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Abstract: Hazelnut culture originated in Turkey, which has the highest volume and area of hazelnut
production in the world. For the design and sizing of equipment and structures in agricultural
operations for the hazelnut industry, especially harvesting operations and post-harvest operations,
it is essential that an understanding of hazelnuts’ aerodynamic properties, i.e., terminal velocity
and drag coefficient, is acquired. In this study, the moisture, mass, density, projected area, surface
area, and geometric diameter were used as independent variables in the data set, and the dependent
variables terminal velocity and drag coefficient estimation were determined. In this study, logistic
regression (LR), support vector regression (SVR), and artificial neural networks (ANNs) were used
based on machine learning methods. When the results were evaluated according to R2 (determination
coefficient), MSE (mean squared error), and MAE (mean absolute error) metrics, it was seen that the
most successful models were the ANN, SVR, and LR, respectively. According to the R2 metric, the
ANN method achieved 91.5% for the terminal velocity of hazelnuts and 85.9% for the drag coefficient
of hazelnuts. Using the independent variables in the study, it was seen that the terminal velocity and
drag coefficient value of hazelnuts could be successfully estimated.

Keywords: artificial neural network; aerodynamic properties; regression; SVM; MSE

1. Introduction

Turkey is the homeland of hazelnut culture. Hazelnuts, which are the nut of the hazel
tree, are also called cobnuts and filbert nuts, depending on the species. There is a smooth
shell surrounding a fibrous husk covering the cob, which is generally round or oval and
about 15–25 mm (0.59–0.98 in) in length and 10–15 mm (0.39–0.59 in) in diameter. Globally,
hazelnuts come in second place to almonds as far as cultivation is concerned. They have an
important place in human nutrition and are mainly used in confectionery, but they are also
used as table nuts and in oil production [1].

According to data from the Food and Agriculture Organization, the world hazel-
nut production area is 966,196 hectares; approximately 75.4% of hazelnut production is
in Turkey, about 8.1% is in Italy, 4.0% is in Azerbaijan, 1.9% is in Turkey, and 1.8% is
in the USA. The hazelnut is therefore a valuable economic commodity. Turkey is the
largest hazelnut producer in the world, with 69% of the global hazelnut production (about
776 000 tons out of the total world production of about 1,125,000 tons) [2]. Additionally,
Turkey is the largest exporter of hazelnuts, conducting about 80% of the world’s hazelnut
exports [3].

Considering the importance of hazelnuts for Turkey, the systems used in the process—
from harvest to reaching the consumer—should be designed in an optimum way to increase
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work efficiency, save time, and prevent labor losses. In this chain, the aerodynamic prop-
erties of the hazelnut for the optimum design of the machinery and systems used for the
classification, drying, transportation, and cleaning of the hazelnuts under suitable condi-
tions are important factors to know. Additionally, in order to harvest hazelnuts, perhaps
using a stationary thresher and cleaning unit, the physical and aerodynamic properties of
hazelnuts are also important to know [4].

For the optimization of the systems used in hazelnut processing, the aerodynamic
properties such as the terminal velocity and drag coefficient are important factors to
consider. These properties (the terminal velocity and drag coefficient) are affected by
numerous factors such as the humidity, mass, density, projected area, surface area, and
geometric diameter [5].

Aerodynamic tests with different agricultural products have determined terminal
velocity as a function of moisture content. However, some studies showed that the terminal
velocity of an agricultural product also changes according to the mass, geometric diameter
(form), volume, density, and superficial projected area of the product [4,6,7]. In addition, in
a study on the separation of both damaged and undamaged seeds, the drag coefficient was
determined as a function of the mean geometric diameter [8].

The terminal velocity and drag coefficient can be calculated or measured in the labora-
tory according to the specified fruit characteristics (humidity, mass, density, projected area,
surface area, and geometric diameter). Two commonly used methods for the experimental
measurement of terminal velocity are the drop and suspension methods [9]. Both methods
involve a very long, laborious process, and they are also very time consuming and labor
intensive. In current times, when energy and labor are crucial and time is of the essence,
nontraditional methods can be used, instead of experimental methods, to accurately predict
these desired properties.

