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Abstract: Cherry tomatoes are easily damaged due to their high moisture content. A composite
coating was developed to delay deterioration and prolong storage by mixing antibacterial sulfated rice
bran polysaccharides (SRBP) and edible hydroxyethyl cellulose (HEC) with film-forming properties.
The effects of HEC, HEC-5% SRBP, and HEC-20% SRBP preservative coatings on the maintenance of
the quality of cherry tomatoes (LycopersivonesculentumMill., Xiaohuang F2) during cold storage were
investigated. The HEC-20% SRBP coating significantly reduced tomato deterioration and weight
loss, delayed firmness loss, decreased polyphenol oxidase activity, and increased peroxidase activity.
Furthermore, cherry tomatoes treated with HEC-20% SRBP maintained high levels of titratable acid,
ascorbic acid, total phenols, and carotenoids. Cherry tomatoes coated with HEC-SRBP also had
higher levels of volatile substances and a greater variety of these substances compared to uncoated
tomatoes. In conclusion, the HEC-20% SRBP coating effectively delayed deterioration and preserved
cherry tomatoes’ nutrient and flavor qualities during postharvest cold storage, suggesting it could be
a novel food preservation method.

Keywords: preservative coating; delay senescence; fresh-keeping

1. Introduction

Cherry tomatoes are highly sought after by consumers worldwide due to their richness
in sugars, organic acids, minerals, and vitamins [1,2]. These tomatoes are also a good source
of vitamin C, lycopene, and beta-carotene [3]. Cherry tomatoes are listed as one of the
priority fruits and vegetables by the Food and Agriculture Organization of the United
Nations, as they can promote growth and development, enhance immune function, delay
aging, and prevent and fight cancer [4]. However, the high water content of cherry tomatoes
makes them difficult to store. After 5 to 6 days of storage at room temperature (25 ◦C),
they lose their edible and commercial value due to water loss, crumpling, browning, and
decay [5], leading to significant economic losses in the food industry.

Currently, the main methods used for cherry tomato preservation are modified atmo-
spheres, low temperatures, and chemical preservation. However, the modified atmosphere
preservation method is costly, whereas chemical preservation is associated with safety
issues and environmental pollution, significantly limiting the application of these methods
in fruit and vegetable preservation. Although cold storage is currently the most widely
used method to store and preserve cherry tomatoes after harvesting [6], this is subject to

Foods 2023, 12, 3156. https://doi.org/10.3390/foods12173156 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12173156
https://doi.org/10.3390/foods12173156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-6314-7446
https://orcid.org/0000-0003-2266-3473
https://doi.org/10.3390/foods12173156
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12173156?type=check_update&version=1


Foods 2023, 12, 3156 2 of 16

several shortcomings, including water loss, rapid firmness decline, and mildew’s rapid
growth. Hence, additional preservation techniques during low-temperature storage are of-
ten necessary to meet market demand, of which an edible coating is the most effective [7,8].
Edible film-coating technology, an eco-friendly preservation method, offers significant ad-
vantages such as low cost, simplicity in operation, wide applicability, and easy utilization,
and it contributes to the reduction in non-biodegradable packaging material overuse [9].
Edible coatings create a barrier that reduces water loss, respiration rate, and migration of
oxygen and other gases in fruit to delay physicochemical and biological deterioration, thus
prolonging the shelf life of the fruit [10].

Hydroxyethyl cellulose (HEC) is a hydrophilic, odorless, and non-toxic cellulose deriva-
tive that is widely used in the pharmaceutical, cosmetic, and food industry due to its advan-
tageous properties such as good film formation, degradability, and biocompatibility [11];
however, it is also associated with several shortcomings, such as poor strength, ductility,
and load capacity, and it is thus necessary to use it in conjunction with other substances [12].
For example, an edible coating made of a 1:05 ratio of HEC and sodium alginate (SA),
together with asparagus waste extract, extends the shelf life of strawberries up to 8 days at
25 ◦C and 80% relative humidity [10]. Polysaccharides, well-documented sources for devel-
oping renewable green materials, show promise in the form of rice bran polysaccharides
given their abundance, low costs, and superior functional properties, such as antioxidant
and antibacterial activities [13]. Previous studies have shown that introducing a sulfate
group in the polysaccharide can alter the nature and structure of the polysaccharide, im-
proving its antioxidant and antibacterial properties [14,15]. Our preliminary studies have
verified these results; rice bran polysaccharides’ antibacterial and antioxidant activities
were enhanced after sulfated modification. Hence, these sulfate-modified polysaccharides
can be used as a natural antibacterial substance to enhance the antibacterial and preserva-
tion properties of the coating materials. To our knowledge, using HEC/SRBP-composite
coatings for fruit storage has not been investigated. Therefore, this study aimed to examine
the impact of HEC-SRBP coating on cherry tomatoes’ preservation under low-temperature
storage conditions, intending to develop a preservation method that enhances the quality
of stored cherry tomatoes.

