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Abstract: To provide meat safety and consumer protection, appropriate hygiene control measures at
an abattoir are required. This study aimed to evaluate the influence of visual fecal contamination
level (VFCL) and lairage time (LT) on pig skin (PS) and external (ECS) and internal (ICS) carcass
surfaces. The presence of Enterobacteriaceae, Escherichia coli (E. coli) and Salmonella in PS, ECS, and ICS
were evaluated. A total of 300 paired samples were collected from 100 pigs. Results underlined the
importance of the skin (Enterobacteriaceae: 3.27 ± 0.68 log CFU/cm2; E. coli: 3.15 ± 0.63 log CFU/cm2;
Salmonella: 21% of samples) as a direct or indirect source of carcass contamination. Although VFCL
revealed no significant effect (p > 0.05), the increase of LT had a significant impact (p < 0.001) on
Enterobacteriaceae and E. coli levels across all analysed surfaces, and Salmonella presence on ICS
(p < 0.01), demanding attention to LT. Also, the ICS showed a higher level of these bacteria compared
to ECS. These results highlight the need of food business operators to consider ICS as an alternative
area to sample for Salmonella, as a criterion for process hygiene based on EC Regulation No. 2073/2005,
and as a potential contamination source to be integrated in the hazard analysis critical control point
(HACCP) plans.

Keywords: Enterobacteriaceae; Escherichia coli; Salmonella; abattoir; pig skin; faecal contamination;
internal carcass surface; external carcass surface

1. Introduction

According to the United Nations Food and Agriculture Organization (FAO) pork is
the most consumed meat in the world (34%) [1], making up a substantial part of the diet of
most people, offering excellent nutrition due to its high protein content and with plenty
of vitamins and minerals [2]. Each year, over 23 million individuals become ill due to the
consumption of contaminated food, as reported by the World Health Organization (WHO)
in 2017. Animal-based food products such as meat, namely pork, poultry, beef, and sheep
were found to be the source of approximately 60% of all foodborne illnesses in the same
year [3]. Consumption of food with pathogenic bacteria causes a large number of diseases
with significant effects on human health and the economy [4]. The majority of pathogenic
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microorganisms that may be present in pork originate from the gastrointestinal tract and
skin, and their occurrence can be linked to direct or indirect contamination during the
slaughtering process [5]. In fact, Hoek et al. [6] reported that pigs with Salmonella on their
skin cause contamination at the slaughter line. The influence of skin microflora on the
microbial quality of final pig carcasses in abattoir operations is more complex compared
to cattle slaughter. This complexity arises from the successive changes in skin microflora
during various processing stages such as scalding, dehairing, singeing, polishing, and
washing. Nevertheless, studies have demonstrated the presence of foodborne pathogens,
including Salmonella, on both the skin of pigs before slaughter and the resulting carcasses.
This highlights a direct correlation between skin contamination of live pigs prior to stunning
and the subsequent contamination of carcasses [7].

For pig carcasses, the European Commission (EC) Regulation No. 2073/2005, and
its subsequent amendments, stipulates that the count of Enterobacteriaceae and detection
of Salmonella spp. must be used as a process hygiene criterion (PHC) [8]. If the values
on contaminated carcasses are higher than the limit set by this EC Regulation, corrective
actions must be taken by the food business operator (FBO) not only to improve hygiene
practices during slaughtering, but also to review process controls. According to Barco
et al. [9], Enterobacteriaceae and E. coli are two interchangeable hygienic indicators and
Escherichia coli (E. coli) is utilized to specifically assess the degree of fecal contamination
(FC). In Australia the analysis of the level of E. coli on carcass surfaces during refrigeration
is used as a critical control point in pig abattoirs [10]. In addition, the Australian Meat
Standard imposes that the meat companies have to confirm their carcass-refrigeration
processes [10]. However, in Europe currently, E. coli is not used as a PHC in pig carcasses.
Since microbiological methods used for E. coli counts are quicker and less expensive than
Enterobacteriaceae, studies should be developed to analyze its potential as a fecal indicator
in pig skin and carcass surface.