It is frequently challenging to establish the relationship between the dependent vari-
ables and independent variables in system/process phenomena [10]. It is challenging
to map the behavior of a system or process with a mathematical model in such circum-
stances, and even when answers are established, such mathematical models are frequently
complicated, nonlinear, and parallel. The physical characteristics of hazelnut fruits and
their aerodynamic characteristics do not have a known numerical relationship. As a re-
sult, machine learning processes offer a more effective method of solving this kind of
problem [11]. In recent years, there has been an increase in the usage of some machine
learning technologies to solve these problems. Using these techniques, solution-oriented
approaches can be achieved via fast and simple simulations [12]. Such effective methods are
required for the precise representation and identification of descriptive parameters utilized
in agricultural and food product quality evaluation. In an input–output coupling, machine
learning provides nonlinear models that can forecast current and future values [13]. The
physical, mechanical, and qualitative aspects of fruit have been studied using various
network architectures of artificial neural networks, including different inputs, network
structures, training algorithms, iteration counts, and so on. Suitable ANN models for
predicting physical and mechanical qualities have been identified by combining different
combinations. The ANN method was applied to estimate the typical physiological changes
in pears, and the ANN model produced the best estimation based on real data [14]. An
artificial neural network can be used to better estimate the volume and surface area of a
fruit according to Ziaratban et al. [15]. Lu et al. [16] used single-hidden-layer ANNs in their
asparagus investigation, and the number of neurons in the hidden layer was determined
via a trial-and-error method.

Machine learning, which can be defined as a type of application in which computer
programs can learn patterns through training data and algorithms, is a sub-branch of
artificial intelligence. Its application, which imitates human movements, aims to learn
through experience without programming. The learning system of the machine learning
algorithm is divided into three main parts. The decision process is used by machine
learning algorithms to make a prediction or classification. Based on some input data, which
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may be labeled or unlabeled, an algorithm will generate a prediction about a pattern in
the data. An error process is used to evaluate the prediction of the model. If there are
known examples, an error function can perform a benchmark to evaluate the accuracy of
the model. In the optimization process, if the model fits the data points in the training set
better, then the weights are adjusted to reduce the discrepancy between the known sample
and the model prediction. By repeating this evaluation and optimizing the process, the
algorithm autonomously updates the weights until an accuracy threshold is reached [17].

This study presents an accurate estimation of aerodynamic properties such as terminal
velocity and drag coefficient depending on some fruit properties, such as humidity, mass,
density, projection area, surface area, and geometric diameter, using a machine learning
method. By using machine learning models, we aim to determine the most accurate model
given different inputs and network structures. The results obtained can be considered a
useful tool when the drying, harvesting, sorting, transportation, separation, trashing, and
processing of hazelnuts is developed and optimized.

2. Materials and Methods

In this study, hazelnut samples randomly selected from the hazelnut variety (Palaz)
were used in all trials. Experiments were carried out in 4 replicates using 30 hazelnuts
in each replicate. Samples were obtained from different hazelnut growers for the 2022
harvest season in Samsun, Turkey. The experiments were carried out as soon as possible
after the hazelnuts were purchased. Samples were kept in a +4 C refrigerator for one day
until analysis. Experiments were carried out in Akdeniz University Technical Sciences
Vocational School Laboratories.

2.1. Data Set

The moisture content of the hazelnut variety (Palaz) was determined using the ASAE
standard method and found to vary between 3.75 and 20.33% db (db = dry basis) [18]. In
order to determine the average linear dimensions (thickness (T), width (W), and length (L))
and mass of the hazelnuts used in the experiments, 30 hazelnut samples were randomly
selected for each replication and the dimensions of each hazelnut were measured with a
digital caliper with an accuracy of 0.01 mm. The mass (M) was measured using a digital
balance with an accuracy of 0.001 g.

The surface area and geometric mean diameter of the hazelnuts were calculated using
the following equations [6]:

Dg = (L×W× T)1/3 (1)

S = π×D2
g (2)

where Dg is the geometric mean diameter in mm, L is the length (mm), W is the width
(mm), T is the thickness (mm), and S is surface area in mm2 (Figure 1).

The projection area (P) was calculated by comparing the projection area with the
reference area using Sigma Scan Pro 5 software on hazelnut images taken with a digital
camera (Nikon D 5600), as shown in Figure 1b [19].

