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Abstract: Alzheimer’s disease (AD) stands as a prevailing neurodegenerative condition (NDs),
leading to the gradual deterioration of brain cells and subsequent declines in memory, thinking,
behavior, and emotion. Despite the intensive research efforts and advances, an effective curative
treatment for the disease has not yet been found. Mushrooms, esteemed globally for their exquisite
flavors and abundant nutritional benefits, also hold a wealth of health-promoting compounds that
contribute to improving AD health. These compounds encompass polysaccharides, proteins, lipids,
terpenoids, phenols, and various other bioactive substances. Particularly noteworthy are the potent
neuroprotective small molecules found in mushrooms, such as ergothioneine, erinacine, flavonoids,
alkaloids, ergosterol, and melanin, which warrant dedicated scrutiny for their therapeutic potential in
combating AD. This review summarizes such positive effects of mushroom bioactive compounds on
AD, with a hope to contribute to the development of functional foods as an early dietary intervention
for this neurodegenerative disease.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder occurring frequently in
aging people, characterized by a progressive loss of memory and cognitive functions. As the
population grows and ages, the proportion of AD patients becomes larger, which will cause
heavy health care, economic, and social burden. AD was first described by Alois Alzheimer
in 1907 in a patient named Augustine Deter [1]. The main pathological characteristics of AD
include the extracellular beta-amyloid (Aβ) plaques deposition and tau tangles (Tau). The
main clinical manifestation of AD is progressive decline in memory power; some may also
face personality and behavioral changes. Currently, the mainstream direction of research
on the pathogenesis of AD is to focus on Aβ and Tau, but the pathogenesis of AD remains
unclear [2]. Research indicated that the development of AD is related to a variety of factors,
such as Aβ deposition and tau protein aggregation [3]. Various hypotheses, including
cholinergic, inflammation, oxidative stress, mitochondrial dysfunction, and gut microbiome
have also attracted much research and attention [4]. AD is considered to be a multifactorial
disease associated with multiple risk factors, such as age, genetics, lifestyle, vascular
disease, infection, and environmental factors [5]. Hence, the most effective way to prevent
and treat AD is to use a multifaceted approach that includes appropriate nutrition, physical
exercises, stimulating intellectual and social activities, and stress-reduction techniques.
For patients who already have AD, treatment is geared toward managing symptoms and
slowing the progression of the disorder.

In recent years, numerous persuasive evidences suggested that dietary factors may be
a critical factor in both the treatment and prevention of AD [6,7]. Studies have explored a
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range of specific foods and nutrients, dietary patterns, and other approaches that may have
the potential to prevent or treat AD (Figure 1). Scientific evidence suggests that following
the Mediterranean, DASH, and MIND diets is linked to lower cognitive decline and
reduced risk of AD, with the MIND diet showing the strongest correlation [8]. Furthermore,
evidence has shown that caloric restriction by intermittent fasting showed a wide range
of beneficial effects on AD pathology from multiple perspectives [9]; years of intermittent
fasting probably delayed or reversed the pathological process of AD. Selenium is an
essential trace element in the human body; a review by Chen et al. [10] summarized
that selenium-rich foods and their active ingredients resulted an improvement in AD
through antioxidant, anti-inflammatory, and autophagic regulatory effects. Whole plant
foods, such as mushrooms, berries, garlic, and turmeric, were found to effectively prevent
and improve cognitive deficit via regulating the main pathway of neuroinflammation,
lipoxin A4 (LXA4)-nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinases
(MAPK). These beneficial effects were mainly attributed to their high contents of functional
macromolecules, including polysaccharides, bioactive peptides, and polyphenols; therefore,
whole-plant foods can be part of a dietary plan to prevent the progression of AD [11].
Tea is the world’s most consumed beverage, originating from China. Huang et al. [12]
summarized the effects of tea and its active compounds on the prevention and regulation
of AD.
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Figure 1. The relationship between diet factors and AD. DASH: dietary approaches to stop hyperten-
sion; MIND: Mediterranean-DASH intervention for neurodegenerative delay.

In parallel, poor dietary habits can exacerbate the condition of AD (Figure 1). A
retrospective cohort study of 3,933,382 individuals in Korea showed that low alcohol
consumption was associated with a reduced risk of dementia; mild to moderate alcohol
consumption was associated with a decreased risk of dementia; whereas heavy drinking of
alcohol was associated with an increased risk of dementia [13]. The dietary pattern known
as the Western diet, which contains excessive amounts of saturated fatty acids and simple
sugars, is one of the risk factors for AD. Based on the research data from both humans
and experimental animals, the Western diet was found to evoke memory impairment by
accelerating metabolic syndrome and systemic inflammation, causing damage to the blood–
brain barrier (BBB) [14]. A large prospective study conducted by researchers from Tianjin
Medical University, covering over 70,000 people and following up for 10 years, indicated
a positive correlation between higher intake of ultra-processed foods, characterized by
“high sugar, high fat, and high energy density”, and higher risk of dementia. Substituting
over-processed foods with unprocessed or minimally processed foods can reduce this
risk [15].