In the European Union (EU), salmonellosis is the second most reported zoonotic
disease in humans. In 2021, pork accounted for a significant proportion (31.1%) of reported
cases [11,12]. The reported cases were most prevalent in Belgium, Cyprus, Finland, France,
Ireland, Italy, Poland, and Sweden, whereas disease attribution to hen laying and pigs are
similar in the Netherlands [12].

Tonsils, ileum, ileocolic, and mandibular lymph nodes, as well as pig faeces can be
important sources of carcass contamination in the slaughter stages by Salmonella spp. [13–15].
If the lairage time (LT) is extended, the presence of this bacteria may increase, as was
referred to by Morgan et al. [16].

According to the EC Regulation No. 2073/2005, sampling for Salmonella analysis on
ECS typically involves the use of an abrasive sponge sampling method. However, this
regulation specifies that it should be prioritized in the areas with the highest probability
of contamination for sampling. Knowing that the intestinal gut is considered the primary
source of fecal carcass contamination, a hypothesis was formulated to investigate whether
the ICS exhibited higher contamination levels compared to the ECS. If this hypothesis is true,
and since the ICS is not currently analyzed, it could potentially hinder the implementation
of effective corrective measures aimed at reducing human salmonellosis cases associated
with pork consumption.

Hence, the main goals of this study included the evaluation of the visual fecal contam-
ination level (VFCL) prior to slaughter and LT in the occurrence of Enterobacteriaceae, E. coli,
and Salmonella on carcass, and the comparison of the level of contamination of the external
and internal surface of pig carcasses.

2. Materials and Methods

The present study was conducted at an abattoir with a horizontal layout located in the
northern region of Portugal. The facility conducts pig slaughter three times a week and
is equipped to handle a daily throughput of up to 250 pigs. The technological process of
the slaughter involves several stages, including carbon dioxide stunning, bleeding, vertical
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scalding, shaving, first wash/scraping, singeing, second wash/scraping, evisceration, final
wash, and refrigeration, as depicted in Figure 1.
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Figure 1. Technological process of the investigated abattoir. * The animals were subjected to shower-
ing before being moved to stunning.

2.1. Data Collection

During the sampling period for each pig, the LT before slaughter in hours and VFCL
were recorded. The LT was determined by analysing the information recorded by the
FBO. Due to logistic restrictions, VFCL was evaluated after the stunning phase and before
bleeding. To assess VFCL, the external half carcass surface was divided into four main areas.
These areas were further subdivided into four sub-areas each scored with a value of 0.25 if
VFCL was observed. The final VFCL level could range from 0 to 4 values (Figure 2). An
informed consent statement was obtained from the food business operator (the pig owner)
involved in the study. This study complied with the Declaration of Helsinki maintaining
anonymity and existing informed consent of all participants.
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2.2. Sample Size and Sampling Procedures

To determine the counts and/or presence of Enterobacteriaceae, E. coli, including E. coli
O157, and Salmonella, a total of 300 paired samples (swabs) were collected from 100 car-
casses: PS after stunning; ICS and ECS before refrigeration. To collect these samples, sterile
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sponge-swabs hydrated with tryptone salt broth (Biokar Diagnostics, Allonne, France) were
used. The abrasive pad method was applied according to the guidelines of ISO 17604 [17],
covering a total of 1000 cm2 from the hindquarter downward to the forequarter.

Each swab was placed in a separate, sterilized container, properly identified, and trans-
ported under refrigeration conditions to the laboratory within two hours. The sampling
procedures followed the guidelines outlined in EC Regulation No. 2073/2005 [8].

