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Abstract: The flavor of Pomelo is highly variable and difficult to determine without peeling the
fruit. The quality of pomelo flavor is due largely to the total soluble solid content (TSSC) in the
fruit and there is a commercial need for a quick but nondestructive TSSC detection method for the
industrial grading of pomelo. Due to the large size and thick mesocarp of pomelo, determining
the internal quality of a pomelo fruit in a nondestructive manner is difficult, and the detection
accuracy is further complicated by the noise typically generated by the common methods for the
internal quality detection of other fruits. Thus, the aim of this study was to determine the optimal
method to accurately detect pomelo TSSC and find a de-noising model which reduces the influence
of noise on the optimal method’s results. After developing a full-transmission visible/near infrared
(VIS/NIR) spectroscopy sampling method, the confirming experimental results showed that the
optimal pomelo TSSC detection model was Savitzky Golay + standard normal variate + competitive
adaptive reweighted sampling + partial least squares regression. The R2 and RMSE of the calibration
set for pomelo TSSC detection were 0.8097 and 0.8508, respectively, and the R2 and RMSE of the
validation set for pomelo TSSC detection were 0.8053 and 0.8888, respectively. Both reference and dark
de-noising are important for pomelo internal quality detection and should be calibrated frequently
to compensate for time drift. This study found that large sensor response translation noise can
be reduced with an artificial horizontal shift. Data supplementation is efficient for improving the
adaption of the detection model for batch differences in pomelo samples. Using this optimized
de-noising model to compensate for time drift, sensor response translation, and batch differences, the
developed detection method is capable of satisfying the requirements of the industry (TSSC detection
R2 was equal or larger than 0.9, RMSE was less than 1). These results indicate that full-transmission
VIS/NIR spectroscopy can be exploited to realize the nondestructive detection of pomelo TSSC on an
industrial scale, and that the methodologies used in this study can be immediately implemented in
real-world production.

Keywords: pomelo; total soluble solid content; nondestructive detection; modeling; de-noising;
visible/near infrared spectroscopy

1. Introduction

Pomelo (Citrus maxima Merr.) is a traditional Chinese fruit, with a cultivated area of
more than 105,640 ha and an annual yield of 4,800,000 metric tons [1]. In addition, pomelo
is also cultivated in other countries, such as Vietnam, Thailand, and South Africa, etc., and
exported to Europe, Japan, and other regions [2–4]. While popular, the flavor of pomelo
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is quite variable. Pomelo flavor is largely based on the total soluble solid content (TSSC)
in the fruit, which greatly affects the sweetness and can be difficult to determine without
penetrating the peel [5]. Thus, there is a need within the pomelo industry to develop a
quick, reliable, and nondestructive method for TSSC detection to provide quality control
and uniformity in flavor for improved consumer satisfaction. The problem arises due to
the thick mesocarp and large size of pomelo.

Traditionally, fruit TSSC is detected via using a refractometer on extracted juice, which
is inefficient, wasteful, and ill-suited for large scale grading [6]. Zhang et al. found that
the edibility of a pomelo could be nondestructively detected using X-rays [7]; however,
the X-ray signal was largely unrelated to the TSSC. Our previous research results showed
that the TSSC of pomelo can be roughly detected via external physical characteristics,
which can be quickly acquired using machine vision technology; however, the coefficient
of determination between the predicted TSSC value and the actual TSSC value was only
0.46 [8]. Our unpublished data showed that the pomelo TSSC was mostly unrelated to
external electronic noise data. As a consequence, these pomelo TSSC detection methods
were unsatisfactory.

