of this study was
to characterize the acid-induced gelation of original pectin from a potato cell wall (OPP). Rheological
analyses showed a typical solution–sol–gel transition process of OPP with different additions of
gluconic acid-δ-lactone (GDL). The gelation time (Gt) of OPP was significantly shortened from 7424 s
to 2286 s. The complex viscosity (η*) of OPP gradually increased after 4000 s when the pH was lower
than 3.13 and increased from 0.15 to a range of 0.20~6.3 Pa·s at 9000 s. The increase in shear rate
caused a decrease in η, indicating that OPP belongs to a typical non-Newtonian fluid. Furthermore, a
decrease in ζ-potential (from −21.5 mV to −11.3 mV) and an increase in particle size distribution
(from a nano to micro scale) was observed in OPP after gelation, as well as a more complex (fractal
dimension increased from 1.78 to 1.86) and compact (cores observed by cryo-SEM became smaller
and denser) structure. The crystallinity of OPP also increased from 8.61% to 26.44%~38.11% with the
addition of GDL. The above results call for an investigation of the role of acid-induced OPP gelation
on potato cell walls after heat processing.

Keywords: potato pectin; gluconic acid-δ-lactone (GDL); gelation

1. Introduction

Potato pectin is a complex heteropolysaccharide, which mainly exists in the middle
lamella between the primary cell wall of a potato [1] and plays a regulatory role in ad-
dressing the issue of the growth and cell shape of potatoes [2]. Extensive research has
shown that potato pectin is a kind of low-methoxy (LM, DE < 50%) and highly acetylated
pectin with a relatively low HG (homogalacturonan) structure and a high RG-I (type I
rhamnogalacturonan) structure (>75%) [3–5]. HG is a galacturonic acid polymer connected
by an α-1,4 glycosidic bond with esterified or aminated C-6 of galacturonic acid. RG-I
is usually composed of repetitive units of rhamngalacturonic acid disaccharides with a
variety of side chains, including arabinose and galactose [6,7]. In general, extraction meth-
ods could significantly affect the composition, structure, and rheological properties of
pectin [8]. The chicory root pectin extracted by citric acid and sodium citrate in a study
was a pseudoplastic fluid, while that extracted by ammonium oxalate and alkali was an
expansive fluid [9]. Moreover, most studies have focused on the extraction of potato pectin
with hydrolyzed chains by the aid of acidic, basic, and enzymatic hydrolysis for commercial
applications [10–13]. These techniques have elevated the extraction efficiency of potato
pectin by directly destroying the linkages among pectin, hemicellulose, and cellulose, ac-
companied with the destruction of the pectin structure. Recent research has revealed that
original pectin in potato cell walls could participate in maintaining the cell structure during
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food processing [14–16]. It was found that the acid-induced in situ gelation of pectin in the
cell wall played a role in the significant increase in the hardness of cooked potato slices. The
pH or Ca2+ induced gelation of commercially extracted LM pectin from Nicandra physalodes
(Linn.) Gaertn. seeds (NPGSP), Premna microphylla turcz (PMT), and creeping fig (CFP) has
been extensively studied [17–19]. The gelation process of LM pectin in the presence of Ca2+

is often described as an “egg box” model [20–22]. Meanwhile, LM pectin can also form a
gel through non-ionic binding based on hydrophobic interactions and hydrogen bond in
the case of low pH [17,23].

So far, most studies have focused on the extraction and characterization of potato
pectin with hydrolyzed chains for commercial purposes. However, little research has
addressed the gelation process of original pectin from a potato cell wall (OPP). This study
aimed at unraveling the gelation process of original pectin from a potato cell wall with
the gradual variation in H+ (with the addition of d-glucono-δ-lactone). Thus, the cellulose
and hemicellulose in the potato cell walls were hydrolyzed by cellulase to release original
pectin. Through the addition of GDL, rheological features of solution–sol–gel transitions
of original pectin were measured. Additionally, X-ray diffraction (XRD), dynamic light
diffraction (DLS), small-angle X-ray scattering (SAXS), and low-temperature scanning
electron microscopy (cryo-SEM) were used to explore the gelation process of original pectin
from the potato cell walls.