Diet is one of the most important weapons we have in the battle against AD, which
is designed to prevent the development of cognitive problems as well as to slow down
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further decline in symptoms in patients who have already been diagnosed with AD.
The study of food-derived active ingredients is a promising area of research in the field
of AD and provides a potential new avenue for the prevention and treatment of this
debilitating condition. The nutrition and health benefits of mushrooms has been recognized
by more and more people. “One meat, one vegetable and one mushroom” is the most
reasonable dietary structure for human beings as recommended by the FAO. To provide
more information for their potential applications in medicine as well as in functional foods
designed for the intervention of AD, this review summarizes the biochemical composition
and biological properties from mushrooms related with AD (Figure 2). Moreover, the
underlying mechanisms for their neuroprotective activity are also highlighted.
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2. Mushrooms against AD

There has been an explosion in research on nutritional interventions for preventing
and treating AD, with promising results. Owing to their nutritional and medicinal values,
mushrooms have been used for centuries. Mushrooms, a class of macroscopic fungi, plays
an important role in the daily human diet due to their unique taste, umami flavor, and ben-
eficial nutritional and medicinal properties. Mushrooms have a low fat content and are rich
in nutrients, including high-quality proteins, dietary fibers, vitamins, minerals, and pheno-
lic compounds [16,17]. There is a growing number of in vitro and in vivo trials describing
a range of possible health benefits, including antioxidant, anti-inflammatory, anticancer, an-
timicrobial, antidiabetic, immunomodulatory, cardiovascular-protective, hepato-protective,
geno-protective, and neuro-protective effects [18–21].

Recent studies have suggested that mushroom intake shows potential in prevent-
ing and alleviating cognitive impairment associated with AD. The relationship between
mushroom intake and dementia incidence was studied in a group of elderly Japanese
subjects aged older than 65 years. This cohort study showed that frequent consumption
of mushrooms was significantly associated with a decreased risk of incident dementia
and might have a preventive effect on the risk of dementia [22]. The research team of the
National University of Singapore, School of Medicine found that the elderly consuming at
least two standard mushrooms (about 300 g) per week were found to reduce the risk of
mild cognitive impairment (MCI) by 50% [23]. A study on the correlation between mush-
room intake and cognitive ability in elderly Americans suggested that higher mushroom
intake might reduce the risk of cognitive decline in older adults [24]. Consumption of
culinary medicinal mushrooms might significantly lower the risk of age associated neu-
rodegenerative disorders, such as AD [25]. Extensive research on culinary and medicinal
mushrooms has demonstrated their neuroprotective effects, which include the ability to
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prevent neuronal death and regulate both NDs and neurotrauma [26]. This work comprises
six preclinical and three clinical studies that effectively illustrate the potential benefits of
Hericium erinaceus extracts and bioactive compounds in ameliorating cognitive function
and behavioral deficits in animal models of AD. Remarkably, the clinical trials yielded
similar results to the preclinical studies [27]. Mushrooms and their bioactive molecules
provide significant neuroprotective effects and play a vital role in preventing the onset and
advancement of NDs [28]. We investigated the protective effects of mushroom polysac-
charides, proteins, lipids, terpenoids, phenolic, and other biologically active compounds
on AD.

2.1. Polysaccharides

Numerous mushroom polysaccharides have exhibited neuroprotective effects in differ-
ent neurodegenerative models in vivo and in vitro (Figure 3) [29]. One of the ways to treat
AD is to control the function of the neurotransmitter acetylcholine in the brain by inhibiting
acetylcholinesterase (AChE). Polysaccharides extracts, which mostly contain β-glucans,
from Coprinus comatus and Coprinellus truncorum exerted AChE inhibitory activity [30]. Two
new galactomannans I and II isolated from Rhizopogon luteolus and Ganoderma adspersum
mushrooms were tested for their antioxidant and anticholinesterase activity; the results
showed that galactomannan II showed significantly strong anticholinesterase activity [31].
Proteo-β-glucan from Maitake ameliorated cognitive impairments by enhancing microglial
Aβ clearance in a APP/PS1 mouse model [32]. Polysaccharides from Pleurotus eryngii
showed the protective effect on Aβ-induced neurotoxicity in rat pheochromocytoma cells
(PC12) and aging rats [33]. Polysaccharides purified from Hericium erinaceus, composed
of two high molecular weight polysaccharides (molecular weights—1.1 × 105 Da and
1.7 × 105 Da) showed antioxidant and neuroprotective effects on Aβ-induced neurotoxi-
city in PC12 [34]. Orally administrated polysaccharide isolated from Amanita caesarea to
APP/PS1 to mice for 6 weeks significantly improved cognition behavior through regulation
of oxidative stress-mediated endoplasmic reticulum (ER) stress [35].
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Polysaccharide fractions (CC2a, CC3) of Cantharellus cibarius had beneficial effects
on neuron activity and neurite outgrowth under normal and different stress conditions.
Additionally, both CC2a and CC3 fractions exhibited antioxidant ability and could ef-
fectively neutralize negative changes induced by glutamatergic system activators [36].
Polysaccharide PSP2-1, derived from Pleurotus sajor-caju, exhibited neuroprotective effects
on mouse hippocampal neuronal cells (HT22) from hydrogen peroxide (H2O2)-induced
oxidative damage and apoptosis via the MAPK signaling pathway. In addition, PSP2-1
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could also improve the cognitive ability of aging mice induced by D-galactose [37]. Oral
administration of Grifola frondosa polysaccharides to 20-month-old rats for 8 weeks could
improve memory deficits via antioxidant action [38]. Huang and coworkers extracted
water-soluble polysaccharides and alkaline-soluble polysaccharides from Ganoderma lu-
cidum and evaluated their antioxidant and hepatoprotective effects on a mouse model
of AD-induced acute liver damage using carbon tetrachloride [39]. Administration of
Ganoderma atrum polysaccharide (PSG-1) showed a protective effect on the oxidative stress
induced by D-galactose in mouse brain, and significantly reduced apoptosis in mouse
brain in a dose-dependent manner, which attributed to its capacity to increase endogenous
antioxidants activity and attenuate intracellular calcium accumulation [40].