2. Materials and Methods
2.1. Materials

Cherry tomatoes (LycopersivonesculentumMill., Xiaohuang F2) were harvested from
Fengxian Orchard (Shanghai, China) at the half-ripe stage. For experimental purposes,
tomatoes of similar size and uniform maturity, free from mechanical damage, pests, and
diseases, were selected.

2.2. SRBP

The assessment of the rice bran polysaccharide (RBP) was conducted as described by
Wang et al. [16] and Li et al. [17]. Initially, degreased rice bran was extracted with water
(at a ratio of 1:20, w/v) at 90 ◦C for 2 h and filtered twice. Subsequently, α-amylase and
the Sevag reagent (n-butanol and trichloromethane 1:4, v/v) were used to remove starch
and protein. The extract was centrifuged and concentrated, followed by precipitation of
the concentrate overnight with ethanol. The precipitate was dissolved in water, dialyzed
against distilled water, and freeze-dried to obtain RBP. In the subsequent reaction, RBP
(600 mg) was mixed with dimethyl sulfoxide (90 mL), stirred at 25 ◦C for 1 h, and reacted
with pyridine trioxide complex (20 times the mass of RBP) at 55 ◦C for 2 h. After cooling,
1 mol/L NaOH was added to neutralize the reaction solution, after which the material was
dialyzed, concentrated, and freeze-dried to obtain SRBP.

2.3. Preparation of Coatings

The HEC-SRBP coating was developed using the protocol described by Akhtar et al. [18].
First, HEC solution (1 g HEC in 100 mL sterile distilled water) was stirred at 80 ◦C for
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1 h. After cooling to room temperature, glycerol (30%, w/w) was added as a plasticizer.
Different concentrations of SRBP (0, 5, 10, 15, 20, and 25% of HEC, w/w) were added to the
HEC solution, and the solutions were stirred at room temperature for 0.5 h, followed by
degassing under vacuum for 1 h. The coating solutions containing different concentrations
of SRBP were prepared, namely, HEC, HEC-5% SRBP, HEC-10% SRBP, HEC-15% SRBP,
HEC-20% SRBP, and HEC-25% SRBP.

2.4. Preservation of Cherry Tomatoes

The cherry tomatoes were washed, disinfected with sodium hypochlorite for 15 min
(2%, v/v), and dried on paper towels. Subsequently, in groups of 150, the tomatoes were
randomly macerated for 1 min in distilled water (CK), HEC, HEC-5% SRBP, HEC-10% SRBP,
HEC-15% SRBP, HEC-20% SRBP, and HEC-25% SRBP and dried. The effects of different
concentrations of SRBP treatments on the color and sensory characteristics of the cherry
tomatoes were analyzed immediately, so as to select the appropriate SRBP concentration
for subsequent storage experiments, which were conducted under the following conditions:
the tomatoes were refrigerated at 4 ◦C for 12 days and then stored at 25 ◦C for 3 days.

2.5. Determination of Physicochemical Quality
2.5.1. Color

A colorimeter (CM-5, Hangzhou Keshengxing Instrument Co., Ltd., Hangzhou, China)
was used to measure the surface color (L*—luminosity, a*—redness/greenness,
b*—yellowness/blueness) of the tomatoes according to the method described by Liu et al. [2].
The total color difference (∆E*) was calculated using the following formula:

∆E =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2

2.5.2. Sensory Evaluation

Using a hedonic scale, 20 trained judges (10 men and 10 women aged 25–40) assessed
the cherry tomatoes’ color (bright yellow and uniform color), flavor (sweet and sour taste
with a strong aroma), texture (moderate hardness), and overall acceptability. The scale
ranged from 5 to 25 with 5 = extremely poor, 10 = poor, 15 = acceptable, 20 = very good,
25 = excellent.