2. Materials and Methods
2.1. Materials

The potatoes were purchased from Jinzhu Farmers Market (Huaxi District, Guiyang
City, China). The α-amylase (food grade, 40,000 U/g) and mixed standards, including man-
nose (Man), ribose (Rib), rhamnose (Rha), glucuronic acid (GlcA), galacturonic acid (GalA),
glucose (Glc), galactose (Gal), xylose (Xyl), arabinose (Ara), and fucose (Fuc), were pur-
chased from Solarbio science & technology Co., Ltd. (Beijing, China), and the cellulase (BR,
400 U/mg) was obtained from Yuanye biological technology Co., Ltd. (Shanghai, China).
Gluconic acid-δ-lactone (GDL, BR) was purchased from Macklin biological technology Co.,
Ltd. (Shanghai, China).

2.2. Methods
2.2.1. Preparation of Residue from Potato Cell Walls

Potatoes without pests and defects were selected for the experiment. After peeling,
cleaning, and slicing, the potatoes were crushed with deionized water at a ratio of 1:1 (w/v,
g/mL) for 1 min (32,000 r/min) by a breaker (Joyoung, China). The potato residue was
repeatedly washed 3 times to remove starch and dried at 60 ◦C overnight for experiment.
Then, deionized water was mixed with the potato residue at a ratio of 1:30 (w/v, g/mL).
The mixture was adjusted to pH 6.6 ± 0.02, preheated at 95 ◦C for 5 min, treated with 5%
(w/w, g/g) α-amylase (40,000 U/g), and kept in a water bath at 95 ◦C. After the mixture was
tested for starch content with iodine solution and found to contain no starch, the residue
was filtered and dried at 60 ◦C for 12 h. Then, ethanol (80%) was mixed with the residue at
the ratio of 1:15 (w/v, g/mL). The mixture was heated at 75 ◦C for 25 min to remove any
soluble sugar, filtered, and dried at 60 ◦C for the extraction of pectin.

2.2.2. Enzymatic Extraction of Original Pectin from Potato Cell Walls

Original pectin from potato cell walls was extracted by enzyme, according to the
method of Dranca et al. [24]. The residue was mixed with a citric acid–sodium citrate buffer
(0.1 M, pH 4.8) at a ratio of 1:30 (w/v, g/mL) and preheated at 50 ◦C for 5 min. Then, 0.5%
of cellulase (enzyme/residue, g/100 g) was added to the mixture and heated at 50 ◦C for
24 h. After the enzymatic hydrolysis of the residue, the mixture was boiled at 100 ◦C for
10 min. Upon cooling to room temperature, the filtrate was collected and adjusted to pH
6.5. Then, 80% ethanol was added to the filtrate at a ratio of 1:4 (v/v, mL/mL) and left
overnight at 4 ◦C. The mixture was centrifuged at 7000 r/min for 10 min to acquire original
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pectin. After centrifugation, 80% ethanol was mixed with the residue (1:20, w/v) to resolve
the soluble sugar. Finally, the mixture was centrifuged again at 7000 r/min for 10 min and
freeze-dried. The yield of original potato pectin was calculated as

yield (%) = Pectin weight (g)/Weight of potato residue after starch removal (g) × 100% (1)

2.2.3. Physicochemical Analysis of OPP
1© Determination of molecular weight distribution (Mw)

The molecular weight distributions of OPP were determined by size exclusion chro-
matography according to a previous method [17–19]. The separation of polymers was
conducted on a Shimadzu LC-20A series HPLC system (Shimadzu Co., Kyoto, Japan) with
a TSKgel G5000PWXL column (TOSOH, Tokyo, exclusion limits of 4000–800,000 Da, a
particle size of 10 µm, and a pore size of 100 nm) and monitored by a reflective index
detector (RI-20). The mobile phase composed of 0.1 mol/L NaNO3 and 0.06% NaN3 was
used for the determination of Mw with a flow rate of 1.0 mL/min and column temperature
of 40 ◦C, respectively.