Mycelium polysaccharides extracted from Armillaria mellea showed a protective effect
in L-glutamic-acid-induced HT22 cell apoptosis and an aluminum trichloride (AlCl3) plus
D-galactose-induced AD mouse model [41]. Polysaccharides from Flammulina velutipes
by compatibilizing with ginsenosides exhibited cognitive-enhancing effect on D-galactose
induced AD rats [42]. Pleurotus ostreatus polysaccharides was found to alleviate cognitive
impairment in a D-galactose and AlCl3-induced rat model of AD [43]. A 3-h pre-treatment
with Amanita caesarea polysaccharides (ACPS) before L-glutamic acid co-exposure was
observed to ameliorate the damage in HT22 cells through the activation of the nuclear
transcription factor erythroid-2-related factor 2 (Nrf2) pathway. In the AD mouse model
induced with D-galactose and AlCl3, an administration of 2.5 or 5 mg/kg ACPS for 42 days
showed improvement in cognitive impairment [44]. Polysaccharides purified from Inonotus
obliquus (IOPS) showed a protective effect in L-glutamic acid exposed HT22 cells; orally
administered IOPS (25 or 50 mg/kg once daily for 8 weeks) improved the memory and
cognition impairment in APP/PS1 transgenic mice [45].

Mushroom-derived polysaccharides are susceptible to degradation by gut microbiota,
serving as an energy source for certain bacterial groups that promote their growth and
production of beneficial compounds, notably short-chain fatty acids (SCFAs), such as
acetic, propionic, butyric, and valeric acid [46]. Qian et al. [47] investigated the impact
and mechanisms of SCFAs on AD-related cognitive function, pathological features, and
neuroinflammation [47]; SCFAs derived from gut microbiota can be used as potential
therapeutic targets for AD.

2.2. Proteins

Mushrooms are a rich source of proteins; the protein content of mushrooms is far
higher than that of wheat, rice, corn, and other food crops, as well as higher than that
of various fruits and vegetables. Therefore, mushrooms are a good source of protein for
vegetarians. Due to their richness in high-quality proteins, mushrooms are a promising
source of bioactive peptides. At present, many bioactive peptides, such as antihypertensive,
antioxidant, antimicrobial, anticancer, and other active peptides, have been discovered in
various mushrooms [48]

Inflammation plays an essential role in various NDs, including AD [49]. This in-
flammatory reaction is supported by the activity of glial cells, such as astrocytes and
microglia around the neurons [50]. Activation of glial cells is closely related to neuroin-
flammation. Novel selenium peptides obtained from selenium-enriched Cordyceps militaris
showed protective effect in H2O2-injured PC12 and alleviated the cognitive impairment in
lipopolysaccharide (LPS) injured mice through its antioxidative, anti-inflammatory, and
regulating properties on gut microflora [51].

Pleurotus geesteranus protein hydrolysates, prepared using different enzymes (papain,
alcalase, flavourzyme, pepsin, and pancreatin), showed that the alcalase hydrolysate exhib-
ited superior in vitro antioxidant activity; at the same time, alcalase hydrolysate exhibited
neuroprotective effects in H2O2-injured PC12 via reducing the accumulation of reactive oxy-
gen species (ROS) in cells by stimulating the activity of antioxidant enzymes [52]. Pleurotus
geesteranus hydrolysates with a higher abundance of hydrophobic amino acids obtained by
simulated gastrointestinal digestion exhibited neuroprotective effects on H2O2-damaged
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PC12, possibly by reducing ROS production and enhancing the activity of the antioxidant
enzyme system [53].

Ergothioneine (ET) is a natural sulfur-containing amino acid that cannot be synthesized
by humans, but is rich in diets, especially mushrooms [54]. Plasma levels of ET decline
with age; low ET levels are one of the risk factors that makes individuals susceptible to
NDs, while supplementation through diets could be beneficial [55,56] The neuroprotective
capabilities of ET in a range of in vitro and in vivo models have been reported [57]. In
the 5 × FAD mouse model, longitudinal consumption of 50 mg/kg ET can reduce Aβ

plaques, oxidative stress, restore glucose metabolism, and delay the progression of AD [58].
Aminothioneine, a hydrophilic amino acid extracted from golden oyster mushrooms,
enhanced the expression of brain-derived neurotrophic factor (BDNF) mRNA in primary
rat cortical neuron cultures through Ca2+ signal-mediated cAMP-response element-binding
protein (CREB)-dependent transcription of neurons [59].