2.5.3. The Rate of Decay and Weight Loss

Rotten fruit is defined as fruit that has leaked juice and has become severely softened
or decayed. The decay rate and weight loss were determined using the following formulas:

weight loss (%) =
the number of rotten tomatoes

the initial number of cherry tomato
× 100

weight loss (%) =
Initial weight − Final weight

Initial weight
× 100

2.5.4. Firmness

A texture analyzer (TA-XT plus, Stable Micro Systems, Surrey, UK) was used to
measure three equidistant areas on the equatorial part of the tomatoes, utilizing a p/2 probe
with a speed of 2.0 mm/s and a depth of 10 mm. These measurements were conducted
12 times for each set of tests, with the results expressed in Newtons (N).

2.6. Nutrient Composition
2.6.1. Total Soluble Solids (TSS), Titratable Acidity (TA), and Ascorbic Acid

The cherry tomato samples were filtered through two layers of gauze, and the TSS
contents in the pulp were determined using a refractometer (WYA-ZT, Shanghai Yidian
Physical and Optical Instruments Co., Ltd., Shanghai, China). The TA of the tomatoes was
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expressed as a percentage of the citric acid contents, as described by Mustapha et al. [19],
while the ascorbic acid content was evaluated by the 2,6-dichlorophenol indophenol assay [20].

2.6.2. Total Phenolic (TP) Content

The TP content was measured using the Folin–Ciocalteu method [21]. The sample
(1 g) was homogenized in methanol (3 mL, 80% (v/v)) containing 2% formic acid and
centrifuged. The supernatant (0.5 mL) was added to a solution containing a Folin–Ciocalteu
reagent (1 mol/L, 1 mL) and sodium carbonate solution (3.5 mL, 1 mol/L) and reacted in a
water bath at 30 ◦C for 1 h. Subsequently, the absorbance of the solution at 760 nm was
measured, and the TP content was calculated using gallic acid as the standard.

2.6.3. Carotenoids

The carotenoid contents were determined using a plant carotenoid kit (Wuhan Qinzhi-
jie Biotechnology Co., Ltd., Wuhan, China).

Carotenoids (mg/kg) =
A400 × V × D
ε × d × W

× 106

In this formula, A440 represents the absorbance at 440 nm, V represents the volume
of the sample extracts, D stands for the dilution ratio, ε signifies the extinction coefficient
of carotenoid (250 L/g/cm), d is the light diameter of a 96-well plate (0.5 cm), and W
corresponds to the weight of the sample.

2.7. Enzyme Activity

Polyphenol oxidase (PPO) activity was assayed as described by Zeng et al. [22] with
minor modifications. Cherry tomato pulp (0.5 g) was suspended in sodium phosphate
buffer (0.5 mL, 0.1 M, pH 7.0) and ground into a pulp, followed by centrifugation. Sub-
sequently, 20 µL of the supernatant was mixed with sodium phosphate buffer (200 µL,
0.1 M, pH 7.0) and catechol solution (50 µL, 0.1 M), and the absorbance was measured
immediately at 420 nm. An absorbance change of 0.001 per minute represented one unit of
enzyme activity.

Peroxidase (POD) activity was measured following Zeng et al.’s method [22]. The
tomato pulp (0.5 g) was suspended in sodium phosphate buffer (1.5 mL, 50 mmol, pH 7.8)
and centrifuged. Subsequently, 20 µL of the supernatant was added to 100 µL of 0.25%
(v/v) guaiacol solution, followed by 20 µL hydrogen peroxide (0.75%, v/v) to initiate the
reaction. Absorbances were read at 470 nm.

U =
∆OD420 × V

Vs ×m

U =
∆OD470 × V

Vs ×m

In these equations, 4OD420 and 4OD470 represent the changes in absorbance per
minute, V stands for the total volume of sample extracts (mL), vs. refers to the liquid volume
of the sample taken during the determination (mL), and m is the mass of the sample (g).