2.3. Microbiological Analyses

In the laboratory, each sample was aseptically transferred into stomacher bags after
adding 20 mL of salt tryptone (Biokar Diagnostics, Allonne, France) to each bag. The
samples were homogenized in a stomacher for 90 seconds (Figure 3).
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2.3.1. Enterobacteriaceae and E. coli Counts  

Figure 3. Schematic representation of the methodology used in this study. Enumeration of Enter-
obacteriaceae (ISO 21528-2:2004): VRBG, Violet Red Bile Glucose agar; enumeration of Escherichia coli
(ISO 16649-2:2001): TBX, Tryptone Bile X-Glucuronide; detection of E. coli O157 (ISO 16654:2001):
CT-SMAC, Cefixime Tellurite Sorbitol MacConkey; CHROMagar Chromogenic Culture Media; detec-
tion of Salmonella (ISO 6579): Hektoen, Hektoen Enteric agar; XLD, Xylose Lysine Deoxycholate agar;
PCR, Polymerase Chain Reaction.

2.3.1. Enterobacteriaceae and E. coli Counts

The quantification of Enterobacteriaceae and E. coli in each of the pig samples was con-
ducted following the procedures specified in ISO 21528-2:2004 [18] and ISO 16649-2:2001 [19],
respectively. The results were reported as log colony forming units (CFU)/cm2 (Figure 3).
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2.3.2. Isolation and Identification of E. coli O157

The determination of the presence of E. coli O157 was conducted following the guide-
lines set out in ISO 16654:2001 [20]. The sorbitol-negative colonies from MacConkey Sorbitol
Agar (CT-SMAC) (Liofilchem, Roseto degli Abruzzi, Italy), which were indole-positive,
urea-negative, and oxidase-negative, were subjected to a latex agglutination test using the
E. coli O157 Test Kit (Oxoid, Basingstoke, UK). The colonies that showed a negative result
in the agglutination test were sent to the National Institute of Health Dr. Ricardo Jorge
(INSA) reference laboratory (Porto, Portugal) for genetic identification.

In the INSA reference laboratory, the genetic analysis of E. coli O157 was performed.
The presence of genes stx1 and stx2 was determined using the primers and time-temperature
conditions described in multiplex PCR (Table 1). The rfbO157 gene was detected by simplex
PCR (Table 1) [21], using AmpliTaq DNA polymerase (Applied Biosystems, Waltham, USA)
and the thermocycler, T100 Thermal Cycler (Bio-Rad, Hercules, USA). Positive and negative
controls, as well as an internal amplification control, were used for all PCR reactions. The
PCR fragments were separated using 2% agarose gel electrophoresis for 55 min. The
amplified fragments were compared to known molecular weight markers after viewing on
the GelDoc 2000 transilluminator (Bio-Rad, Hercules, CA, USA) (Figure 3).

Table 1. Sequence of primers used in multiplex PCR and simplex PCR.

Primers a Sequence (5′ 3′) Amplicon Size b Reference

stx1 (F) ATA AAT CGC CAT TCG TTG ACT AC 180 bp

[21]

stx1 (R) AGA ACG CCC ACT GAG ATC ATC
stx2 (F) GGC ACT GTC TGA AAC TGC TCC 255 bp
stx2 (R) TCG CCA GTT ATC TGA CAT TCT G
O157(F) CGG ACA TCC ATG TGA TAT GG 259 bp
O157(R) TTG CCT ATG TAC AGC TAA TCC

a F, forward; R, reverse. b bp, base pair.

2.3.3. Isolation and Identification of Salmonella

The detection of Salmonella was carried out following the ISO 6579:2002 guidelines [22].
The serotyping of Salmonella isolates was conducted using the Kauffmann–White scheme at
the National Institute of Agrarian and Veterinary Research (INIAV, Lisbon, Portugal) that is
the Portuguese Reference Laboratory for Salmonella (Figure 3).

2.4. Statistical Analysis

All analyses were conducted in triplicate and the results are presented as
mean ± standard deviation (SD). The counts of Enterobacteriaceae and E. coli in both skin
and corresponding carcass samples were determined as CFU)/cm2, converted into log
CFU/cm2, and used to calculate the mean values. The difference significance between
groups was assessed using the Student t-test. A Pearson correlation analysis was conducted
to examine the relationship between the levels of Enterobacteriaceae and E. coli on pig skin
and carcasses, as well as between these indicators and LT and VLFC. The differences in
the proportions of positive Salmonella samples were determined using the chi-square test.
Odds ratios (OR), and their corresponding 95% confidence intervals (CI) were calculated.
Statistical analyses were performed using IBM SPSS Statistics software (Version 27, Chicago,
IL, USA). Variables with a p-value ≤ 0.05 were considered significant.