Recently, visible/near infrared (VIS/NIR) spectroscopy technology has been widely
applied for the nondestructive detection of TSSC in a variety of fruit, including apple [9,10],
pear [11,12], peach [13], and orange [14]. The VIS/NIR spectrum absorbance is mainly af-
fected by the stretched vibration overtones and combination modes of hydrogen-containing
groups (X–H) including O–H, N–H, C–H, and S–H; thus, the TSSC can be calculated based
on VIS/NIR absorbance data using an appropriate pattern recognition algorithm [15]. How-
ever, unlike other smaller fruits, the VIS/NIR signal, when transmitted through pomelo, is
weak due to its large size, rough peel, and thick albedo, which result in a poor detection
ability. In addition, the relatively lower signal noise ratio of VIS/NIR spectroscopy can fur-
ther decrease the discrimination of this detection method. Thus, while VIS/NIR technology
has the potential for use in nondestructive pomelo TSSC detection, both the modeling and
de-noising must be improved to ensure its reliable application in industry.

Technically, there are three optical path structures for the internal quality detection of
fruit using VIS/NIR spectroscopy, namely, reflectance spectroscopy [16], semi-transmission
spectroscopy [17], and full-transmission spectroscopy [18]. Usually, reflectance spec-
troscopy is efficient for the internal quality detection of thin peel fruit, while transmit-
ted spectroscopy is more efficient for the acquisition of internal information from fruit
with a thicker peel. However, for the attainment of internal information from large-sized
and thick-peeled fruit, semi-transmission spectroscopy is applied more often than full-
transmission spectroscopy in order to improve the signal-to-noise ratio, as the optical
length of semi-transmission spectroscopy is shorter than that of full-transmission spec-
troscopy [19]. Previous research has shown that TSSC can be detected using near-infrared
hyperspectral imaging of a cut-open pomelo [20,21], that is, the internal quality of a pomelo
can be inferred using NIR spectroscopy. Tian et al. showed that the internal TSSC of a
pomelo could be detected using semi-transmission spectroscopy [5]. Semi-transmission
spectroscopy has also been successfully applied for TSSC detection in watermelon [22].
However, while the in-variety variability of watermelon size and shape is low, the shapes
of pomelo taper more and have a greater in-variety shape variability, making it difficult for
an assembly line tray to adequately accommodate the shape of every pomelo in order for
the VIS/NIR light source and receiving spectrometer to be properly aligned to transmit
light fully through the pomelo. Thus, work to optimize the TSSC detection of pomelo based
on full-transmission spectroscopy is still necessary for the industry. Our previous research
results showed that the internal water content and degree of granulation of pomelos could
be detected using full-transmission spectroscopy [23]; however, the water content of ripe
pomelos is high and the differences in the degree of granulation result in obvious changes
in histology, making the nondestructive detection of these attributes much less difficult
than the nondestructive detection of the more subtle TSSC. Thus, further research is still
needed to find an efficient nondestructive TSSC detection method for pomelo.
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Time drift, sensor response translation, and batch difference are three types of noise
found in this study. Time drift noise is mainly due to the instability of the intensity of
the light source as working hours increase [24], which changes the spectral sampling
data, affecting the detection result. Reference and dark calibration have proven efficient
for long-term time drift de-noising [25], but little research has focused on short-term
time drift, which is more important in a low signal-to-noise ratio transmission, as is
found with pomelo full-transmission spectroscopy. In our experience, sensor response
translation noise occurs infrequently, and only occasionally occurred in this study. Sensor
response translation mainly occurs due to inconsistency of the internal working of the
spectrometer due to voltage fluctuations, which can result in a mismatch between the
sensor response value and the wavelength. Thus, there is a requirement for a model with a
solution for signal de-noising due to sensor response translation. Batch difference noise
primarily occurs due to the background difference between practical detention samples
(for model application) and modeling samples [26], which influences the detection result.
Consequently, further research on de-noising is needed to ensure the stability of a pomelo
TSSC detection model that is useful for industrial application. Previous research has shown
that batch difference de-noising was beneficial for tomato quality detection [27]; however,
whether batch difference de-noising can be beneficial for the low signal-to-noise ratio
transmission obtained via pomelo full-transmission spectroscopy still requires further
research.