2.8. Malondialdehyde (MDA)

The MDA content was analyzed as described by Zeng et al. [22]. The tomato pulp
(1 g) was homogenized in 5 mL of 10% (w/v) trichloroacetic acid and centrifuged. Sub-
sequently, 2 mL of the supernatant was mixed with 2 mL of 0.6% (w/v) thiobarbituric
acid, heated in boiling water for 15 min, and rapidly cooled. The absorbance of the mix-
ture was measured at 450, 532, and 600 nm, and the MDA content was calculated as
6.45 × (A532–A600) − 0.56 × A450.
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2.9. Volatile Substances

The contents of volatile aromatic substances in the cherry tomatoes were analyzed
using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS,
7890-5975, Agilent Technologies Ltd., Palo Alto, CA, USA), following the method described
by Li et al. [23] and Tsanasidou et al. [24] with minor modifications. Briefly, 5 g of cherry
tomatoes (ground to powder under liquid nitrogen), 2 g of NaCl, and 0.04 mg/mL of
3-nonanone (5 µL, internal standard) were mixed in the headspace vial and vortexed.
Subsequently, the mixture was extracted for 30 min using solid-phase microextraction
fiber (DVB/Carboxen/PDMS, Supelco Inc., Bellefonte, PA, USA) to collect the volatile
substances, followed by GC-MS analysis. A DB-WAX capillary column was used for the
gas phase with high-purity helium as carrier gas at a flow rate of 1.5 m/s. The sample
injection heating procedure was as follows: 40 ◦C held for 3 min, raised to 160 ◦C in 24 min,
and 220 ◦C in 6 min. For the determination of retention indices, a mixture of n-alkanes
(C5–C7 and C8–C20) was employed. The retention index (RI) for each component was
calculated according to the Kovats formula:

RI = 100n+
100(tx − tn)

tn+1 − tn

In this formula, RI represents the retention index of the analyzed component; tx
represents the retention time of the measured component, min; tn and tn+1 represent
the retention time of n-alkanes with carbon number n and n + 1, respectively, min; and
tn < tx < tn+1.

The content of each volatile substance (semi-quantitative) was calculated using the
internal standards as a reference, with the following formula:

Volatile component content (µg·kg−1) =
The peak area of each component × Internal standard quality/mg

Internal standard peak area × Sample quality/g
× 106

2.10. Data Analysis

The Origin 2018 software was used for data visualization. SPSS 22.0 software was
used to determine the significant differences. Analysis of variance (ANOVA) was used for
statistical analysis of the results. p-values < 0.05 were considered significant, and significant
differences are indicated by letters in the same column in tables.

3. Results
3.1. Effect of the Coating on the Physicochemical Quality of Cherry Tomatoes
3.1.1. Color and Sensory Score

Color is an important characteristic and significantly affects consumer choice. The
brightness of color serves as an indicator of the light-blocking properties of the coating.
Specifically, a color that is too bright suggests poor light-blocking properties, while a color
that is too dark could indicate suboptimal sensory properties of the fruit [25]. The CK
group, which served as a blank control, had the highest sensory score. To ascertain the
optimal concentration of SRBP, we compared the color and sensory characteristics of cherry
tomatoes treated with varying concentrations of SRBP. Tomatoes treated with 5%, 10%, and
15% SRBP demonstrated no significant differences in L*, a*, and b* values and sensory scores
(Tables 1 and S1), and thus, to reduce costs, we used 5% SRBP as the test concentration.
At an SRBP concentration of 25%, the ∆E value was maximal (27.63 ± 0.11), while the
sensory score was minimal, which would significantly affect consumer acceptability. This
may be because of the yellowish color of the polysaccharide, which has less effect on the
membrane solution when the polysaccharides are added in small amounts, and has a greater
effect on the membrane solution when its content reaches 25%. Therefore, in subsequent
experiments, we omitted the 25% SRBP treatment and solely used the four remaining
treatments (CK, HEC, HEC-5% SRBP, and HEC-20% SRBP) to investigate the impact of
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preservation methods on cherry tomatoes. It was found that during storage, the L* values
decreased with increasing storage time, although the differences between groups only
achieved significance on day 15 (Figure 1A). Moreover, the storage period and treatment
duration significantly impacted the b* value. During storage, the b* values first increased
and then decreased in the CK and HEC groups while they continued to increase in the HEC-
5% SRBP and HEC-20% SRBP groups (Figure 1B). The rise in b* values resulted from the
accelerated chlorophyll degradation and the subsequent accumulation of carotenoids [9].
In contrast, the decrease in b* value was caused by reductions in carotenoid accumulation,
indicating that the composite coating treatment could delay the ripening of cherry tomatoes.

Table 1. Effects of coating on the color and sensory score of cherry tomatoes.