2© Determination of degree of methylation (DM) and acetylation (DA)

The DM of OPP was determined according to the method of Murayama et al. [25]
with a little modification. OPP (20 mg) was first dissolved in 8 mL of distilled water and
followed by an ultrasonic treatment (240 w, 10 min). The OPP solution was mixed with
NaOH (2 mol/L, 3.2 mL) and vibrated at 25 ◦C for 1 h. Then, the OPP solution was mixed
with HCl (2 mol/L, 3.2 mL) and vibrated at 25 ◦C for 15 min. A 0.1 mol/L PBS solution
(KH2PO4-NaOH, pH 7.5) was added to the OPP solution to obtain a final volume of 25 mL.
A 1 mL sample solution and different concentrations of methanol were mixed with 1 mL
alcohol oxidase (1 U/mL) and incubated at 25 ◦C for 15 min. Then, a 2 mL pentanedione
solution (25 g ammonium acetate, 3 mL acetic acid, and 0.25 mL acetylacetone) was added
to the OPP solution and incubated at 58 ◦C for 15 min. After cooling to room temperature,
the OPP solution was examined by an ultraviolet spectrophotometer at a wavelength of
412 nm. The DM of OPP was determined by using an acetic acid (RM) kit (Megazyme
International Ireland Inc. Wicklow, Ireland) according to the product instruction.

3© Determination of natural sugar ratio

The natural sugar ratio of OPP was determined by using HPLC (Shimadzu Co., Kyoto,
Japan) with a Thermo BDS C18 column (250 × 4.6 mm i.d., 5 µm) according to a previ-
ous method [17–19]. OPP (2 mg) was hydrolyzed by 2 mL trifluoroacetic acid (2 M) at
110 ◦C in an oven for 3 h. Then, the sample was dried with N2 at 45 ◦C and redissolved
in 200 µL of ultrapure water. The final pH of the sample was neutralized with 0.1 mol/L
NaOH. OPP or a standard neutral sugar (400 µL), standard lactose (0.02 mol·L−1, 50 µL),
NaOH (0.3 mol·L−1, 450 µL), and 1-phenyl-3-methyl-5-pyrazolone (0.5 mol·L−1, 450 µL)
were mixed together by a vortex mixer (MX-S, DLAB Scientific Co., Ltd., Beijing, China).
The mixture was incubated at 70 ◦C for 1 h, cooled to room temperature, and neutral-
ized by the addition of HCl (0.3 mol·L−1, 450 µL). The sample was extracted by 1 mL
chloroform 5 times, accompanied with vigorous mixing and centrifugation at 3000× g for
5 min each time. Then, the solution was filtered through a 0.45 mm membrane filter and
followed by HPLC determination. Eluent A and B were composed of 15% acetonitrile with
0.05 M PBS solution (KH2PO4-NaOH, pH 7.1) and 40% acetonitrile with 0.05 mol/L PBS
solution (KH2PO4-NaOH, pH 7.1), respectively. A gradient procedure (0–10 min, 0–10% B;
10–40 min, 10–40% B; 40–50 min, 40–0% B; 50–60 min, 0% B) was used for the separation
of the sample. The signal was monitored with a wavelength of 245 nm, a flow rate of
0.7 mL·min−1, and a temperature of 35 ◦C.
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2.2.4. Characterization Analysis of Acid-Induced Gelation Process and State of Original
Pectin from Potato Cell Walls

A total of 0.3 g of pectin was dissolved in 10 mL distilled water and stirred at 60 ◦C
for 40 min for full hydration. Different amounts of GDL (0.1%, 1%, 4%, 7%, and 10%, w/v)
were added to the pectin solution (release rate of H+ was different) to control the gelation
process. The pH variation of the pectin solution was recorded every 10 min.