3. Results and Discussion
3.1. Enterobacteriaceae, E. coli Counts and Salmonella on Pig Skin

Overall, the average level of Enterobacteriaceae and E. coli contamination observed
on pig’ skin was 3.27 ± 0.68 log CFU/cm2 and 3.15 ± 0.63 log CFU/cm2, respectively.
Salmonella was present in 21% (21/100) of the analyzed pig skin. E. coli O157 was absent in
all samples (Table 2).
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Table 2. Enterobacteriaceae and E. coli counts, and presence of E. coli O157 and Salmonella spp. on
different pig surfaces.

Family/Species PS
(Log CFU/cm2)

ICS
(Log CFU/cm2)

ECS
(Log CFU/cm2)

Enterobacteriaceae 3.27 ± 0.68 a 1.65 ± 0.90 b 0.29 ± 0.52 c

E. coli 3.15 ± 0.63 a 1.34 ± 0.89 b 0.33 ± 0.58 c

E. coli O157 ND ND ND
Salmonella spp. 21% (21/100) 9% (9/100) 3% (3/100)

The values are represented as mean ± SD (n = 3). Different letters indicate significantly different results. PS, Pig
Skin; ICS, Internal Carcass Surface; ECS, External Carcass Surface; ND, Not Detected.

Similar but higher results for Enterobacteriaceae were previously observed by
Blagojevic et al. [7] and Walia et al. [23]. However, caution should be taken when di-
rectly comparing the results, as the swab areas employed in the studies conducted by these
authors (1500 cm2 and 100 cm2, respectively) differ from the swab area utilized in our study
(1000 cm2). According to our knowledge, studies of E. coli count on pig skin have not been
performed.

Moreover, our findings showed a lower prevalence of Salmonella on PS compared to
the study conducted by Blagojevic et al. [7] in abattoir A (28%) and abattoir B (40%), which
considered these values relatively high in both cases.

These results underline the importance of the skin as a source of contamination for
the abattoir and, consequently, for the direct or indirect contamination of carcasses. In fact,
Gill [24] previously discussed this topic and highlighted the impact of enteric pathogens
found in animal faeces at the time of slaughter on meat contamination.

3.1.1. Influence of Pig Skin on Carcass Contamination

The mean levels of Enterobacteriaceae and E. coli on PS were significantly higher
(p < 0.001) than that obtained on both surfaces of the carcass (Table 2). A significant posi-
tive correlation (p < 0.001) was observed between these bacteria on all analyzed surfaces,
indicating that a higher presence of bacteria on the skin corresponds to a greater presence
on the carcass. This finding aligns with the research conducted by Rossel et al. [25], which
suggested a direct link between carcass contamination and the presence of Salmonella on
the skin of live pigs prior to stunning.

These results, highlights the importance of the technological process of slaughter in
reducing its contamination, already remarked by Zdolec et al. [26].

In this study, there was a significant correlation (p < 0.001) between the levels of E. coli
and Enterobacteriaceae counts on the three surfaces tested. Similar results were previously
found by Salmela et al. [27] on sheep carcasses. However, currently in Europe, E. coli is not
used as a PHC in pig carcasses. Since microbiological methods used for E. coli counts are
quicker and less expensive than Enterobacteriaceae, the results from this study point out for
the alternative use of E. coli as a fecal indicator on pig skin and carcass surface.

As on PS, E. coli O157 was also not detected on ECS and ICS, which is in accor-
dance with studies previously carried out by Bouvet et al. [28,29], Lenahan et al. [10], and
Choi et al. [30]. As with our study, other studies [31–33] obtained a high number of false
positive results that grew in CT-SMAC. We concluded, as they did, that this medium does
not prove to be adequate to efficiently select E. coli O157.