L* a* b* ∆E* Sensory Score

CK 35.55 ± 1.21 c 2.84 ± 1.33 b 23.77 ± 1.27 e —— 95 ± 2 a

HEC 35.55 ± 1.21 c 3.11 ± 1.03 b 29.72 ± 1.01 d 8.58 ± 0.18 f 93 ± 1 a

HEC-5% SRBP 38.64 ± 1.15 b 3.32 ± 1.14 b 32.56 ± 1.23 c 9.33 ± 0.02 e 92 ± 3 a

HEC-10% SRBP 38.72 ± 1.13 b 3.33 ± 1.18 b 33.84 ± 1.15 c 10.52 ± 0.10 d 92 ± 1 a

HEC-15% SRBP 38.85 ± 1.09 b 3.34 ± 1.12 b 34.16 ± 1.11 c 10.79 ± 0.13 c 91 ± 3 a

HEC-20% SRBP 35.31 ± 1.14 c 3.36 ± 1.17 b 39.18 ± 1.03 b 16.89 ± 0.24 b 91 ± 2 a

HEC-25% SRBP 32.26 ± 1.16 d 6.39 ± 1.19 a 49.48 ± 1.38 a 27.63 ± 0.11 a 71 ± 3 b

L*: luminosity, a*: redness/greenness, b*: yellowness/blueness, ∆E*: total color difference, HEC: Hydroxyethyl
cellulose, HEC-SRBP: Hydroxyethyl cellulose-sulfated rice bran polysaccharide. Different letters (a–f) indicate a
significant difference (p < 0.05) between treatments on the cherry tomatoes.
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3.1.2. Weight Loss, Decay Rate, and Surface Appearance

Postharvest, fruits are susceptible to weight loss due to ongoing respiration and tran-
spiration. This process leads to a decline in fruit plumpness, the loss of luster accompanied
by wilting, and, subsequently, reduced edibility and commercial value. Therefore, the rate
of weight loss is an important index for assessing the freshness of fruit [26]. In all treatment
groups, the rate of weight loss increased (Figure 2A). However, no significant differences
among the groups were observed during the initial six days of storage. After day 6, how-
ever, weight loss accelerated in the order of CK > HEC > HEC-5% SRBP > HEC-20% SRBP.
On day 15, the HEC-20% SRBP coating group exhibited a weight loss of 10.91%, which
was 2.33 and 1.89 times less than that in the CK and HEC groups, respectively, indicating
that higher concentrations of HEC-SRBP coating slowed the rate of weight loss, probably
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due to the formation of a protective barrier by HEC-SRBP on the tomato surface, reducing
water evaporation and inhibiting O2 and CO2 exchange, thus reducing nutrient loss [27].
Consistent with the results of this study, previous research has shown that applying a
coating can reduce weight loss during storage, as demonstrated in peaches, mangoes, and
bananas [28,29]. The decay rate of the cherry tomatoes decreased with increased storage
time under all the treatment conditions (Figure 2B). The control tomatoes’ decay rate was
25% on the 15th day of storage, whereas the decay rate was significantly reduced in the
HEC-SRBP coating group. Furthermore, the HEC-20% SRBP coating resulted in the best
effects with consistently lower rates of decay, possibly due to the inhibition of microbial
activity in the fruit resulting from the antibacterial properties of SRBP. This SRBP activity
helped reduce decomposition by microorganisms, resulting in the superior quality of the
fruit during storage. After 15 days of storage, sections of the tomatoes in the control group
(CK) had become rotten, soft, and slightly odorous. Meanwhile, the coated fruit maintained
a plumper and firmer consistency than those in the control group (Figure 2C).
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3.1.3. Firmness

The firmness of the cherry tomatoes decreased during the storage period (Figure 3),
indicating a gradual softening of the fruit, largely due to changes in the cell wall caused
by pectin degradation and the destruction of the cell structure [30]. The tomatoes in the
HEC-SRBP group had higher firmness levels than those in the other groups, indicating
that the HEC-SRBP coating could effectively prevent fruit from softening. This may be due
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to effective control of the tomato respiration, accompanied by the slowing of biochemical
reactions by HEC-SRBP. These results are consistent with those of a previous study by
Kim et al. [31].
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significant difference (p < 0.05) between treatments on the cherry tomatoes.

3.2. Nutrient Composition

The TSS content in the cherry tomatoes from the CK and HEC groups initially in-
creased and then decreased during storage (Figure 4A). This pattern is consistent with the
hydrolysis of macromolecular carbohydrates in tomatoes during the early storage stages
into soluble sugars, which are continuously consumed with increased respiration and phys-
iological activities [32]. However, the TSS content in the HEC-SRBP-coated groups showed
a slow increase, probably due to inhibition of the starch conversion process and reduced
respiration and metabolic activities delaying the ripening of the cherry tomatoes [33].
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(p < 0.05) between treatments on the cherry tomatoes.