1© Rheological measurements

For rheological property measurements, samples were immediately tested after the
addition of GDL. The rheological characterization of samples was determined by using
a DHR-2 rheometer (TA Instruments, New Castle, DE, USA), according to the method of
Yuliarti et al. [26]. The conical plate (2◦ and 40 mm) was selected as the fixture. In order to
eliminate the influence of mechanical action during sample loading on the test results, all
samples were balanced and stabilized for 3 min before the test. Meanwhile, a strain range
of 0.01–1000% was used to determine the linear viscoelastic region of all samples before the
test. Amplitude scanning was performed at 1 Hz and 4 ◦C.

The dissolved samples were immediately tested on the rheometer for the observation
of gelation time and measurement of dynamic frequency and static flow. Gelation time scan
(150 min) was recorded at a temperature of 4 ◦C, frequency of 1 Hz, and strain of 1% (within
the linear viscoelastic range of samples) for the pectin solution with different additions of
GDL. The variation of energy storage modulus (G′), loss modulus (G′′), complex modulus
(G*), and complex viscosity (η*) during gelation time scan was used for the analysis of
the gelation process. After the gelation time scan, the variation of G′ and G′′ of the
pectin solution was recorded at 4 ◦C and 1% strain with an oscillation frequency of 100 to
0.1 rad·s−1. After the frequency scan, the viscosity of the pectin solution was recorded at
4 ◦C and 1% strain with a shear rate ranging from 0.1 to 100 s−1.

2© Dynamic light scattering (DLS) measurements

For other measurements, samples were tested after the addition of GDL for 2.5 h. The
size characterization of samples was determined by using Zetasizer Nano ZS 90 (Malvern,
UK) according to the method of Sun et al. [27]. Acid-induced pectin gelation was conducted
without and with the addition of 4%, 7%, and 10% (w/v) GDL for 2.5 h. Then, the pectin
solution (3%, w/v) was first pretreated with ultrasound at 240 W for 5 min before the test.
The refractive index and temperature during the test were set at 1.33 and 25 ◦C, respectively.

3© Small-Angle X-ray Scattering (SAXS) measurements

For other measurements, samples were tested after the addition of GDL for 2.5 h.
The wet-state structural characterization of samples was determined by using Xeuss 2.0
Angle scatterer (Xenocs, Grenoble, France), according to the method of Alba et al. [28].
Acid-induced pectin gelation was conducted without and with the addition of 10% (w/v)
GDL for 2.5 h. Then, the scanning of the sample (3%, w/v) was performed with a distance
(between the sample and the detector) of 1007 mm, wavelength of 1.54189 Å, scattering
vector (q) from 0.01 to 0.3 Å−1, optical tube power of 30 W, detector (Pilatus 3R) of 300 K,
and size of a single pixel of 172 µm. During the measurement process, two scattering curves
(sample scattering curve and solution background scattering curve) were obtained. The
measured according to Equation (2), subtract the measured value from the background to
eliminate interference. The final result of the SAXS was obtained as scattering intensity I(q)
and scattering vector q.

I(q) = [IS, exp(q) − Idc(q)]/TS − [IM, exp(q) − Idc(q)]/TM (2)

q stands for scattering vector, which is (4 π/λ) sin (θ); 2θ is the scattering angle; and I(q)
is the scattering intensity of the corrected sample. IS, exp(q), Idc(q) and IM, and exp(q) are
the sample measured scattering intensity, the detector current intensity, and the background
measured scattering intensity, respectively. TS and TM are the X-ray transmittance of the
sample and the solvent, respectively.
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4© X-ray Diffraction (XRD) measurements

For other measurements, samples were tested after the addition of GDL for 2.5 h. The
dry-state structural characterization of the samples was determined by using D8 Advance
X-ray diffractometer (Bruker, Germany), according to the method of Zhou et al. [29]. Acid-
induced pectin gelation was conducted without and with the addition of 4%, 7%, and 10%
(w/v) GDL for 2.5 h. Then, the pectin powder was acquired by freeze-drying. Scanning of
the sample powder was performed using Cu Kα radiation with diffraction angles ranging
from 5◦ to 90◦ (2θ), scanning speeds of 2◦·min−1, voltage of 40 kV, and current of 40 mA.