Due to the large size and thick mesocarp of pomelo, determining the internal quality
of a pomelo fruit in a nondestructive manner is difficult, and the detection accuracy is
further complicated by the noise that is typically generated by the common methods for
the internal quality detection of other fruits. To solve these issues, the main objective of this
study was to use full-transmission VIS/NIR spectroscopy for the nondestructive detection
of TSSC in pomelo fruit, and determine if this method, combined with an appropriate
data de-noising and analysis model, was suitable for industrial application. The specific
objectives of this study were to (a) develop an optimal method to accurately detect pomelo
TSSC; (b) develop a de-noising model to decrease the influence of noise (time drift, sensor
response translation, and batch difference) on pomelo TSSC detection data analysis.

2. Materials and Methods
2.1. Pomelo Samples

Pomelo (Citrus maxima Merr.), cultivar ‘honey pomelo’, harvested from Meizhou city,
Guandong province, China were used for all experimentation. Harvest times, usage,
sampling times, and sample sizes are shown in Table 1. There were 311 samples in total
harvested for Batch 1 on August 10, 2022. From Batch 1, 132 samples were used at the
first experimental hour for modeling research, while 60 were used at the second and third
experimental hour each for time drift de-noising research. Fifty samples were used at the
first experimental hour for sensor response translation de-noising research. There were
59 samples harvested in Batch 2 on August 30, 2022; All of which were used at the first
experimental hour for batch difference de-noising investigations.

Table 1. Experimental sample information.

Batch Harvest Time Usage Sampling
Time (hours) Amount

1

August 10, 2022 modeling 1 132
August 10, 2022 time drift de-noising 2 60
August 10, 2022 time drift de-noising 3 60
August 10, 2022 sensor response translation de-noising 1 50

2 August 25, 2022 batch difference de-noising 1 59
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2.2. VIS/NIR Sampling Platform Set Up

Our lab developed a full-transmission VIS/NIR spectrum transmission sampling plat-
form, as shown in Figure 1. To mitigate extraneous light, pomelo samples were measured
in a dark box. The 400 W (four 100 W halogen lamps) arc-shaped light set was on the right
side. The lights were turned on 20 min before experimentation. In consideration of the
practical needs of an assembly line detection, a movable tray was utilized to convey and
stabilize each tested pomelo. The spectrum signal was transmitted through the pomelo
from the right to the left side, was received by an optical fiber, and was then translated
into a digital signal using a spectrometer (QE PRO with detectability for wavelengths
between 400–1100 nm, Ocean Optics Inc., Dunedin, FL, USA). To avoid scattering noise
being received by the optical fiber, all light went through both the input and output optical
holes, passing through the pomelo fruit, before being detected by the optical fiber. The
pre-sampling process was: (1) save the dark current value D, (2) save the reference value R
(3.6 cm thick, spectral-calibrated panel made of barium sulfate material), and (3) finally,
with the pomelo sampling detector response value (P), the pomelo transmissivity is equal
to (P − D)/(R – D). After repeated adjustment, the optimal distance from the light set to the
pomelo was set to 25 cm, and the optimal distance from pomelo sample to receiving fiber
was set to 2 cm (a shorter distance can more efficiently avoid stray light). The diameter
of the input and output optical holes was 7 cm and 1 cm, respectively, and the optimal
integral time of spectrometer was set at 300 ms. Each sample was only sampled once to
correspond to application on an assembly line.
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2.3. TSSC Test

TSSC assessment was conducted subsequent to VIS/NIR spectrum acquisition by a
digital pocket refractometer (PAL-BX/ACID1, ATAGO Co., Ltd., Tokyo, Japan). For TSSC
assessment, pomelo samples were peeled to obtain fruit flesh, which was then crushed and
homogenized, and the juice was filtered through gauze. Two drops of this juice were taken
to directly measure TSSC. Each sample was measured three times, and the TSSC for that
sample was recorded as the average of these three values. Between each measurement, the
refractometer was calibrated with distilled water.