The TA represents an important source of adenosine triphosphate for respiration and
contributes to many biochemical reactions by providing intermediate metabolites [34]. In
addition, the TA is essential to maintain the taste and flavor of the fruit. The TA content
in all the groups gradually decreased with storage time (Figure 4B), which may be due to
the transformation of organic acids into sugars and increased respiratory energy, resulting
in the degradation and consumption of more organic substances in the fruit. The TA
content of the CK group decreased significantly faster than that of the HEC-SRBP-coated
group, and after 15 days of storage, the TA content in the CK group was only 0.25%,
while the levels in the HEC-5% SRBP and HEC-20% SRBP groups were 0.58% and 0.62%,
respectively, indicating that the HEC-SRBP coating slowed the decline in TA in cherry
tomatoes. Consistent with these results, Wu et al. [35] preserved cherry tomatoes with a
Pullulan/oligosaccharide coating and found that the TA content in the coated group was
higher than in the CK group.

Ascorbic acid serves as a cofactor in numerous enzymatic reactions. It assists in
scavenging reactive oxygen radicals and inhibiting lipid peroxidation in fruit, thereby
delaying processes of browning and aging [36]. Ascorbic acid is also an important nutrient
in fruit and vegetables and indicates fruit freshness [20]. It was found that in all the
groups except HEC-20% SRBP, the levels of ascorbic acid first increased and subsequently
decreased during storage (Figure 4C). These changes in the ascorbic acid content could be
attributed to its gradual increase during fruit ripening, followed by a gradual decrease due
to increased physiological activities and oxidative degradation [37]. On storage day 15, the
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ascorbic acid contents of the HEC-5% SRBP and HEC-20% SRBP treatment groups were
1.75 and 2 times higher, respectively, than those of the CK group, suggesting a possible role
of the HEC-SRBP coating in delaying the reduction in ascorbic acid content. It is possible
that the formation of a relatively dense layer around the tomato by the composite coating
reduced the diffusion of O2, delaying ascorbic acid oxidation [38].

TP plays a vital role in enhancing vegetables’ sensory and nutritional qualities [19].
We observed a consistent increase in TP content in all the coating groups; it may be that
the cherry tomatoes studied were in the semi-ripe stage, and that the TP content in the
cherry tomatoes showed an increasing trend with the ripening of the fruits. In addition, the
coating group can effectively inhibit PPO activity and slow down the consumption rate
of phenolic substances, thus maintaining a high total phenol content during storage. In
contrast, the CK group exhibited an initial increase in TP content, followed by a decrease
during storage (Figure 4D). This is probably due to the fact that the degradation rate of
cherry tomatoes exceeded the synthesis rate during the late storage period. On days 9
and 12 of storage, the TP content in the HEC-20% SRBP treatment group was significantly
higher than that in the other treatment groups (p < 0.05), indicating that the HEC-20% SRBP
coating significantly increased the TP content of cherry tomatoes.

Carotenoids, a class of secondary metabolites, have a crucial role in plant growth and
development. They can scavenge free radicals, helping prevent oxidative damage [39]. It
was found that the carotenoid content of CK, HEC, HEC-5% SRBP, and HEC-20% SRBP
peaked on the 6th, 9th, 12th, and 15th day (Figure 4E). At storage day 15, the carotenoid
content of the HEC-20% SRBP-treated group was 8.09 mg/kg, much higher than that
of the CK group (0.30 mg/kg) and the HEC group (0.41 mg/kg). We know that the
accumulation of carotenoids in tomatoes is mainly concentrated in the color-turning stage
and the ripening stage, and that the carotenoid content increases with the maturity of the
fruit. Therefore, the result indicated that the HEC-20% SRBP treatment prevented increases
in carotenoids and delayed the ripening and aging of cherry tomatoes.