2.3. Lipids

The fat content of mushrooms usually ranges from 0.1 to 16.3%; although they are not
the preferred source of lipids, they contain essential fatty acids, including linoleic, oleic,
and linolenic acid as their major components [60]. Moreover, the levels of unsaturated fat
acids in mushrooms are usually higher than that of saturated fatty acids [61].

Alpha linoleic acid was found to protect the mouse brain from Aβ-induced glial-cell-
mediated neuroinflammation, avoiding neuronal cell loss and improvement of memory
deficits in a Aβ-infused mouse model [62]. Two kinds of mushrooms from Anatolia were
prepared with hexane and methanol after baking and non-baking and their extracts and
major fatty acids were evaluated for the AChE and butyrylcholinesterase (BChE), generally
known as the chief enzyme of AD. The results showed that the methanol extract of Ra-
maria flava had the highest activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,
2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and BChE assays, but the nutri-
tional concentration and biological activity of Lactarius delicious decreased after baking [63].

Activated microglia produce nitric oxide (NO) free radicals. The prolonged accumu-
lation of substantial amounts of NO in the central nervous system (CNS) can result in
neuroinflammation, which is associated with AD [64] Fatty acids, fatty acid esters, and
sterols present in an ethyl acetate fraction of Cordyceps militaris reduced NO production
in a mouse microglial cell line (BV2) via activation of Nrf2 and NF-κB pathways [65].
Reducing neuronal cell death is important for preventing and treating NDs. Dilinoleoyl-
phosphatidylethanolamine (DLPE), a phosphatidylethanolamine bearing two linoleic acids
from Hericium erinaceum, was found to protect mouse neuroblastoma (N2a) from ER stress-
induced cell death by the protein kinase C (PKC) pathway [66].

A total of eight novel cerebrosides were identified as neuritogenic compounds from
Termitomyces albuminosus, among which four were newly discovered cerebrosides, named
termitomycesphins A–D. These unique cerebrosides were isolated from the ethanol ex-
tract of Termitomyces albuminosus and featured a distinctive C19 hydroxylated sphingosine
base with middle branches. Cerebrosides A and C contained a C16 α-hydroxy fatty acid,
exhibiting higher neuritogenic activity compared to cerebrosides B and D, which had a
C18 α-hydroxy fatty acid [67]. Termitomycesphins E and F, two new cerebrosides hy-
droxylated near the middle of the long chain base (LCB), were isolated from Termitomyces
albuminosus. They have been proved to induce neuronal differentiation in PC12, while the
main cerebroside obtained from Termitomyces albuminosus had no activity on PC12 due to no
hydroxylation near the middle of the LCB, indicating the importance of additional hydroxyl
group on LCB [68] Termitomycesphins G and H, two recently discovered cerebrosides
derived from Termitomyces albuminosus, showed neuritogenic activity on PC12. Termit-
omycesphin G, featuring a 16-carbon chain fatty acid, displayed superior neuritogenic
activity compared to Termitomycesphin H, which contained an 18-carbon chain fatty acid.
This suggests that the length of the fatty acid chain plays a critical role in the neuritogenic
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activity [69]. These studies have shown that the structure of novel cerebrosides may be
crucial in neuritogenic activity.

Linoleic acid and linolenic acid serve as the precursor of arachidonic acid (ARA) and
docosahexaenoic acid (DHA), which are beneficial to brain health. Polyunsaturated fatty
acids (PUFAs) and their derivatives play essential roles in various brain processes, including
neurotransmission, cell survival, and neuroinflammation, thereby influencing mood and
cognition. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for
the prevention and treatment of brain disorders [70].

2.4. Terpenoids

Terpenoids, a prominent class of secondary metabolites found in mushrooms, are
characterized by units of five-carbon atoms isoprene. Terpenes form the core of these
compounds, and the addition of functional groups results in the formation of various
terpenoids. This group comprises volatile unsaturated hydrocarbons classified as monoter-
penoids, diterpenoids, sesquiterpenoids, and triterpenoids [71]. Figure 4 summarizes the
currently reported mushroom species that produce active terpenoids and their potential
therapeutic mechanisms for AD.
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Four new selinane-type sesquiterpenoids and two known sesquiterpenoids were ob-
tained from the fermentation broth of Termitomyces albuminosus; Epi-guaidiol A showed signif-
icant anti-AChE activity in a dose-dependent manner [72]. Four new meroterpenoids, namely
scutigeric acid, albatrelactone methyl ester, albatrelactone, and 10′,11′-dihydroxygrifolic acid,
as well as two known compounds, grifolin and grifolic acid, were extracted from the methanol
extract of Albatrellus yasudae. Thioflavin T detection showed that four new meroterpenoids
and methyl ester of scutigeric acid possessed inhibitory activity against Aβ aggregation,
while all the six compounds exhibited inhibitory activities on beta-site APP-cleaving enzyme
(BACE1) [73]. Ten compounds, comprising three novel meroterpenoids and seven known com-
pounds, were obtained from the trichloro-methane extract of Albatrellus yasudae. Among these,
six compounds showed the potential of Aβ-aggregation inhibition activity [74]. Cyathane
diterpenoid sarcodonin A isolated from Sarcodon scabrosus showed anti-neuroinflammatory
activity in LPS activated microglia, which could be mediated by MAPK/NF-κB pathway
reversed LPS-induced M1 polarization in microglia cells [75]. A new lanostane triterpenoid
2α-HI obtained from Inonotus obliquus (Fr.) Pilat possessed significantly neuroprotective ca-
pacity on neuroblastoma cell line (SH-SY5Y) against H2O2 stimulated oxidative stress and
apoptosis by activating the Nrf2 and BDNF/TrkB/ERK/CREB pathways. Additionally, the
neuroprotective effect of 2α-HI in zebrafish has also been preliminarily verified [76].