The hazelnut density (ρ) was measured by the liquid displacement method. Toluene
(C7 H8) was used, rather than water, because it was not absorbed by the nuts [20,21].

The terminal velocity was determined using a wind tunnel (Figure 2). A radial fan
driven by a 1.5 kW electric motor was used to create the airflow in the wind tunnel. The air
volume was adjusted by means of a regulating valve placed at the air inlet opening. The
air, created by a radial fan, was delivered to the pressure chamber. The pressure chamber
ensures that the incoming air flow was close the laminar flow. Between the pressure
chamber and the air outlet duct, to which the test duct is connected, a honeycomb-shaped
piece, called a rectifier, was placed to ensure a near laminar flow. A test channel made of a
transparent material was placed in the air outlet duct to study the movement of the test
material in the air. For each test, a sample (nut) was dropped into the test channel from the
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top of the wind tunnel and the air velocity at the moment the sample was suspended in the
air was measured with a digital hot-wire anemometer with an accuracy of 0.1 ms−1 [22].
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Furthermore, if the terminal velocity of the sample is known, the drag coefficient Cd
can be calculated by [6,23]:
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where Cd is the drag coefficient (−), g is the acceleration due to gravity (9.81 ms−2),
m is the mass of samples (kg), ρp is the density of samples (kgm−3), ρf is the density of air
(1.206 kgm−3), Ap is the projected area of the particle (m2), and Vt is the terminal velocity (ms−1).

2.2. Machine Learning Methods

Machine learning is the modelling of systems with computers that make predictions by
making inferences on data with mathematical and statistical operations. Machine learning
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is a branch of artificial intelligence used to classify and forecast data by mimicking the
way humans learn. Machine learning is used in many different fields, such as medicine,
the automotive industry, marketing, and speech recognition technologies. For example, in
natural language processing, it is used in tasks such as analyzing and understanding texts,
translation, or detecting emotional meaning. In image processing, it is effective in tasks
such as recognizing objects from images, face recognition, or image classification [24,25].

In this study, artificial neural network, logistic regression, and support vector regres-
sion methods were used as machine learning methods. The decision to use these methods
was influenced by the characteristics of the models, the suitability of the data set, and the
studies in the specialty literature. The facts that these models produced successful and fast
results, according to the size and characteristics of the data set, and the lack of these studies
in the literature for originality were reasons for the selection of these models.

2.2.1. Logistic Regression

Logistic regression is a supervised machine learning method used to linearly model the
relationship between dependent and independent variables. It is a type of statistical analysis
used to predict the outcome of a dependent variable based on previous observations.
Logistic regression can be used if the type of variable to be predicted is categorical. The
major difference between logistic regression and linear regression is how it applies the line
to separate the two classes. While linear regression uses least squares to draw the optimal
line, logistic regression uses maximum likelihood [26].

The aim of logistic regression is to determine the effect of one or more independent
variables on the dependent variable when the dependent variable is qualitative. Logistic
regression analysis is a method that calculates the estimated values of the dependent
variable as a probability and allows estimation in accordance with the probability rules.
In logistic regression analyses, the ratio of the probability of an event occurring and the
probability that the event will not occur is called the odds ratio. p(x) represents the
probability of an event occurring and 1 − p(x) represents the probability that the event will
not occur [27,28]. The odds formula is shown in the following:

Odds =
p(x)

1− p(x)
(4)

The odds take values between 0 and +∞. The odds ratio is asymmetrical. It is
transformed into a symmetrical ratio by taking its natural logarithm. By taking the natural
logarithm of both sides of the logistic function, which can be used in linear regression
analysis through this ratio, a linear structure is obtained [29].

ln(Odds) = ln
P

1− P
(5)

While the odds of a probability take values between 0 and +∞, the logit value of the
same probability takes values between −∞ and + ∞ [27].

• As P increases, logit(P) also increases.
• If P < 0.5, logit(P) is negative.
• If P > 0.5, the logit(P) takes positive values.
• When P is between 0 and 1, logit(P) can take values in the line of real numbers [30].

2.2.2. Artificial Neural Network

Artificial neural networks are a method designed to simulate the way the simple
biological nervous system works. Simulated nerve cells contain neurons, and these neurons
connect to each other in various ways to form a network. These networks have the capacity
to memorize and reveal the relationship between data sets [31].