2.4. Modeling

Savitzky Golay (SG) filtering [28], based on local least-squares fitting of data by
polynomials, is a popular method for smoothing data. A SG filter was applied to reduce
jitter noise (such as seen at 1000–1100 nm in Figure 2 of this study) due to the low signal-
to-noise ratio of VIS/NIR spectrum transmission through pomelo. The effect of SG is
influenced by the order of the polynomial and the size of the smoothing window. The
standard normal variate (SNV) [29] method performs a normalization of the spectra that
consists of subtracting each spectrum by its own mean and dividing it by its own standard
deviation. SNV was applied to reduce the scattered noise, because, since there is space
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between the light source and the pomelo and between the pomelo and the receiving
fiber, scattering noise is unavoidable. After applying SG and SNV for preprocessing,
competitive adaptive reweighted sampling (CARS) [30] has the potential to select an
optimal combination of the wavelengths existing in the full spectrum coupled with partial
least squares regression by using the simple but effective principle of ‘survival of the
fittest’, popularized by Darwin’s On the Origin of Species. CARS was applied for feature
extraction among 939 spectroscopy response values (from 400 to 1100 nm). Partial least
squares regression (PLSR) [31] is a technique that reduces the predictors to a smaller set
of uncorrelated components and performs least squares regression on these components,
instead of on the original data. As a fast, stable, and widely used method, PLSR was used
on the data from the Batch 1 first-hour sampling group to investigate the modeling. One
hundred pomelo samples were randomly selected as the calibration set, and the remaining
32 samples were used as the validation set. The matrix size used for PLSR modeling was
feature number × sample number. For PLSR, the latent variables (LV) are the number
of variables selected for model input after feature dimension reduction, which is the key
parameter affecting detection accuracy, and which was determined by repeated testing in
this study. The optimal LV number was selected at the calibration stage. The coefficient
of determination (R2) is the key parameter for evaluating the correlation between the
predicted value and the actual value. The range of R2 is from 0 to 1, where a greater R2

equals a better predictive ability (a stronger relationship between the predicted value and
the actual value). Additionally, the root mean squared error (RMSE) is another way to
evaluate a detection method; the closer the RSME value is to 0, the better the method’s
prediction. Different combinations of the above methods were tested to compare modeling
ability, namely, raw data + PLSR, raw data + SG + PLSR, raw data + SG + SNV + PLSR, and
raw data + SG + SNV + CARS + PLSR.
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2.5. De-Noising for Model Application

To compare the effects of different time drift de-noising models, no de-noising, ref-
erence de-noising (spectrum calibrated by reference), and reference and dark de-noising
(spectrum calibrated by both reference and dark) models were all applied. Reference
de-noising transforms the sampling data utilizing the reference, where the sampling data
are the full-transmitted spectrum of a pomelo, and the reference is the full-transmitted
spectrum of a 2.5 cm-thick barium sulfate board. Reference de-noising transforms the
sampling data to (data-dark)/(reference-dark), where dark is the response spectrum in a
completely dark environment. For low signal-to-noise ratio data, significant time drift can
affect the full-transmission spectrum of pomelo in a short period of term. Thus, time drift
de-noising methods were performed on pomelo full-transmission spectrum data collected
at the second and third hour (reference and dark were updated hourly). Sensor response
translation de-noising was conducted by translating the sensor response back to the correct
wavelength according to the dislocation distance, according to the length of translation.
Batch difference de-noising was conducted by supplying new spectrum data from the new
batch of pomelo samples to retrain the detection model to update the adaptive capacity of
the detection model for further batch samples. All data analysis was performed using Mat-
lab R2017a software (MathWorks Inc., Natick, MA, USA). The workflow of the modeling
and de-noising research process is shown in Figure 2.

