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Abstract: Food safety is a significant issue that affects people worldwide and is tied to their lives and
health. The issue of pesticide residues in food is just one of many issues related to food safety, which
leave residues in crops and are transferred through the food chain to human consumption. Foods
contaminated with pesticide residues pose a serious risk to human health, including carcinogenicity,
neurotoxicity, and endocrine disruption. Although traditional methods, including gas chromatogra-
phy, high-performance liquid chromatography, chromatography, and mass spectrometry, can be used
to achieve a quantitative analysis of pesticide residues, the disadvantages of these techniques, such
as being time-consuming and costly and requiring specialist staff, limit their application. Therefore,
there is a need to develop rapid, effective, and sensitive equipment for the quantitative analysis of
pesticide residues in food. Microfluidics is rapidly emerging in a number of fields due to its out-
standing strengths. This paper summarizes the application of microfluidic techniques to pyrethroid,
carbamate, organochlorine, and organophosphate pesticides, as well as to commercial products.
Meanwhile, the study also outlines the development of microfluidics in combination with 3D printing
technology and nanomaterials for detecting pesticide residues in food.

Keywords: pesticide residues; microfluidic; rapid detection; food samples

1. Introduction

Pesticides are crucial in contemporary agriculture because they prevent crop losses
from pests. They also protect crop growth and yields. The wide application of new
pesticides has improved agricultural production, but the food safety problem caused by
them has attracted more and more attention. Pollution caused by pesticides has gradually
become a global public health problem [1–4]. The excessive intake of pesticides seriously
harms human health [5–7]. Overuse, heavy reliance, and improper processing have left
residues in crops and enriched them in the human food chain [8]. The consumption of
foods that are high in pesticides can cause endocrine disorders, cancer, and neurological
diseases [9–11]. The risks posed by pesticide residues are more acute for children and
expectant women [12,13]. The entire food business faces a severe challenge due to this
focus. The food business and producers are subject to more intense scrutiny and demand to
ensure the quality and safety of food due to greater regulatory enforcement and customer
awareness. One of their most essential tasks is identifying pesticide residues in food
to safeguard people’s lives and health [14]. However, conventional pesticide detection
technologies have numerous shortcomings that mean they cannot be used as rapid on-site
detection technology [15–17].

The primary traditional methods for detecting pesticide residues are gas chromatog-
raphy, high-performance liquid chromatography, and mass spectrometry [18–21]. These
detection techniques have the advantages of accuracy and sensitivity. However, their
sample processing and pretreatment procedure is complicated, time-consuming, expensive,
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and labor-intensive. As a result, traditional detection technology cannot meet the needs
of consumers for the rapid and convenient detection of pesticide residues. Therefore,
developing a technology that can rapidly, conveniently, efficiently, and sensitively detect
pesticide residues in food is essential. The demand for point-of-care testing for food safety
is answered by microfluidics. Microfluidics provides a platform for rapidly detecting trace
pesticide residues with a small sample. Combining microfluidic technology with pesticide
residue detection devices effectively overcomes the shortages of traditional methods and
realizes on-site detection [22–26].

Microfluidics integrates various functional units in submillimeter microchannels for
a variety of analytical chemistry operations such as purification [27,28], reaction [29,30],
separation [31,32], and detection [33,34]. Microfluidic sensors have the advantages of high
throughput, miniaturization, portability, and small reagent consumption [35–41], which
can rapidly obtain more accurate detection results. It is significant for food safety to de-
velop on-site detection technologies and portable equipment [42–44]. Microfluidic sensors
can identify specific analytes through biomolecules and enhance them into detectable
signals [45–48]. However, to our knowledge, very few reviews currently expand on the
application of microfluidics in detecting food pesticide residues [49].

This article reviews the recent research progress of microfluidics in rapidly detecting
food pesticide residues, hoping to provide new ideas for future microfluidics in pesticide
detection. It focuses on several microfluidic devices to detect the most commonly used
pesticides globally, including pyrethroid, carbamate, organochlorine, and organophosphate
pesticides. Different microfluidic tools like paper, arrays, and centrifugation and signal
readouts like colorimetry, fluorescence, and electrochemical approaches are used for various
food samples, as illustrated in Scheme 1. Future trends and commercial technologies for
the on-site detection of pesticide residues are explored.
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Scheme 1. Microfluidic-technology-based schematic diagram for the detection of food pesticide
residues.

2. Microfluidic Devices for Pesticide Detection

Due to the advantages of microfluidics in point-of-care testing, convenient, rapid,
and efficient chemical reactions have become the first choice for detecting food pesticide
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residues [50–54]. Various microfluidic devices detect food pesticide residues, such as
those from organophosphates, carbamates, and pyrethroids [55]. Table 1 lists exemplary
microfluidic tools for rapidly detecting pesticide residues in food.

Table 1. Representative microfluidics devices for rapid detection of pesticide residues in food.

Pesticide Type Detected Pesticides Characteristics of the Microfluidic Devices and
the Analysis Sample Ref.