Ganoderic acid A (GAA) is a highly oxygenated tetracyclic triterpenoid, serving as the
main active component of Ganoderma lucidum. In a D-galactose induced mouse model, GAA
administration (20 mg/kg) for 60 days alleviated neuroinflammation by regulating the
Th17/Tregs axis [77]. GAA also facilitated Aβ clearance by promoting autophagy through
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the Axl receptor tyrosine kinase (Axl)/P21 activating kinases1 (Pak1) pathway in BV2 cells.
Moreover, GAA administration (100 mg/kg) for 16 days attenuated cognitive deficits in an
AD mouse model with intracerebroventricular injection of aggregated Aβ42 [78]. Methyl
ganoderate A acetonide and n-butyl ganoderate H, together with 16 known compounds
from Ganoderma lucidum, were found to owe the ability of anti-AChE activity. Addition-
ally, only lucidadiol and lucidenic acid N exhibited anti-BChE activity [79]. Shen and
colleagues explored the effects of peptidyl arginine deiminase type IV (PADI4) and GAA
on Aβ25–35 treated HT22 cells; the results showed that PADI4 mediated autophagy and
participated in the role of GAA in delaying Alzheimer’s cells aging through the protein
kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway [80]. Ganoresinoid
A, isolated from the fruiting bodies of Ganoderma resinaceum, significantly inhibited NO,
interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels in
LPS activated BV-2. Furthermore, ganoresinoid A notably reduced LPS induced apoptosis
by reducing mitochondrial membrane potential and ROS. Additionally, ganoresinoid A
exhibited antioxidant effects in H2O2-induced SH-SY5Y cells [81]. In another study, sixteen
compounds were isolated from the fruiting body of Ganoderma leucocontextum, includ-
ing three new lanostane triterpenes and thirteen known compounds. Out of them, two
compounds showed a protective effect on H2O2 induced damage of PC12 and exhibited
promoting neurite outgrowth at a concentration of 50–200 µM [82].

Accumulated evidence has demonstrated that the inflammation in brain is the main
cause of NDs including AD. Deacetyl ganoderic acid F (DeGA F), a triterpenoid compound
derived from Ganoderma lucidum, demonstrated inhibitory activity against the inflammatory
response of BV-2 cells stimulated by LPS. In an in vivo study using zebra fish, DeGA F
inhibited the production of NO in LPS-stimulated embryos. Additionally, DeGA F also
suppressed the serum pro-inflammatory cytokines IL-6 and TNF-α levels and reduced
inflammatory response in LPS-stimulated mouse model by suppressing activation of mi-
croglia and astrocyte [83] The ten new cyathane-type diterpenoids, as well as four known
diterpenes, isolated from the liquid culture of the Cyathus africanus, have shown differen-
tial anti-neuroinflammatory activity, especially compounds cyathin I and allocyafrin B4,
by inhibiting the expression and activity of cyclooxygenase-2 (COX-2) and nitric oxide
synthase (iNOS) in LPS and Aβ1–42-treated BV-2 [84]. Eight new highly polyoxygenated
cyathane diterpenoids and three known congeners were isolated from the solid culture of
Cyathus africanus. All of these 11 compounds exhibited differential neurotrophic activity
via nerve growth factor (NGF)-induced neurite outgrowth in PC-12, while only allocyathin
B2 displayed anti-neuroinflammatory activity by suppressing the production of NO in
LPS-stimulated BV-2 cells [85]. Seven undescribed lanostane-type triterpenoids, namely
inonotusol H-N isolated from the fruiting bodies of Inonotus obliquus, displayed inhibitory
activity on the production of NO in LPS activated BV-2. In particular, inonotusol I and L
showed the most effective inhibition on the production of iNOS and NO [86].