The overall percentage of Salmonella positive samples was 11% (33/300). Of the
300 samples analyzed, Salmonella was detected in 21 (21%) PS, in 10 (10%) ICS and in 3 (3%)
ECS (Table 2). The same reduction pattern was reported by Hoek et al. [6]. Also, the three
serovars identified in our study were the monophasic variant of Salmonella Typhimurium,
S. 1,4,[5],12:i:- (39.4%), Salmonella Rissen (39.4%), and Salmonella Derby (15.2%) (Table 3).
According to the last report of the European Food Safety Agency (EFSA) [11], S. 1,4,[5],12:i:-,
is one of the most relevant Salmonella serotypes causing human salmonellosis (Top 3) in
Europe, including the main reported serotype recovered from pigs and pork meat. In fact,
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in this study, S. 1,4,[5],12:i:- was the most prevalent and identified on both pig skin (8/21;
38.1%) and the internal surface (5/9; 55.6%), confirming that pigs are the main animal
reservoir for the monophasic variant of S. Typhimurium. Although S. Derby and S. Rissen
have been predominant serotypes in pig and pork meat in Europe, they have a lesser impact
on human salmonellosis cases [34]. Interestingly, S. Rissen is considered a clinically-relevant
serotype, particularly in southern European countries, including Portugal, the same strains
in humans, pigs, and products thereof being frequently detected [34]. The authors would
like to underline that although S. Typhimurium has been most frequently found on pigs in
the abattoir [6,11], it was not detected in the present study.

Table 3. Salmonella serovars identified on pig skin and on carcass surfaces.

Pig PS ICS ECS

1 Salmonella Rissen - -
3 Salmonella Rissen - -
4 Salmonella Rissen - -
5 Salmonella Rissen - -
9 Inconclusive a - -
27 - - Salmonella Rissen
28 - Salmonella Rissen -
34 - - Salmonella Rissen
39 Inconclusive a - -
45 Salmonella 1,4,[5],12:i:- Salmonella Rissen -
46 Salmonella 1,4,[5],12:i:- - -
47 - Salmonella Rissen -
48 Salmonella Rissen - -
51 Salmonella Rissen - -
52 Salmonella Rissen - -
54 Salmonella Rissen - -
56 Salmonella Derby - -
57 Salmonella Derby - -
58 Salmonella Derby Salmonella Derby -
60 - - Salmonella Derby
86 Salmonella 1,4,[5],12:i:- - -
94 Salmonella 1,4,[5],12:i:- Salmonella1,4,[5],12:i:- -
95 - Salmonella 1,4,[5],12:i:- -
96 Salmonella 1,4,[5],12:i:- - -
97 Salmonella 1,4,[5],12:i:- - -
98 - Salmonella 1,4,[5],12:i:- -
99 Salmonella 1,4,[5],12:i:- Salmonella 1,4,[5],12:i:- -

100 Salmonella 1,4,[5],12:i:- Salmonella 1,4,[5],12:i:- -
PS, Pig Skin; ECS, External Carcass Surface; ICS, Internal Carcass Surface; -, serotype not identified. a Inconclusive
serotype identification due to a rough form of Salmonella strain.

A higher number of PS-Salmonella positives (21%, 21/100) was observed compared
to ECS (3%, 3/100) (Table 2). However, by analyzing the data shown in Table 3, it is
possible to verify that the three ECS Salmonella-positive samples were not associated with
Salmonella-positive pig skin, equating other hypotheses of contamination in addition to the
direct one (skin).