3.3. PPO and POD Activities

PPO is the principal enzyme leading to the browning of fruits and vegetables. In-
creased PPO activity accelerates browning by producing dark-brown melanin, affecting
the quality of fruits and vegetables [40]. As shown in Figure 5A, the overall PPO activity
increased in all the groups, with no significant differences among the groups during the
early stages of storage; however, from days 9 to 15, the coated tomatoes had lower PPO
activity, indicating that the coating delayed browning to some extent. This could be due to
the reduced degradation of ascorbic acid and TP, which could inhibit PPO activity [41].
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POD is an important enzyme in the plants’ reactive oxygen species-scavenging system,
and variations in its activity are closely associated with fruit ripening and senescence [42].
As depicted in Figure 5B, all the treatment groups, barring the HEC-20% SRBP group,
exhibited an initial increase followed by decreased POD activity. On day 15, the POD
activities of the CK, HEC, HEC-5% SRBP, and HEC-20% SRBP groups were 22.41, 32.68,
41.48, and 52.39 U·g−1 FW, respectively. Elevated POD activity in the cherry tomatoes
treated with HEC-20% SRBP led to a reduction in cellular damage and a delay in fruit
ripening and senescence.

3.4. MDA

MDA is the primary product of membrane lipid peroxidation, and its levels indicate
tissue senescence and cellular oxidation in cherry tomatoes [43]. With the increase in
MDA content, the degree of membrane lipid peroxidation intensifies, the cell structure is
destroyed, and the rate of senescence and cell death is accelerated. MDA levels consistently
increased throughout storage (Figure 4F), indicating ongoing oxidative tissue damage.
This may be due to the disruption of the dynamic balance of reactive oxygen radicals
during storage as the nutrients are consumed by respiration, transpiration, and other
metabolic activities of the substrates. And with the accumulation of oxidation products, the
intracellular enzymatic reactions are accelerated, causing membrane lipid peroxidation and
an increase in MDA content. The MDA content of the HEC-20% SRBP-composite-coated
group was lowest on day 15 of storage (6.31 nmol/g FW) compared with those of other
groups, indicating that the HEC-20% SRBP treatment significantly reduced membrane
damage in cherry tomatoes and delayed fruit senescence. Similar to the results of this study,
Zeng et al. [22] confirmed that at the end of storage, the MDA content of cherry tomatoes
treated with 2.5 mg/L exogenous arachidonic acid was 6.9 nmol/g FW. In summary, HEC-
20% SRBP coating increased the POD activity of cherry tomatoes, effectively eliminated
reactive oxygen species, and slowed down accumulation of MDA.

3.5. Volatile Substances

In total, 36 major compounds were detected, including 9 aldehydes, 7 alcohols,
1 ketone, 2 esters, 10 hydrocarbons, and 6 other compounds (Table S2 and Figure S1).
Among the volatile compounds responsible for flavor, aldehydes exhibited the highest
concentration, followed by alcohols. The retention indices of the volatiles were calculated
based on retention times of the alkanes (Table S3) and also compared with the literature [44].
The retention indices of Hexanal, (E)-2-hexenal, Phenethyl alcohol, and Methyl salicylate
were found to be 1079, 1219, 1928, and 1749 (Table 2), which are in agreement with those
of the literature, which are 1084, 1220, 1925, and 1745, and proved that the volatiles were
identified efficiently. N-hexanal and 2-hexenal, known as “green” compounds with a
“grassy taste”, are known to inhibit fruit deterioration [45]. The contents of both com-
pounds decreased gradually with the increase in storage time (Figure 6A,B). At the end of
the storage period, the HEC-20% SRBP group had significantly higher contents of these
substances than those of the other groups, indicating that fruits treated with a composite
coating retained more volatile substances, contributing to the maintenance of freshness in
the tomatoes. Alcohols play an important role in enhancing the flavor of cherry tomatoes.
Phenylethyl alcohol, formed via the amino acid metabolic pathway, imparts a floral aroma
to cherry tomatoes [46]; the content of phenylethyl alcohol in the CK, HEC, HEC-5% SRBP,
and HEC-20% SRBP groups first increased and subsequently decreased during the storage
time, reaching peaks on the 6th, 9th, 12th, and 15th days, respectively, with a ranking of
peak size being HEC-20% SRBP > HEC-5% SRBP > HEC > CK (Figure 6C). These results
indicated that the film coating could delay the aging of cherry tomatoes and enhance their
fragrance. Methyl salicylate is associated with a “minty” flavor. The methyl salicylate
content in the cherry tomatoes varied as the storage was extended (Figure 6D). By the end
of the storage period, the HEC-20% SRBP group exhibited significantly higher contents
of these substances than the other groups. Ethyl acetate provides a fruit-like aroma and
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was only found in the HEC-5% SRBP and HEC-20% SRBP groups (Figure 6E). This finding
suggests that fruits treated with a composite coating preserved more volatile substances,
thus contributing to freshness retention in the tomatoes. Overall, the results suggested that
the HEC-20% SRBP coating could delay the ripening of cherry tomatoes, reduce the loss of
volatile substances, and play a role in preserving the freshness of the fruit.