Neurotrophins, including NGF and BDNF, hold a crucial role in in the CNS. Many
diterpenoids and triterpenoids isolated from mushrooms have been proved to have the
activity of promoting neurite growth. Dictyophorines A and B, isolated from Dictyophora
indusiata, have demonstrated their ability to promote the synthesis of NGF in astrocyte [87].
Two novel cyathane diterpenoids (erinacines Z1 and Z2) and six known diterpenoids
were isolated from the submerged cultures of Hericium erinaceus and Hericium flagellum.
Compounds erinacine A, erinacine B, CJ14.258, and erinacines Z1 significantly enhanced
the production of NGF or BDNF in astrocytes [88]. Three diterpenoids tricholomalides
A-C, derived from the methanol extract of the fruiting body of Tricholoma sp., significantly
induced the growth of neurites at a concentration of 100 µM in PC-12 [89]. Two new
diterpene named scabronines K and L and four known analogues, namely sarcodonins G, A
and M, and scabronine H, were isolated from the fruiting body of Sarcodon scabrosus. Among
these compounds, only sarcodonins G and A at 25 mM exhibited significant neurite growth
promoting activity in the presence of 20 ng/mL NGF after 24 h of treatment [90]. Two novel
cyathane diterpenes, namely cyrneine C and D, as well as previously isolated cyrneine A
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and B and glaucopine C, were isolated from Sarcodon cyrneus. Among these compounds,
cyrneine B induced the strongest NGF gene expression in human astrocytoma cell line
(1321N1); cyrneines A and B as well as glaucopine C induced neurite outgrowth in PC12 to
a lesser extent [91]. Twelve triterpenoids were obtained from both the fruiting bodies of
Laetiporus sulphureus and the mycelial culture of Antrodia sp. MUCL 56049. Several of them
can effectively stimulate the expression of neurotrophin (NGF and BDNF) on 1321N1 and
also enhanced the neurite outgrowth of PC-12 induced by NGF [92].

Erinacine A pretreatment exhibited a preventive effect on LPS-stimulated iNOS ex-
pression and NO production in BV-2 cells, and TNF-α expression in CTX TNA2 astrocyte
cells. Additionally, in differentiated N2a cells treated with LPS-activated BV-2 condi-
tioned medium, erinacine A pretreatment significantly increased cell viability and tyro-
sine hydroxylase expression, while inhibiting c-Jun N-Terminal kinase (JNK) and NF-κB
phosphorylation [93]. Rascher and colleagues revealed that cyathane diterpenoid eri-
nacine C induced the expression of neurotrophin NGF and BDNF in glial cells. More-
over, their study elucidated the potential downstream signal cascade of NGF-mediated
differentiation in neural-like PC12 cells [94]. Four known labdane diterpenoids were pu-
rified from the fruiting body of Antrodia camphorata. Compounds 19-hydroxylabda-8(17),
12-didehydroandrographolide, 13-dien-16, 14-deoxy-11, and 15-olide showed protective
effect against Aβ-damaged primary cultures of neonatal cortical neurons [95].

A review compiled the available information on the neural health properties of Heri-
cium erinaceus mycelia, which are abundant in erinacines, a group of cyathin diterpenoids.
Preclinical studies have indicated that incorporating mycelia rich in erinacines into the
daily diet can improve AD symptoms [96]. However, there are also some exceptions; the
separation of diterpenoids from mushroom fruiting bodies has an inhibitory effect on
neurite outgrowth. From the fruiting body of Sarcodon scabrosus, researchers isolated a new
cyathane diterpene named scabronine M along with 10 known compounds. In PC12, only
scabronine M significantly inhibited dose-dependent NGF induced neurite outgrowth in
the absence of cytotoxicity. This is the first report that this group of diterpene inhibited
neurite growth in PC12 [97].

2.5. Phenolic Compounds

Phenolic compounds, aromatic hydroxylated substances with one or more aromatic
rings and hydroxyl groups, are prevalent in mushrooms. These compounds encompass
flavonoids, phenolic acids, hydroxybenzoic acids, hydroxycinnamic acids, lignans, tannins,
stilbenes, and oxidized polyphenols, which exhibit antimicrobial, anticancer, and anti-
inflammatory effects. Moreover, they can play a role in preventing various degenerative
diseases, such as brain dysfunction, cardiovascular diseases, and aging [98,99].

Hispidin-derived polyphenols, heat-stable components derived from Auricularia poly-
tricha, exhibited in vitro inhibitory activity of BACE1, responsible for releasing toxic amy-
loid peptide in the brain [100]. Hispidin from the mycelial cultures of Phellinus linteus
exhibited inhibitory activity of BACE1. In addition, hispidin also inhibited prolyl endopepti-
dase, but it had a lower inhibitory effect on alpha-secretase and other serine proteases, such
as chymotrypsin, trypsin, and elastase [101]. Eleven phenolic compounds were detected
from methanol and hot water extracts from fruiting bodies of Phellinus pini with higher
levels of inhibition of AChE and BChE. Additionally, their activities were demonstrated by
inhibition of NO production and iNOS expression in LPS-induced RAW 264.7 macrophages,
while the methanol extract exhibited neuroprotective effect against glutamate-induced
cytotoxicity on PC-12 at 20 to 40 µg/mL [102]. The ethanol extract of Stereum hirsutum
exhibited high anti-AChE, which might be attributed to the phenolic substances (high
content of p-hydroxybenzoic acid) as well as possible detected amentoflavone [103]. In-
onophenols B and C, obtained from Inonotus hispidus, exhibited the highest activity in
promoting PC-12 neurite outgrowth at a concentration of 10 µM. Moreover, these phenolic
derivatives effectively reduced NO generation in LPS-activated BV-2 cells [104].
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Flavonoids play various neuroprotective roles within the brain [105,106]. Hu et al.
studied the antioxidant activity and the neuroprotective effect of flavonoids isolated from
Flammulina velutipes against H2O2-induced PC12 [107]. Subsequently, additional investiga-
tions were performed on the effects of six flavonoids extracted from Flammulina velutipes,
namely arbutin, epicatechin, phillyrin, apigenin, kaempferol, and formononetin, concern-
ing their impact on H2O2-induced oxidative damage in PC12 cells. The results indicated
that all components, except apigenin, mediated the apoptosis of PC12 cells through the
endogenous pathway [108].