2.2.5. Cryo-Scanning Electron Microscopy (CSEM) Observations

For other measurements, samples were tested after the addition of GDL for 2.5 h. The
morphological characterization of the samples was performed by using Regulus 8220 cryo-
scanning electron microscope (Hitachi, Japan), according to the method of Kyomugasho et al. [30].
Acid-induced pectin gelation was conducted without and with the addition of 10% (w/v) GDL
for 2.5 h. The pectin solution (3%, w/v) was first put into the sample table and quickly frozen for
30 s with liquid nitrogen slush. Then, it was transferred to the sample preparation chamber in a
vacuum state for sublimation at −90 ◦C for 10 min and gold-plated at 10 mA for 60 s. Finally,
the morphological observation of the samples was performed at−140 ◦C with an accelerating
voltage of 5 kV.

2.3. Statistical Analysis

All measurement were repeated at least in triplicate. One-way analysis of variance
(ANOVA) using Duncan’s multiple range test was used for evaluating the differences
among groups with the SPSS statistics software (version 23.0). RheoCompass TRIOS
software was used to obtain raw rheological data (including elastic modulus, viscous
modulus, strain, and stress). In addition, fit 2D was used for transforming the SAXS result
into a one-dimensional map.

3. Results and Discussion
3.1. Apparent Behavior of OPP without and with GDL-Induced Gelation

The yield of potato pectin (Table 1) obtained from the enzymatic method (cellulase
hydrolysis) was slightly lower than that (14.34%) obtained from the chemical method
(acid hydrolysis) [10]. The OPP showed a lower content (<50%) of GalA than pectin from
other plants, indicating a lower content of HG, which is in accordance with previous
studies [31,32]. Gal (68.674%) dominated the natural sugar content in OPP, suggesting
that a branched structure existed in OPP [33,34]. The Rha/GalA of OPP (0.37) was sig-
nificantly higher than that of citrus pectin (0.017~0.027), confirming that there were more
branched chains on the OPP backbone [3,31]. Nevertheless, the (Ara+Gal)/Rha of OPP
(17.4) was higher than that of commercial pectin (4.81), implying that a sophisticated
branch structure existed in OPP [3,12]. OPP showed a higher Gal content, Rha/GalA, and
(Ara+Gal)/Rha than those (49.38%, 0.11%, and 12.65%) of pectin extracted from potato by
an acid (HCl) [3]. Moreover, OPP also showed a higher Mw (9.64 × 105 g/mol) than that
(2.80–3.20 × 105 g/mol) of pectin extracted from potato by an acid (HCl, H2SO4, HNO3,
citric acid, and acetic acid) [10]. The higher number of branched structures and higher
Mw of OPP proved that pectin with natural characteristics was successfully extracted from
potato cell walls.

GDL is one of the most widely used material for the acid-induced gelation of protein,
such as soy protein isolate [35] and casein [36]. As shown in Figure 1, OPP showed varied
flow morphologies from liquid to semisolid states with different addition amounts of GDL
(0.1 to 10%). Thus, pH could significantly affect the gelation of OPP. Apparently, OPP with
a 4% addition of GDL showed a transient state (sol) with enhanced adhesion from fluid to
gel. With an excessive addition of GDL (more than 7%), OPP showed a gel-like state with
poor mobility. The higher concentration made GDL release more H+ in the solution, which
promoted the gelation of pectin [37]. Li et al. [20] also found that the addition of GDL
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(1.35%) into Nicandra physalodes (Linn.) Gaertn would cause the transformation of a gel
from a weak to a strong state. Nevertheless, structural characteristics including molecular
weight and esterification degree would significantly affect the gel mobility of pectin [38].
Compared with the acid-induced gelation of pectin (solid state with a hardness of 20–200 g)
from other plants [20,39,40], OPP showed a weak gel with fluidity after gelation.