Artificial nerve cells have five basic elements. Each artificial nerve cell has inputs
that receive external information, weights that process incoming information and create
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connections, a summation function, an activation function, and output elements that
present the processed information to the outside. The inputs represent information from
the outside. The summation function calculates the net input entering the cell. According
to the ANN model to be applied, various functions can be used. Generally, the addition
function is the summation of the information coming into the cell by multiplying the
weights of that information [32]. Equation (6) shows the net input.

NET =
N

∑
i

XiWi (6)

where X is the inputs, W is the weight value and n represents the total number of inputs
that have entered a cell.

The activation function establishes a connection between input and output. It processes
the information from the collection function and creates the output information. This
function, like the summation function, has various functions according to the ANN model
to be implemented. The most used activation function is Sigmoid [33]. Equation (7) shows
the Sigmoid function.

f(NET) =
1

1 + e−NET (7)

The output contains the values produced by the activation function.
Artificial neural networks are divided into four groups: single-layer and multi-layer

perceptrons, feed-forward networks, and feedback networks. Single-layer networks consist
of inputs and an output. They can have multiple input values. In a single-layer network,
the output function is linear and takes a value of 1 or −1. Multi-layered ANNs consist of
input, hidden, and output layers. In feedforward ANNs, neurons move regularly from
input to output. Only one layer connects with the next layer. The information in the input
is transmitted to the neurons in the hidden layer without any change. It is then processed
at the output layer and transferred to the output. In a feedback ANN, unlike forward-feed
networks, the output of a neuron is not given only as an input to the layer of neurons that
follows it. It can connect to the previous layer or to a neuron located in its own layer [34,35].

2.2.3. Support Vector Regression

Support vector machine (SVM) is a supervised machine learning algorithm that can
be used for classification or regression problems. SVM is suitable for linear or non-linear
classification and regression problems. SVM basically separates data from multiple classes
in the most appropriate way. For this purpose, it draws lines called decision boundaries,
or in other words, a hyperplane to separate the points in a plane. This line is intended to
be at the maximum distance for the points of both classes. Support vector machine was
first proposed by Vapnik [36], inspired by the statistical learning method. This method was
developed for classification operations. Then, the support vector regression (SVR) method
was developed to solve prediction problems [37]. When SVR is applied, it ensures that the
drawn range encapsulates the maximum point (Figure S5).

SVR is a regression model that allows us to define how many errors can be accepted
in the generated model. Based on the errors entered, it finds a suitable line or creates a
hyperplane. Therefore, the SVR method is applied in an attempt to minimize the prediction
error and, in this way, aims to find a function that approaches the training data (Figure S6).
The flatness of the function is maximized, reducing the risk of being stuck in local values [38,39].

2.3. Data Preprocessing

In this study, hazelnut terminal velocity and drag coefficient estimations were per-
formed using three different machine learning methods. The flow diagram of the system is
shown in Figure 3.
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In this study, the moisture, mass, density, projected area, surface area, and geometric
diameter were used as independent variables in the data set, and the dependent variables
of terminal velocity and drag coefficient were predicted. There are 30 data samples for
each independent variable in the data set. Figure 4 shows the ANN model designed for
the study.
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Normalization is a statistical method used to express values in different value ranges
in the data set in the same range. The normalization process reduces the training time
and significantly increases the performance of machine learning methods [40]. Min-max,
median, sigmoid, decimal scaling, and z-score methods are the most frequently used
normalization techniques in the literature. In this study, the data samples were normalized
between 0 and 1 using the min-max method.

The next stage of the study is partitioning. While training the models, the whole data
set is divided into two parts: a training and a test set. The data used to set the parameters
of the models are called training data and the data used to measure the accuracy of the
selected model are called test data. In the test data, predictions and real data are compared.
Thus, the performance of the model is measured. This partitioning ratio can take different
values according to the characteristics of the model. These ratios are generally 60–40%,
70–30%, or 80–20% [41]. In the study, experiments were carried out on the models to divide
the data set into training and test sets. As a result of these trials, it was decided to separate
the training and test data set as 70–30%.
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In the study, the determination coefficient (R2), mean squared error (MSE), and mean
absolute error (MAE) metrics were used to evaluate and compare the machine learning
methods used. The equations of these statistical methods are given below.