Table 2. The analysis of volatile substances of cherry tomatoes.

Number Retention Time/min Aroma Component RI RI (Literature) [46]

1 13.234 n-Hexanal 1079 1084
2 19.224 (E)-2-hexenal 1219 1220
3 40.67 Phenethyl alcohol 1928 1925
4 35.65 Methyl salicylate 1749 1745
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Figure 6. Effects of the coating on the contents of N-hexanal (A), 2-hexenal (B), phenylethyl alcohol
(C), methyl salicylate (D), and ethyl acetate (E) in cherry tomatoes. Different letters (a–d) indicate a
significant difference (p < 0.05) between treatments on the cherry tomatoes.
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4. Discussion and Conclusions

We evaluated the effects of an HEC-SRBP coating film on preservation of cherry
tomatoes under low-temperature conditions. Compared to uncoated and HEC-coated fruit,
cherry tomatoes treated with an HEC-SRBP coating demonstrated reduced weight loss,
a slower decay rate, and better maintained firmness. This coating also decreased MDA
accumulation, inhibited PPO activity, enhanced POD activity, and preserved high ascorbic
acid, TP, and carotenoid concentrations. Furthermore, HEC-SRBP-coated cherry tomatoes
contained higher and more diverse volatile substances than uncoated tomatoes. Among all
HEC-SRBP coatings, HEC-20% SRBP is the best coating method due to its effectiveness in
delaying the deterioration of cherry tomatoes and preserving their nutritional and flavor
qualities. These favorable results could be due to the antibacterial properties of SRBP. The
synergistic interaction between HEC and SRBP forms a more robust barrier than either
component alone, mitigating water evaporation and gaseous exchange, thus providing
optimal storage conditions. Several researchers are currently focusing on this by taking
a number of approaches to improve the film properties of HEC. For example, cellulose
nanocrystals benefit the dispersion of the crosslinked HEC, which increases the elongation
at break and maintains excellent tensile strength [47]. Meanwhile, Huang et al. [48] found
that aramid nanofiber additives can give the HEC film excellent ultraviolet (UV) shielding
and visible light transmittance. Adding carboxymethyl chitosan and ZnO enhanced the
solvent resistance and UV-shielding ability and inhibited the activities of the pathogenic
bacteria Listeria monocytogenes and Pseudomonas aeruginosa [12]. These enhanced properties
of HEC are advantageous in food preservation applications. Nonetheless, HEC-based films
have seldom been employed in fruit and vegetable preservation, underscoring the need to
further explore and apply these materials. Indeed, other coating techniques used to preserve
cherry tomatoes have shown beneficial results. These include carboxymethyl cellulose
films that were found to improve the preservation during storage of cherry tomatoes
over 15 days, maintaining almost constant fruit weight and firmness [49]. Meanwhile,
edible konjac glucomannan/curdlan coatings significantly reduced weight loss and decay,
delaying the decreases in the firmness and contents of cherry tomatoes’ soluble solids,
total acid, and ascorbic acid [34]. Applying exogenous methyl jasmonate/gliadin-casein
nanoparticles could also delay fruit ripening, maintain fruit quality, and reduce chilling
injury symptoms in cherry tomatoes [50]. Thus, edible coatings have become an important
method for ensuring both the safe and green preservation of cherry tomatoes. In conclusion,
the HEC-SRBP coating is a novel method for maintaining the quality of cherry tomatoes
during storage, providing both good application value and economic benefits.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/foods12173156/s1. Figure S1: Chromatograms of volatiles
substances at different times for different treatments. Table S1: Sensory evaluation of cherry tomatoes,
Table S2: Effect of different treatments on volatile substances of cherry tomatoes, Table S3: The
retention time of n-alkanes.
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Abbreviations

Abbreviation Name
SRBP Sulfated rice bran polysaccharides
HEC Hydroxyethyl cellulose
L* Luminosity
a* Redness/greenness,
b* Yellowness/blueness
TSS Total soluble solids
TA Titratable acidity
TP Total phenolic
PPO Polyphenol oxidase
POD Peroxidase
MDA Malondialdehyde
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