Table 1. Structural characterization of potato pectin.

Composition Content

Yield (dry basis, %) 13.03 ± 0.03
Degree of methylation (DM, %) 24.74 ± 0.01
Degree of acetylation (DA, %) 7.75 ± 0.20

Molecular weight (Mw, g/mol) 9.64 × 105

Mannose (Man, %) 0.35 ± 0.12
Ribose (Rib, %) 0.06 ± 0.01

Rhamnose (Rha, %) 4.48 ± 0.38
Glucuronic acid (GlcA, %) 0.44 ± 0.11

Galacturonic acid (GalA, %) 12.19 ± 0.27
Glucose (Glc, %) 3.71 ± 0.24

Galactose (Gal, %) 68.66 ± 0.14
Xylose (Xyl, %) 0.09 ± 0.01

Arabinose (Ara, %) 9.67 ± 0.25
Fucose (Fuc, %) 0.34 ± 0.06

Rha/GalA 0.37
(Ara+Gal)/Rha 17.48
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3.2. Rheological Analysis of OPP without and with GDL-Induced Gelation

Rheological analyses can simultaneously measure the characteristics of an elastic
solid and a viscous fluid, which is suitable for studying the structure of complex fluids.
However, a rheological analysis with a small deformation is not inhibited by structure in
the measurement process and is often used to detect the transformation of hydrophilic
food to a colloid sol–gel state [41,42]. GDL was used as a controlled-release H+ donor to
gradually change the pH of the pectin solution. Thus, the gelation process of pectin could
be easily captured through the analysis of the fluid characteristics. G′ and G′′ represent
the storage modulus (elastic part) and loss (viscous) modulus of fluid, respectively, which
indicate the formation of structural or network bonding among polymer materials during
the dynamic shear deformation process [41]. Typically, two fluid characteristics, denoted
by G′ > G′′ and G′ < G′′, represent solid-like and liquid-like behavior, respectively.

According to the time-scanned graph (Figure 2A–F), G′ increased significantly with
the decrease in pH within 9000 s, inferring that OPP experienced a gradual formation of an
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enhanced structure with network bonding. The decrease in pH will lead to the reduction
of the number of charged groups (carboxyl groups), thereby reducing the electrostatic
repulsion between polymers [43] and promoting hydrogen bonding and hydrophobic
interaction between pectin chains [19,40]. When the pH was higher than 4.19, G′ was
consistently lower than G′′, indicating a fluid state of OPP. However, OPP showed a typical
gel formation process (G′ > G′′) with the pH lower than 3.13. The definition of the sol–gel
transition point is generally accepted at a given frequency. The cross-point between G′ and
G′′ was defined as gelation time (Gt) [42] and shortened (from 7427 s to 2286 s) with the
decrease in pH. A similar observation was made in the gelation of pectin from seeds of the
creeping fig plant with the addition of GDL [39]. The Gt (406 s) of pectin from seeds of the
creeping fig plant was less than that (2767 s) of OPP around pH 2.5 [39].
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The complex viscosity η* = η′ − iη′′ is composed of dynamic viscosity η′ = G′′/ω and
imaginary viscosity η′′ = G′/ω, representing the flow resistance of the fluid. The greater
η* is, the stronger the cohesion inside the fluid, causing poor liquidity [44]. As shown in
Figure 2 (G), η* gradually increased with time when the pH was lower than 3.13, which
indicated the variation of the solution–sol–gel state.