R2 = 1− Unexplained Variation
Total Variation

(8)

MSE =
1
n

n

∑
i=1

e2
i (9)

MAE =
1
n

n

∑
i=1
|ei| (10)

where n is the amount of data and e is the error value.
R2 is a statistical criterion that we used to evaluate the performance of the model in

regression analysis. The great feature of this criterion is that it is extremely convenient for
comparing different regression models. R2 indicates the power of the equation obtained in
the regression analysis to measure the dependent variable. The coefficient of R2 is from 0 to
1. The closer its value is to 1, the greater the adaptation of the model to the variable we are
trying to explain. The closer it is to zero, the less tight the model will be and therefore the
less reliable it will be. A high R2 indicates a good regression model fit. The MSE measures
the performance of the prediction model. The MSE indicates how close a regression curve
is to a series of points [42,43]. Since the MSE takes the squares of the errors, it produces
large numerical results when there is a large deviation. In these cases, the MAE can be used
instead of MSE. The MAE shows how close a regression curve is to a series of points. The
MAE is the average horizontal and vertical distance between each real value and the line
that best fits the data. The MAE value can range from 0 to ∞. Estimators with a lower MAE
indicate a better performance.

3. Results and Discussions
3.1. Logistic Regression Analysis

The maximum likelihood method was used to estimate the parameters for the logistic
regression model. In this study, the log-likelihood value was −16.449, as a result of
100 iterations. The evaluation of the independent variables used to estimate the terminal
velocity of hazelnuts using logistic regression is shown in Table 1.

Table 1. Evaluation of logistic regression model (the terminal velocity of hazelnuts).

R2 MSE MAE

Moisture 0.749 0.023 0.127
Mass 0.746 0.023 0.143

Density 0.663 0.037 0.161
Projected area 0.708 0.029 0.159
Surface area 0.596 0.040 0.194

Geometric diameter 0.678 0.032 0.164
Average 0.690 0.031 0.158

According to the statistical metric in Table 1, R2 varies between 59.6% and 74.9%.
These values were close to the acceptable range, and the lowest R2 was for surface area and
the highest R2 was for the moisture variable in estimating the hazelnut terminal velocity.
The lowest MSE was 0.023 and the highest was 0.04, and the value was close to the desired
value. The MAE ranged from 0.127 to 0.194 and these values were close to the ideal values.
According to these results, it was observed that logistic regression showed a close-to-success
and close-to-ideal result in estimating the terminal velocity of hazelnuts.

The evaluation of the independent variables used in the estimation of the drag coeffi-
cient of hazelnuts using logistic regression is shown in Table 2.
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Table 2. Evaluation of logistic regression model (the drag coefficient of hazelnuts).

R2 MSE MAE

Moisture 0.681 0.046 0.159
Mass 0.770 0.024 0.119

Density 0.664 0.035 0.155
Projected area 0.743 0.029 0.132
Surface area 0.814 0.015 0.097

Geometric diameter 0.863 0.012 0.081
Average 0.756 0.027 0.124

According to the statistical metrics in Table 2, R2 varied between 66.4% and 86.3%.
These values were close to the acceptable range, and the lowest R2 was for density and the
geometric diameter variable had the highest R2 in estimating the hazelnut drag coefficient.
The lowest MSE was 0.012 and the highest was 0.046, and the value was close to the ideal
value. The MAE ranged from 0.081 to 0.159 and was close to the ideal values. According
to the average results in Table 2, logistic regression showed close to acceptable results in
estimating the drag coefficient of hazelnuts.

3.2. Artificial Neural Network Analysis

An artificial neural network (ANN) method is a supervised and feedback model. In
the process of creating an ANN model, it is necessary to determine the number of hidden
layers and the number of neurons in each layer. Although there is no rule for this, the most
used method is the trial-and-error method. The number of hidden layers and the number
of neurons are the most important parameters that affect the success of the model. In this
study, the most successful results were obtained in the model with two hidden layers and
three neurons in each layer. For this model, 100 iterations were performed.

The evaluation of the independent variables used to predict the terminal velocity of
hazelnuts using artificial neural networks is shown in Table 3.