Mushrooms are abundant in bioactive compounds with antioxidant properties, pri-
marily attributed to phenolic compounds. Several studies investigated the antioxidant
content of mushrooms from around the world [109–113]. Foods containing antioxidants
can protect oneself from excessive free radicals in the body, thereby preventing oxidative
damage related chronic diseases, such as AD.

2.6. Other Small Molecule Bioactive Compounds

It is well accepted that mushrooms are a good source of proteins, fiber, and minerals.
Furthermore, mushrooms also contain some bioactive compounds, which are essential for
overall good health. Figure 5 lists the main small molecule compounds in mushrooms that
have potential therapeutic effects on AD.
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Polyozellin (25 µM) derived from Polyozellus multiplex alleviated HT22 death after
5 mM glutamate treatment for 12 h by inhibiting Ca2+ influx, intracellular ROS production,
and lipid peroxidation. In addition, polyozellin also regulated the expression of Bid, Bcl-2,
apoptosis-inducing factor, and phosphorylation of MAPK [114]. Four p-terphenyls, namely
polyozellin, thelephoric acid, polyozellic acid, and kynapcin-12, were identified from the
ethanol extract of Polyozellus multiplex. The results showed these compounds effectively
inhibited the activity of BACE1. Polyozellin, thelephoric acid, and polyozellic acid reduced
production of neurotoxicity Aβ1–42 in a dose-dependent manner in APPswe-N2a cells.
Additionally, compounds thelephoric acid and polyozellic acid significantly restored cell
viability when HT22 were subjected to 5 mM glutamate [115]. Pretreatment of p-terphenyl
leucomentins (3 to 5 µM) from Paxillus panuoides for 1 h exhibited potent inhibitory effects
against neurotoxicity of 50 µM H2O2 in mouse cortical cell culture [116]. Four compounds,
namely hericerin, isohericerinol A, N-de-phenylethyl isohericerin, and corallocin A, were
identified from Hericium erinaceus. Among them, isohericerinol A significantly increased the
production of NGF in C6 glioma cells, followed by corallocin A and hericerin. In addition,
the increased production of NGF by these compounds promoted the neurite outgrowth in
N2a [117].

Dictyoquinazols A, B, and C, isolated from the methanol extract of Dictyophora in-
dusiata, exhibited a dose-dependent protective effect on primary cultured mouse cortical
neurons against glutamate and N-methyl-D-aspartate (NMDA)-induced excitotoxicity [118].
Seven pyrrole alkaloids were identified from the fruiting bodies of Phlebopus portentosus.
A 2 h pretreatment of inotopyrrole B showed a significant neuroprotective effect against
H2O2-stimulated neuronal-cell damage in SH-SY5Y [119]. Consumption of antroquinonol
for two months, a ubiquinone derivative extracted from Antrodia camphorata, was found
to reduce hippocampal Aβ levels and the degree of astrocyte proliferation and improved
spatial learning and memory in a transgenic AD mouse model. These effects might be
mediated by activating the Nrf2 pathway and reducing histone deacetylase 2 levels [120].
Moreover, 100 µM uridine from Pleurotus giganteus enhanced neurite outgrowth in N2a,
which was due to increased phosphorylation of ERK, Akt, and mTOR. Moreover, mito-
gen extracellular signal-regulated kinase (MEK)/ERK and phosphatidyl inositol 3-kinase
(PI3K)-Akt-mTOR further induced phosphorylation of CREB and expression of growth
associated protein 43 [121]. O-orsellinaldehyde from Grifola frondosa strongly inhibited
LPS-activated inflammation of primary microglia and astrocytes by reducing the formation
of nitrite and downregulating the expression of iNOS and heme oxygenase 1 (HO-1). In
addition, o-orsellinaldehyde inhibited NF-κB activation and effectively counteracted LPS-
mediated p38 kinase and JNK phosphorylation (MAPK) in microglia cells; it also induced
significant cellular immune regulation by repolarizing microglia into M2 anti-inflammatory
phenotype [122]. A standardized extract from Amanita muscaria containing a large amount
of muscimol revealed statistically significant neuroprotective effects on different neurotoxi-
city models of rat brain microsomes, mitochondria, synaptosomes, and SH-SY5Y. Moreover,
it showed no inhibitory activity on human recombinant monoamine oxidase B [123]. In
LPS-stimulated BV2, cordycepin extracted from Cordyceps militaris significantly inhibited
the excessive production of NO, prostaglandin E2, and pro-inflammatory cytokines in a
dose-dependent manner. Moreover, cordycepin blocked IkappaB-α proteins (IκB-α) degra-
dation to suppress NF-κB activation and inhibited the phosphorylation of Akt, ERK-1/2,
JNK, and p38 kinases [124].