As shown in Figure 2H, the pH of the OPP solution with different additions of GDL
(from 0.1 to 10%) gradually decreased with time and reached a final value of 6.07, 4.19,
3.13, 2.59, and 2.3 at 9000 s, which was consistent with previous results [37]. The partial
hydrolysis of GDL to gluconic acid in the aqueous systems caused the decrease in pH.
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Figure 3 shows different dependence tendencies in the fluid characteristics of OPP
and frequency. Both the G′ and G′′ of OPP increased with the increase in angular frequency
from 0.1 to 100 rad/s. A rapid increase in G′ and G′′ could be observed in OPP with the
pH higher than 3.13, while a relatively stable variation in G′ and G′′ appeared in OPP
with the pH lower than 2.59. Within the frequency range of 0.1–10 rad·s−1, G′′ and G′

dominated the fluid characteristic of OPP when the pH was higher and lower than 3.13,
respectively. Within the frequency range of 10–100 rad·s−1, the G′ and G′′ of OPP nearly
coincided when the pH was higher than 2.59. However, there was obvious space between
the G′ and G′′ of OPP when the pH was lower than 2.59. This suggests that OPP had a
frequency dependence with the variation in pH. Nevertheless, the frequency dependence
was weakened with the formation of a strong gel, indicating that the gel structure was
becoming more stable [45]. Gilsenan et al. found that the G′ and G′′ of pectin (with 31%
esterification degree) gradually increased with the decrease in pH to 3, showing a typical
dilute solution with strong frequency dependence [46]. When the pH was lower than 2, the
frequency scan result represented a typical strong gel with weak frequency dependence.
Figure 3G shows that η of the gelled OPP significantly decreased (pH lower than 3.13)
with the increase in the shear rate, while that of the non-gelled OPP (pH higher than 3.13)
first increased in the low shear rate region from approximately 0.05 to 0.1 Pa·s and then
decreased. The decrease in ηwith the increase in shear rate confirmed that OPP belongs to a
typical non-Newtonian fluid (shear thinning). This may be ascribed to the formation of new
conformation through the rearrangement and dissociation of polysaccharides along the
flow direction [28]. Moreover, the highly branched structure of OPP might also contribute
to the formation of chain entanglement, causing higher pseudoplastic characteristics [6,47].
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3.3. DLS Analysis of OPP without and with GDL-Induced Gelation

Generally, the particle characteristics (ζ-potential and particle size distribution) repre-
sent the stability and aggregation behaviors of pectin polysaccharide [48]. The ζ-potential
of pectin represents the potential stability of the colloidal system. As can be seen from
Figure 4A, negative ζ-potential values were observed in OPP before and after gelation.
Carboxylate ions (-COOH) on the skeletal structure mainly contributed the surface negative
charge of pectin [43,49]. With the decrease in pH, the ζ-potential of OPP decreased from
−21.5 mV to −11.3 mV, which was also observed in the acid-induced gelation of citrus
pectin [50] and Nicandra physalodes (Linn.) pectin [51]. Smaller particles usually share a
more specific surface area, providing a higher ζ-potential absolute value for polymers [52].
The decrease in ζ-potential in OPP after acid-induced gelation can be ascribed to the surface
protonation that occurred with the carboxyl group at a lower pH. The reduction in the
surface electric charge would trigger the aggregation of pectin through a reduction in the
electrostatic repulsion [44,53]. Figure 4B shows that the OPP particles mainly dispersed
in water around 200 nm. With the decrease in pH, the particles of OPP experienced a
transformation from a narrow to a broad distribution, and from a nano to micro scale
(Figure 4B–E). The elevated distribution and size of OPP in solution might be due to the
aggregation of polymers, which is caused by the decrease in ζ-potential [54]. Nevertheless,
the increase in particle size after gelation might further improve the viscosity and decrease
the colloidal fluidity (observation in Figure 1) of pectin through an elevated hydration
ability [55].
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3.4. SAXS and XRD Analysis of OPP without and with GDL-Induced Gelation