3. Results and Discussion
3.1. Modeling of TSS Detection

The raw VIS/NIR spectrum transmitted through pomelo samples is shown in Figure 3a.
The spectrum becomes irregular after 1000 nm; thus, third order 27-point SG processing
was applied to eliminate the jitter noise, and the SG processing results are shown in
Figure 3b. Information between 400 to 500 nm was removed because that wavelength area
still contained significant jitter noise even after SG processing, and was therefore useless
for TSSC detection. Finally, SNV was conducted to eliminate the scatter noise (the negative
value is due to the SNV transformation of original data under the same standard), and
32 features (32 spectra, as the dots in Figure 3c) were extracted by CARS to reduce the
redundancy of the input data of the detection model, with the results shown in Figure 3c.
Previous research also found that the 600–900 nm range of the VIS/NIR spectrum was
useful for the determination of the TSSC in other fruits [32,33]. The absorbance of VIS/NIR
is mainly affected by the stretched vibration overtones and combination modes of color
and hydrogen-containing groups (X–H), including O–H, N–H, C–H, and S–H [15]. Hence,
the spectrum of pomelo is the superposition of the comprehensive response. For feature
extraction, features with a stronger relationship with TSSC should be selected. However,
highly related features might contain similar information. When this happens, a highly
related feature combined with a feature with a lower relation may result in a better detection
efficiency than combining two highly related features. Thus, feature selection is a complex
combination issue. CARS provided an optimal feature combination, but it could not define
the features which were unrelated to TSSC.

The results of the different pre-processing methods combining PLSR modeling for
pomelo TSSC detection are shown in Table 2. The results showed that SG, SNV, and
CARS were all useful pre-processing models for pomelo TSSC detection, and that they
all improved the detection accuracy. The optimal pomelo TSSC detection model was
SG + SNV + CARS + PLSR, with an R2 and RMSEc of the calibration set for pomelo TSSC
detection of 0.8097 and 0.8508, respectively, while the R2 and RMSEc of the validation set
for pomelo TSSC detection were 0.8053 and 0.8888, respectively.
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Table 2. Preprocessing and modeling results of pomelo TSSC based on PLSR.

Modeling Method LVs

Calibration Set (The First
Hour 100 Samples)

Validation Set (The First Hour
32 Samples)

R2c RMSEc R2v RMSEv

Raw data+ PLSR 17 0.9344 0.4977 0.4989 1.4510
Raw data + SG + PLSR 17 0.7413 0.9792 0.4936 1.5788

Raw data + SG + SNV + PLSR 17 0.7638 0.8922 0.5715 1.4002
Raw data + SG + SNV + CARS + PLSR 22 0.8097 0.8508 0.8053 0.8888

3.2. De-Noising of TSS Detection
3.2.1. De-Noising of Time Drift

To visualize the effect of time drift on the spectrometer over a short period of time, the
response of the reference and dark at the first, second, and third detection hour are shown
in Figure 4. The spectrometer response value of the reference decreased with the increase
in the working hours, but the spectrometer response value of the dark at different detection
hours overlapped; that is, the spectrometer can work in a stable way in the short term, but
the light source cannot. The reason for this is that the working process of a light source is
an aging process, where the luminous flux of the light source attenuates with increases in
the amount of time [34]. Thus, in practical application, the reference should be updated
frequently to mitigate the noise due to time drift.
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To further explore the influence of time drift noise on pomelo TSSC detection, the
132 samples from the first hour were used to investigate modeling based on SG + SNV +
CARS + PLSR, while the 60 samples from the second hour and the 60 samples from the
third hour were used to investigate the time drift de-noising effect using different methods
(Table 3). Without de-noising, the detection accuracy of the second- and third-hour samples
decreased when compared to the calibration accuracy of the first-hour samples. The R2

decreased from 0.8054 to under 0.5, and the RMSE increased from 0.8407 to more than 1.1.
With reference de-noising, however, the detection accuracy of the second- and third-hour
samples increased compared to those without de-noising, but the detection accuracy of
the second-hour samples remained better than the third-hour samples. With reference
and dark de-noising, the detection accuracy of the second- and third-hour samples was
further improved, compared to only reference de-noising. We can infer that, when the
spectrometer was in a completely dark environment, there was less effect to due to time drift
than when measuring a full-transmission spectrum with a low signal-to-noise ratio. Thus,
both reference and dark de-noising are important for pomelo internal quality detection,
and spectrometers should be calibrated frequently to eliminate the effects that are due to
time drift. Our previous research found that time drift noise has less influence on data
acquisition for small-sized fruit, which can allow for the obtainment of a spectrum with a
high signal-to-noise ratio [35].