Table 3. Evaluation of ANN model (hazelnut terminal velocity).

R2 MSE MAE

Moisture 0.894 0.010 0.083
Mass 0.901 0.009 0.067

Density 0.882 0.013 0.078
Projected area 0.943 0.006 0.066
Surface area 0.920 0.008 0.072

Geometric diameter 0.949 0.005 0.053
Average 0.915 0.009 0.070

According to the statistical data in Table 3, R2 varied between 88.2% and 94.9%. These
values were in the acceptable range, and the lowest R2 was for density and the highest R2

was for the geometric diameter variable in estimating the terminal velocity of hazelnuts.
The lowest MSE was 0.005 and the highest was 0.013, and the value was very close to the
desired value. The MAE ranged from 0.053 to 0.083 and they were very close to the ideal
values. According to the average results in Table 3, the artificial neural network showed a
successful result in estimating the value of the hazelnut terminal velocity.

The independent variable evaluation used to predict the drag coefficient of hazelnuts
using artificial neural networks is shown in Table 4.
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Table 4. Evaluation of ANN model (the drag coefficient of hazelnuts).

R2 MSE MAE

Moisture 0.785 0.016 0.109
Mass 0.899 0.011 0.073

Density 0.932 0.007 0.066
Projected area 0.785 0.017 0.101
Surface area 0.866 0.013 0.081

Geometric diameter 0.889 0.009 0.084
Average 0.859 0.012 0.086

According to the statistical data in Table 4, R2 varied between 78.5% and 93.2%. These
values were in the acceptable range, and in estimating the drag coefficient of hazelnuts, the
lowest R2 was for moisture and the highest R2 was for the density variable. The lowest
MSE was 0.007 and the highest was 0.017, and the value was very close to the desired value.
The MAE ranged from 0.066 to 0.109 and was very close to the ideal values. According to
the average results in Table 4, the artificial neural network showed an acceptable result in
estimating the drag coefficient of hazelnuts.

3.3. Support Vector Regression Analysis

The other method used in the study was non-linear support vector regression (SVR).
The most important parameter affecting the success of the model in SVR is the choice of
core function. As a result of tests, it was decided to use the radial basis function (RBF)
in the model. The overlapping penalty value in the model was 20 and sigma was set to
0.1. The evaluation of the independent variables used to predict the terminal velocity of
hazelnut using SVR is shown in Table 5.

Table 5. Evaluation of SVR model (hazelnut terminal velocity).

R2 MSE MAE

Moisture 0.849 0.140 0.105
Mass 0.858 0.013 0.103

Density 0.914 0.009 0.084
Projected area 0.850 0.015 0.118
Surface area 0.802 0.020 0.121

Geometric diameter 0.880 0.012 0.090
Average 0.859 0.035 0.104

According to the statistical data in Table 5, R2 varied between 80.2% and 91.4%. These
values were in the acceptable range, and the lowest R2 was for density and the highest R2

was for the geometric diameter variable in estimating the terminal velocity of hazelnuts.
The lowest MSE was 0.009 and the highest was 0.140, and the values were very close to the
desired values. The MAE ranged from 0.084 to 0.121 and was very close to the ideal value.
According to the average results in Table 5 and Figure S1, the artificial neural network
showed an acceptable result in estimating the value of hazelnut terminal velocity.

The evaluation of the independent variables used in the estimation of hazelnut drag
coefficient using support vector regression is shown in Table 6.

Table 6. Evaluation of SVR model (hazelnut drag coefficient).

R2 MSE MAE

Moisture 0.657 0.026 0.136
Mass 0.794 0.022 0.119

Density 0.914 0.009 0.090
Projected area 0.791 0.017 0.107
Surface area 0.827 0.016 0.109

Geometric diameter 0.830 0.015 0.099
Average 0.802 0.018 0.110
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According to the statistical data in Table 6, R2 varied between 65.7% and 91.4%. The
values in the table varied, and in estimating the drag coefficient of hazelnut, the lowest R2

was for moisture and the highest R2 was for density (Figure S2). The lowest MSE was 0.009
and the highest was 0.026, and the value was very close to the desired value. The MAE
ranged from 0.090 to 0.136 and was very close to the ideal value. According to the average
results in Table 3, the artificial neural network shows a result close to acceptable values in
estimating the drag coefficient of hazelnuts.