SAXS is an accurate and a non-destructive analytical method for characterizing the
structural features of polymers [56]. Figure 5 shows the two-dimensional scattering diagram
of OPP and gelated OPP (10% GDL-induced gelation). As shown in Figure 5A, a circular
scattering pattern was observed in OPP. In contrast, more scattering highlights appeared in
the GDL-induced gelation of OPP, creating a typical spectrogram of a hydrogel with weak
anisotropy [57]. The fractal dimension can quantitatively describe the binding state of the
system and the complexity of the polymer network [58]. The fractal dimensions of OPP
(1.78) and gelated OPP (1.86) were obtained by a linear fitting of the linear segment of the
one-dimensional curve. A loose structure of a polymer corresponds to a smaller fractal
dimension, while a tight structure corresponds to a larger one [59]. An acidic environment
was adverse to the formation of a tighter chain arrangement in pectin, especially for that
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containing an amount of neutral sugar side chains (RG-I regions). X-ray diffraction is a
powerful tool used to identify the crystal structure of polymers [60]. Normally, natural
pectin contains heteropolysaccharides, causing a semi-crystal or amorphous structure [61].
Figure 5 shows a wide diffraction peak near 2θ of 20.71◦ in OPP powder. Interestingly,
the intensity of the 20.71◦ diffraction peak significantly increased after the gelation of OPP.
This result is in accordance with the GDL-induced gelation of Nicandra physalodes (Linn.)
Gaertn. seeds (NPGSP) pectin, which also shows an intense peak near 2θ of 20.97◦ [20].
Nevertheless, the crystallinity of OPP increased from 8.61% to 26.44%~38.11% with the
addition of GDL. The increase in pectin crystallinity after gelation was probably due to the
formation of ordered structures during the molecular interactions, such as hydrophobic
effect and hydrogen bond [44,62].
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3.5. In Situ Observation of OPP without and with GDL-Induced Gelation

Traditional SEM requires freeze-drying the sample in advance, which easily causes
damage to the morphology during the process of ice crystal freezing/thawing [63]. How-
ever, cryo-SEM could easily obtain the original morphology for the analysis of colloids
due to the reduction of deformation in pretreatment [30]. Figure 6 shows the cryo-electron
microscope scanning images of OPP and gelated OPP (10% GDL-induced gelation). OPP
showed a porous structure with many large holes (>5 µm). In contrast, a compact structure
was observed in gelated OPP with many small holes (<5 µm). Abundant arabinose side
chains produced more entanglement forces among side chains in OPP through hydrophobic
interactions and hydrogen bonds, which also limited and promoted the mobility of pectin
and the formation of a stable gel network, respectively [64,65].
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4. Conclusions

The characteristics during and after acid-induced gelation of OPP by the addition of
GDL was investigated. The gelation of OPP was first observed at a pH lower than 3.13. A
further decrease in pH to 2.59 caused the formation of gel-like substances and increased
the complex viscosity (η*) from 0.15 to a range of 0.20~6.3 Pa·s at 9000 s. The gelation
time (Gt) of OPP was significantly shortened from 7424 s to 2286 s. The complex viscosity
(η*) of OPP gradually increased after 4000 s when the pH was lower than 3.13. Moreover,
the gelation of OPP caused the decrease in ζ-potential (from −21.5 mV to −11.3 mV),
which promoted the protonation of carboxyl groups on the surface of OPP and reduced the
electrostatic repulsion among OPPs. Thus, the aggregation of pectin with a wider particle
size distribution (from a nano to a micro scale) and mutual linked structures (the fractal
dimension of OPP increased from 1.78 to 1.86, and the crystallinity of OPP increased from
8.61% to 26.44%~38.11%) was observed after gelation of OPP, which might contribute to
the enhanced mechanical properties of potato cell walls during the heating process.
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