Table 3. The second- and third-hour sample TSSC detection results based on the first-hour samples
modeling under different de-noising methods.

The 1st Hour Samples The 2nd Hour Samples The 3rd Hour Samples

R2 RMSE R2 RMSE R2 RMSE

Without de-noising 0.8054 0.8407 0.4862 1.1845 0.2578 1.5816
With reference de-noising 0.8054 0.8407 0.7538 0.8577 0.6881 0.8926

With reference and dark de-noising 0.8054 0.8407 0.7926 0.8450 0.7565 0.8531

3.2.2. De-Noising of Sensor Response Translation

There were fifty samples for sensor response translation that were collected in the first
detection hour, which is the first such report to the best of our knowledge. The averages
of the 59 sensor response translation samples and the average of the 132 normal samples
are shown in Figure 5. The curve shapes of the normal and translation samples were
similar, but the response values of the translation samples were offset, being 8.9 nm lower.
The reason for this may be an instability of the electronic components of the spectrometer.
However, the exact reason requires further exploration.
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Figure 5. Average of normal samples and translation samples.

To test if the sensor response translation noise could be reduced with an artificial
horizontal shift, all of the response values of the translation samples were adjusted to
be 8.9 nm higher. The TSSC detection results of the pomelo samples with and without
de-noising are shown in Table 4. Due to the sensor response translation noise, the pomelo
TSSC could not be efficiently detected with an R2 and RMSR of the validation set of 0.0872
and 2.1002, respectively. After de-noising, the R2 and RMSR of the validation set were
improved to 0.6701 and 0.9277, respectively. Sensor response translation de-noising could
not achieve detection results that were equal to the detection results from the samples
without any interference from sensor response translation noise at all; however, the results
were sufficiently close to satisfy industrial requirements (RMSE < 1). Usually, the deviation
between the wavelength and spectrometer response is small [36] and does not affect the
detection results. This study first found a large deviation (sensor response translation
noise), and then a solution to provide as a reference for the industrial application of TSSC
detection methods.

Table 4. TSSC detection results with/without sensor response translation de-noising.

Without De-Noising With De-Noising

Calibration Set Validation Set Calibration Set Validation Set

R2 0.8054 0.0872 0.8047 0.6701

RMSE 0.8407 2.1002 0.8413 0.9277

3.2.3. De-Noising of Batch Difference

To test the adaptation of a pomelo TSSC detection model to batch differences, a
detection model was built using the 132 Batch 1 samples from the first hour, and the 59
Batch 2 samples. The detection model could not adapt to different batch samples, and
both the R2 and RMSR of the validation set were poor. Thus, 9 of the 59 Batch 2 samples
were selected randomly to supply to the detection model to improve the adaptation to the
new batch samples, and the remaining 50 samples were used for the validation set. After
batch difference de-noising, the R2 and RMSR increased to 0.7038 and 0.8987, respectively.
The results are shown in Table 5. Previous research has proven that data supplementation
is efficient for improving detection model adaptation to batch differences in pineapple
samples, where more supplemented samples resulted in an improved detection ability [37].

Table 5. TSSC detection results without/with batch difference de-noising.

Without De-Noising With De-Noising

Calibration Set Validation Set Calibration Set Validation Set

R2 0.8054 0.5486 0.8032 0.7038

RMSE 0.8407 1.0715 0.8411 0.8987
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3.3. Comparison with Other Nondestructive Fruit Internal Quality Detection Research

Internal quality detection research based on VIS/NIR spectroscopy has mainly focused
on small and thin-peel fruit, and less on pomelo due to its large size and thick peel. Previous
research [22] has proven that pomelo TSSC can be nondestructively detected by semi-
transmission spectroscopy. However, this method is difficult to fit into an assembly line
due to the great in-variety shape variability of pomelo. The ability of full-transmission
spectroscopy to carry out the nondestructive detection of pomelo TSSC still needs to
be explored. Our previous research showed that water content and granulation can be
nondestructively detected by full-transmission spectroscopy [26]. Thus, this study is an
advancement of previous research. The research results proved that pomelo TSSC can be
detected based on full-transmission spectroscopy.