In the opposite way, from the nine ICS Salmonella-positive samples, four (44.4%)
had the same serotype identified in the corresponding skin samples. In three of these
cases, S. 1,4,[5],12:1:- was the serotype identified. How is it possible for Salmonella to be
present on the skin and also contaminate the internal surface of the carcass? Two potential
explanations are proposed here. First, the contamination may occur after the splitting step
when the internal surfaces are exposed to skin contaminants, primarily through indirect
contact with equipment, instruments (such as knives), hands, and other sources. Second,
this explanation is related to fecal contamination of the internal surfaces during evisceration.
This occurs when Salmonella from the intestinal contents, which may be the same strain
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as those present on the skin, contaminates the internal surfaces. It is known that pigs can
become orally infected with Salmonella from fecal material in the environment prior to
slaughter, and simultaneously become soiled with this material, thereby contaminating their
skin [25,35]. Furthermore, prior to entering an abattoir, pigs may already carry Salmonella
on their skin. Despite implementing rigorous hygiene measures during carcass processing,
the possibility of cross-contamination to both Salmonella positive and negative carcasses
cannot be ruled out [6]. Therefore, it is crucial to prioritize efforts to better understand the
several potential sources that may contribute to the contamination of both carcass surfaces.
This is essential to enable the implementation of robust control measures that can effectively
address the risk of contamination.

3.1.2. Influence of Visible Fecal Contamination Level

The average VFCL observed on pig skin after stunning was 0.4. Considering that
the final VFCL level could range from 0 to 4 values, it may be assumed that, in general,
the analysed carcasses were not very dirty. This could be related to the fact that before
stunning, the animals were submitted to a cleaning shower. These results are in line
with EC Regulation No. 853/2004 that defines that the animals must be clean before
slaughtered [36].

Statistical analysis showed that there was no significative correlation between VFCL
(p > 0.05) and the level of Enterobacteriaceae, E. coli, and presence of Salmonella on PS.
Hence, it appears that the shower employed for cleansing the pigs, prior to stunning,
successfully reduced visible fecal contamination. However, it seems insufficient for the
elimination of the specific bacteria under investigation, as they persist on the pig’s skin
(Table 2). According to Belluco et al. [37], the process of washing does not necessarily result
in a substantial reduction in microbial contamination. This is because bacteria can still
adhere to the skin even after washing. Additionally, there is a possibility that the washing
procedure itself could potentially lead to a redistribution of bacteria across the surface of
the skin. Taking these results into consideration, the FBO should understand that despite
slaughtering “clean” (washed) animals, bacteria can remain on the skin, so it should not
lighten the implementation of good hygiene practices in order to minimize their spread
and cross-contamination.

Based on our findings in this abattoir, it is not recommended to rely solely on the VFCL
observed after stunning as an indicator of the presence of the specific indicator bacteria.
In contrast to other animals, such as lamb Hauge et al. [38], sheep Byrne et al. [39], and
chickens Barco et al. [40], no studies were found associating the visible fecal soiling with
carcass contamination in pigs. Based on the authors’ knowledge, this is the first study
looking at the relationship between microbiological and VFCL on pig carcasses, proving to
be an interesting topic to explore. This knowledge gap has been previously acknowledged
in a comprehensive literature review conducted by Barco et al. [9]. The use of this hygiene
indicator before showering could be more useful in future studies.

3.2. External Carcass Surface vs. Internal Carcass Surface

The average level of Enterobacteriaceae and E. coli contamination on ICS was
1.65 ± 0.90 log CFU/cm2 and 1.34 ± 0.89 log CFU/cm2, respectively. Similar values
were found by Vieira-Pinto et al. [41].

The average level of Enterobacteriaceae and E. coli contamination on ECS was
0.29 ± 0.52 log CFU/cm2 and 0.33 ± 0.58 log CFU/cm2, respectively. For Enterobacteri-
aceae lower contamination load was found by Morgan et al. [42], Vieira-Pinto et al. [41],
Zweifel et al. [43], Matsubara [44], Pearce and Bolton [45], Spescha et al. [46]; Lindblad [47],
Ghafir and Daube [48], and Lenahan et al. [10]. Regarding E. coli, similar results, but not
directly comparable, were found by Ghafir and Daube [48], Wong et al. [49] and Lindblad [47].

The results from this study also showed that the mean level of Enterobacteriaceae and
E. coli on the ICS was significantly higher (p < 0.001) than that obtained on ECS.
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Salmonella was detected in nine (9%) ICS and in three (3%) ECS, despite not hav-
ing observed a significant difference (p > 0.05). Diverse results regarding the presence
of Salmonella on ECS were found in the literature from 0%, Wong et al. [49], to 34.9%,
Zhou et al. [50]. Furthermore, comparing both surfaces the identification was possible of
an additional nine carcasses contaminated with Salmonella on ICS (Table 3). The results of
the study performed by Hoek et al. [6] are in line with the present study that ICS presents
more Salmonella than ECS.