3.4. Discussion

In this study, modelling was performed according to three different machine learning
methods: logistic regression (LR), artificial neural networks (ANN) (Figure S3), and support
vector regression (SVR). A comparison of the machine learning methods used in the
estimation of hazelnut terminal velocity and drag coefficient is shown in Table 7.

Table 7. Comparison of terminal velocity of hazelnut estimation methods.

LR ANN SVR

R2 0.690 0.915 0.859
MSE 0.031 0.009 0.035
MAE 0.158 0.070 0.104

An R2 of 1 indicates that the test data fit to a linear curve. The R2 in Table 7 was 69%
for LR, 91.5% for ANN, and 85.9% for SVR. These results were found to be very close to
the ideal value. When the MSE is close to zero, the models show better and fewer errors.
Therefore, it is desirable that the MSE of the models used in the study is close to zero. In the
study, the MSE was 0.031 for LR, 0.009 for ANN, and 0.035 for SVR, which is close to the
ideal value. An MAE close to zero indicates a less erroneous prediction. In the study, the
MAE value was 0.158 for LR, 0.070 for ANN, and 0.104 for SVR, which is close to the ideal
value. According to these results, artificial neural networks, support vector regression, and
logistic regression were found to be more successful and have less error than the machine
learning methods used to predict hazelnut terminal velocity.

A comparison of the machine learning methods used to predict the drag coefficient of
hazelnuts is shown in Table 8.

Table 8. Comparison of drag coefficient of hazelnut estimation methods.

LR ANN SVR

R2 0.756 0.859 0.802
MSE 0.027 0.012 0.018
MAE 0.124 0.086 0.110

The R2 in Table 8 was 75.6% for LR, 85.9% for ANN, and 80.2% for SVR. According to
these results, R2 is in the acceptable value range. It was seen that the MSE was 0.027 for
LR, 0.012 for ANN, and 0.018 for SVR, which is close to the ideal value. It was seen that
the MAE was 0.124 for LR, 0.086 for ANN, and 0.110 for SVR, which is close to the ideal
value. According to these results, artificial neural networks, support vector regression, and
logistic regression were found to be more successful and less error prone than the machine
learning methods used to predict the drag coefficient of hazelnuts (Figure S4).

Figure 5 shows the results of all three models according to the R2 metric for estimating
the terminal velocity and drag coefficient of hazelnuts. As shown in the figure, the models
achieved acceptable values in predicting both dependent variables. In particular, the ANN
method is more successful than the others.
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4. Conclusions

The aerodynamic properties of hazelnuts (terminal velocity and drag coefficient) are
major parameters for harvesting and post-harvesting operations. These parameters are
very important for the design and modification of machines used in many processes, such
as harvesting, drying, transportation, classification, cleaning, etc. In order to determine
these properties, measurements with a large number of samples are required. These types
of measurements are time consuming, costly, and labor intensive. Additionally, they
introduce several measurement errors. Identifying such features with machine learning
systems leads to more datasets, attributes, and algorithms for further study, as well as faster
and more reliable results for industrial applications such as discrimination, sorting, and
prediction processes.

In this study, the terminal velocity and drag coefficient of hazelnuts were successfully
predicted by models created using six different independent variables in three machine
learning methods. Considering the R2 metric in the evaluation of the methods, it was
seen that these models can be used to predict the terminal velocity and hazelnut drag
coefficient using six independent variables. An MSE and MAE of zero indicate that the
models are error free. Since the MSE and MAE metrics are close to zero in this study, it can
be concluded that the findings of the study are acceptable and the error rate is low. As a
result of the evaluation of the models, it was seen that the most successful methods with
the lowest error were artificial neural networks, support vector regression, and logistic
regression, respectively.

Machine learning can be used in the food processing industry in a highly practical, fast,
and reliable way. In addition, it can help in the determination of physical and engineering
properties of agricultural products and in quality assessment industries. The current
models and findings will provide important contributions to researchers and designers.

In future studies, the prediction success can be increased by increasing the size of the
data sets and adding independent variables to the models. In addition, the effect of using
different machine learning methods such as deep learning on the accuracy of the method
can be analyzed.
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