SG, SNV, and CARS are commonly used preprocessing methods for spectrum data
before modeling. For small fruit, these methods are not necessarily needed [38]. The
application of these methods may cause signal distortion and overfitting of the modeling
due to the signal-to-noise ratio being too high. Thus, combinations of these methods have
often been tested to find the optimal preprocessing method [39]. This study proved that
SG, SNV, and CARS are all efficient in pomelo VIS/NIR spectrum preprocessing, because
the signal-to-noise ratio of the pomelo full-transmission spectrum is low.

Additionally, the stability of detection model applications has been less focused on,
although this is especially important for the pomelo full-transmission spectrum with a
low signal-to-noise ratio. For small-size or thin-peel fruit, time drift noise reduction (refer-
ence and dark calibration) was often conducted only once after starting up the detection
equipment, as a small amount of drift would not affect the detection signal [40]. However,
for the low signal-to-noise ratio sampling spectrum of pomelo, a small amount of drift
in a short amount of time could affect the detection signal, and so time drift de-noising
is better conducted hourly. Sensor response translation noise occurs infrequently and
has not been reported in previous research on intelligent fruit quality detection, and only
occasionally occurred in this study. This study was the first to find and provide a solution
to sensor response translation noise for the industrial application of the detection model.
Batch difference noise occurs not only in small-size fruit but also in large-size fruit, and
is based on the growth characteristics, growth time, environment, and diversity of the
specific agricultural product, and also affects the accuracy of the detection model. The data
supplement provided in this study is suited for both small-size fruit [27] and large-size
fruit.

These study results not only provide reference for the industrial application of the
nondestructive detection of pomelo quality, but also provide reference for the stable model
application of the nondestructive quality detection of other agro-products. A comparison of
nondestructive internal quality detection of large- and small-size fruit is shown in Table 6.

Table 6. Comparison of nondestructive internal quality detection of large- and small-size fruit.

Fruit Size Signal Noise
Ratio

Preprocessing

De-Noising Method in This Study

Time Drift Sensor
Translation Batch Difference

Small High Necessary Suited, conducted only
once after starting up For reference Suited

Large Low Unnecessary Suited, conducted hourly Suited Suited

4. Conclusions

This research was carried out to develop a nondestructive TSSC detection method for
pomelo fruit based on full-transmission VIS/NIR spectroscopy for fast industrial on-line
grading. Modeling and de-noising were of primary importance, due to the low signal-to-
noise ratio of the transmission spectrum of pomelo. The experimental results indicated that
the optimal pomelo TSSC detection model was SG + SNV + CARS + PLSR, with an R2 and
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RMSE of the calibration set for pomelo TSSC detection of 0.8097 and 0.8508, respectively,
and an R2 and RMSE of the validation set for pomelo TSSC detection of 0.8053 and 0.8888,
respectively. Both reference and dark de-noising are important for pomelo internal quality
detection, and calibration should be performed frequently to eliminate the effects of time
drift. This study was the first to find that a large amount of sensor response translation
noise could be reduced via an artificial horizontal shift. Data supplementation was effective
in improving the adaptation of the detection model with respect to batch differences in
pomelo samples. With the de-noising model described above employed to reduce noise
caused by time drift, sensor response translation, and batch difference, the detection ability
of the model can satisfy the needs of the industry (TSSC detection R2 was close to or larger
than 0.9, RMSE was less than 1). The results of this study verify that full-transmission
VIS/NIR spectroscopy can be exploited to achieve the rapid nondestructive industrial-
scale detection of pomelo TSSC, and that the major types of noise can be mitigated using
appropriate model calibration, ultimately providing a fast and intelligent TSSC detection
method and data de-noising and analysis model for the pomelo industry.
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