Overall, these findings highlight the need for increased attention toward the ICS,
which is not currently subject to mandatory control measures specified in EC Regulation
2073/2005 [51] and subsequent amendments. According to this Regulation, the presence of
Salmonella spp. on pig carcasses is considered a process hygiene criterion for controlling
contamination during the slaughter process. However, this criterion has been revised by
EC Regulation No. 217/2014 [52], based on EFSA opinion [11], which recognizes Salmonella
as a significant risk to public health in relation to the consumption of pig meat. The
regulation recommends strengthening the process hygiene criterion for Salmonella on pig
carcasses. Under the revised criteria, satisfactory control is achieved if the presence of
Salmonella is detected in a maximum of 3 out of 50 samples from 10 consecutive sampling
session. Comparing our results to this EU process hygiene criterion, we can conclude that
the process hygiene for external surfaces (3/100) was considered satisfactory, whereas,
for internal surfaces (9/100), it did not meet the desired criteria. This underscores the
importance of addressing the contamination of ICS to ensure food safety and to comply
with the revised process hygiene standards. Although sampling for Salmonella analyses as
the process hygiene criterion usually used in the ECS areas most likely to be contaminated
can be also selected for this purpose (EC Regulation No. 2073/2005) [8]. This could be the
case of ICS. For that reason, bearing in mind the results of this study, FBO, may consider ICS
as an alternative area to be sampled for Salmonella as a process hygiene criterion operator, in
order to control the process hygiene and adequately contribute to the reduction of human
salmonellosis cases attributed to pork consumption.

Furthermore, if the contamination level of the ICS is higher than the ECS, the FBO must
be alert to potential sources of contamination in order to implement effective measures to
mitigate this problem, which may include the reduction of cross contamination [41,52,53],
as well as the good hygiene practices during evisceration [54].

3.3. Effect of the Lairage Time

The average lairage time (LT) observed in this study was 27 h (27 ± 15). According
to EC Regulation No. 853/2004, the animals must be slaughtered without unnecessary
delay [36]. This high value might have been impacted by the fact that sample collections
were conducted on Mondays. The pig may become more contaminated with bacteria if
the LT is extended. The achieved results showed that increasing LT leads to an increase
of the level of Enterobacteriaceae and E. coli both on pig skin and in the respective carcass
surfaces, these relationships being significant (p < 0.001). In the case of the presence
of Salmonella on ICS, a significant relationship was also observed with the increase of
LT (p > 0.01). In the study performed by Morgan et al. [16], it was observed that with
the increasing of the LT, the rate of Salmonella isolation from caeca and carcass surfaces
increased considerably. Hurd et al. [55] also concluded that the LT is a significant risk
factor for Salmonella contamination and infection in pork. In the work performed by
Duggan et al. [56] LT also influenced cross-contamination with Salmonella.

These results suggest that FBO must implement hygiene improvements in lairage to
assure better efficiency in reducing the levels of Enterobacteriaceae, E. coli and presence of
Salmonella.

4. Conclusions

With the present study we identified important results that should be considered by
a food business operator when implementing microbiological hazard control measures
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in a pig abattoir. Of these, we highlight the importance of the skin which, despite being
macroscopically “clean”, represents an important potential source of Salmonella and other
Enterobacteriaceae bacteria to the abattoir and to carcass contamination (direct or indirect).
Moreover, the lairage time was found to have a significant impact on higher levels of
contamination, raising awareness to the food business operator to reduce this period,
which is in line with the EC Regulation No. 853/2004 [36]. Furthermore, this study
alerts the food business operator to the internal surface of the carcass, relevant under the
implementation of EC Regulation No. 2073/2005 and the HACCP-based procedures or
other meat hygiene control measures in place.
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