Mushrooms are also a rich source of ergosterol. Ergosterol isolated from the ethanol ex-
tract of Auricularia polytricha was found to attenuate bisphenol A-induced BV2 inflammation
through NF-κB signaling pathway [125]. In addition, they studied the protective effect of
ergosterol prepared from Auricularia polytricha on TNF-α treated HT-22 damage and found
that ergosterol was able to increase superoxide dismutase-1, the rapamycin-insensitive
companion of mTOR, phospho-Akt, and ndusiat-glycogen synthase kinase-3β expression
levels, and to suppress NMDA type subunit 2B gene transcription via overexpression of
early growth response-1 [126]. Ergosterol can undergo UV treatment to be converted into
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Vitamin D2. Two-month-old AD transgenic mice were fed a Vitamin D2-deficient diet or a
diet supplemented with 1 µg/kg of Vitamin D2 for 7 months. The AD transgenic mice fed
with Vitamin D showed improved learning and memory abilities, a significant reduction in
amyloid plaque load and glial fibrillary acidic protein, and an increase in interleukin-10
(IL-10) in the brain [127]. In another study, eighteen compounds were identified from the
ethanol extract of Dictyophora ndusiate. The anti-inflammatory activity of seven isolated
compounds were evaluated in BV-2 treated with LPS. Among them, a quinolone deriva-
tive demonstrated the most potent inhibitory effect on TNF-α expression. An ergosterol
derivative exhibited the most effective activity in inhibiting IL-6 production. Another
compound, namely 5α,6α-epoxy-7-sitosterol, showed anti-inflammatory effects through
inhibiting NO and IL-1β generation and the expressions of iNOS and phosphorylated
nuclear factor-kappa B inhibitor-α [128].

Mushrooms serve as a good dietary source of melatonin, which exhibits neuroprotec-
tive effects on CNS [129]. Shukla et al. [130] summarized the role of melatonin in cellular
and animal models, as well as clinical interventions in AD patients, and explored the
potential molecular mechanisms of melatonin action. Li et al. [131] investigated the cellu-
lar and molecular mechanisms of melatonin on various aspects related to AD, including
Aβ generation, assembly, clearance, neurotoxicity, and circadian cycle disruption. Ad-
ditionally, they summarized several clinical trials of melatonin for AD treatment. In an
AD rat model, melatonin at a dose of 500 mg/kg improved spatial learning and memory
impairment, restored synaptic plasticity, and reduced astrocyte proliferation through the
Musashi1/Notch1/Hes1 signaling pathway following repeated intracerebroventricular
administration of soluble Aβ1–42 [132]. It was reported that 10 mg/kg of melatonin admin-
istration restored the damaged memory in the hippocampus of aging mice and attenuated
the decrease of α-secretase and inhibited the increase of β- and γ-secretases. Furthermore,
melatonin weakened the upregulation of pNF-κB and the decrease of sirtuin 1 in the hip-
pocampus of elderly mice [133]. In a 5 × FAD mouse model, treatment with 10 mg/kg
melatonin improved the cognitive impairment through reversing the abnormal expression
of protein in the lysosomal signaling pathway, mitochondrial energy metabolism, and
pathological phagocytosis of microglia [134].

The diverse biological and physiological properties of bioactive components in mush-
rooms make them a natural dietary source for preventing and regulating AD. Herein, we
have reviewed the preventive and therapeutic bioactive components related to various
hypotheses of AD in mushrooms. The action mechanisms presented here include reducing
the generation and aggregation of Aβ, regulating cholinergic system, inhibiting neuronal
apoptosis, regulating neurotransmitters, regulating neurotrophins synthesis, relieving
oxidative stress and neuroinflammation, and regulating of intestinal flora.

3. Conclusions

There is increasing evidence that certain lifestyle modifications, such as healthy diets,
exercise, cognitive stimulation, etc., can help to reduce the risk of developing AD or slow
its progression. Diets can be an effective tool for supporting and even improving cognition.
Foods influence the brain in different ways; some nutrients affect the brain directly because
they are capable of crossing the BBB, which acts as a gatekeeper to keep harmful chemicals
out and allowing essential substances to come in. Foods also stimulate the release of
certain chemicals, such as hormones and neurotransmitters, that influence brain function.
Mushrooms may be a promising functional food for preventing AD. Mushrooms have
many bioactive compounds that have the potential to regulate AD. These findings are
encouraging; however, a substantial amount of research is still needed to study their
optimal dose, limitations, bioavailability, the differences between chemical forms, and
their possible interactions with other dietary components. Interactions between different
components in mushrooms may produce antagonistic or synergistic effects to manage AD,
but there are a limited number of studies on this; further deep research is needed to explore
this. However, there is currently a lack of large-scale scientific investigations and clinical
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retrospective data analysis to confirm the positive effects of adding mushrooms to diets
for the prevention and treatment of AD. Additionally, many of these compounds have not
been well studied in clinical trials, and more rigorous studies are necessary to fully evaluate
their safety and validate its overall efficacy in human beings. We envision increased clinical
data supporting the efficacy of food therapy in AD prevention. Furthermore, we eagerly
await the discovery and clinical application of novel bioactive compounds derived from
mushrooms, offering promising prospects for enhancing AD prevention and treatment,
and ultimately improving public health.
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