Organophosphates

Paraoxon

LOD: 1 × 10−4 µg L−1

Assay time: 5 min
QD-AChEaerogel-based microfluidic array sensor
Linear range: 10−12–10−5 M

Apple [24]

Dichlorvos

LOD: 1.0 µg L−1

Assay time: 30 min
Threaded 3D microfluidic paper analytical
device-based sensor
Linear range: 2.5–120 µg L−1

Spinach
Tomato [25]

Malathion

LOD: 10.9 µg L−1

Assay time: 7 min
A coulometric microdevice based on plug-based
microfluidics
Linear range: 10−10–10−2 M

Water [56]

Chlorpyrifos

LOD: 2.0 µg L−1

Assay time: 35 min
Bioactive microfluidic paper device
Linear range: 2.0–45 µg L−1

Water [57]

Carbamate

Carbendazim

LOD: 3.102 µg L−1

Assay time: 12 min
3D-printed microfluidic nanosensors
Linear range: 0.01–10 ppm

Cabbage [23]

Carbofuran

LOD: 199.1 µg L−1

Assay time: 6 min
Electrochemical microfluidics based on carbon
black nanoparticles
Linear range: 25–125 µM

Water [58]

Carbaryl

LOD: 181.9 µg L−1

Assay time: 6 min
A simple but robust droplet-based microfluidic
system
Linear range: 15.6–21.8 µM

Water [59]

Organochlorine Dicofol

LOD: 200 µg L−1

Assay time: 20 min
A paper based microfluidic device modified via
PTES
Linear range: 0–10 ppm

Tea [60]

Pyrethroid Cypermethrin

LOD: 2500 µg L−1

Assay time: 6 min
A microfluidic paper-based analytical device
Linear range: 2–15 µg/mL

Water [61]

2.1. Organophosphates Compounds

Pesticides with an organophosphate chemical as their primary component are known
as organophosphate pesticides [62,63]. These insecticides are commonly used in horticul-
ture and agriculture to improve crop yield and quality while controlling various pests and
illnesses. Organophosphate pesticides primarily poison pests via acetylcholinesterase inhi-
bition [64,65]. However, the nervous system of people might also be impacted by this [66].
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Prolonged or excessive exposure to organophosphate residues may cause neurological
symptoms such as headache, dizziness, nausea, vomiting, muscle cramps, neurasthenia,
and memory loss [67–69]. There are numerous studies on the detection of organophos-
phate pesticides [70–76]. Shi and colleagues used phage and horseradish peroxidase to
create an eco-friendly and safe electrochemical immunosensor [77]. Li et al. developed
a MnO2 switch-bridged DNA walker for the ultrasensitive sensing of ChEs activity. It
can effectively detect organophosphorus pesticide residues in actual samples [71]. Hurija
et al. developed a conjugated polymer and core–shell magnetic nanoparticle-containing
biosensor for pesticide analysis [72]. Under optimized conditions, the biosensor in concern
revealed a rapid response (5 s), a low detection limit (6.66 × 10−3 mM), and high sensitivity
(45.01 µA mM−1 cm−2).

A microfluidic device based on fluorescence intensity for quick pesticide residue
detection in food has higher sensitivity compared to the conventional method [78–84],
and Hu et al. (2019) developed a microfluidic array sensor based on QD-AchE aerogel
that can detect organophosphates pesticide residues quickly and with high sensitivity [24].
The principle of using the microfluidic device to detect pesticide residues via fluorescence
intensity is shown in Figure 1. Quantum dots’ fluorescence intensity gradually increases
with an increase in organophosphate concentration. Since acetylcholine catalyzes the
production of thiochotine, organophosphates inhibit its activity and restore the fluorescence
intensity of acetylcholine-quenched quantum dots. With detection limits of less than
1.2 pM and a detection range of 10−5 M–10−12 M, the researchers evaluated three popular
organophosphate pesticides, including paraoxon, parathion, and dichlorvos. This further
proved that the sensor has high sensitivity and a broad detection range. Additionally, they
evaluated that the recovery of organophosphates insecticides achieved 98% using apple
samples. However, the instrument is currently based on monochromatic fluorescence to
detect organophosphate pesticides, which results in limited detection sensitivity due to
the low contrast between red and the background color. In the future, the contrast can be
increased by adding various colors to improve the detection sensitivity.
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Figure 1. Schematic diagram of organophosphate fluorescence detection based on enzyme-
inhibited recovery reaction. (Reprinted/adapted with permission from Ref. [24]. Copyright 2019
Biosensors & Bioelectronics).

Also, based on fluorescence detection, compared with the array microfluidic sensor de-
veloped by Hu et al., Tong et al. developed a threaded paper-based microfluidic device [25],
as shown in Figure 2 below. Using 3D printing technology and fixed with cotton thread,
threaded 3D paper-based microfluidic analytical devices (µPADs) (Figure 2C) included four
2D µPADs (Figure 2A). They created a ratio fluorescence system for organophosphate de-
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tection using MnO2 nanosheets to oxidize o-phenylenediamine into 2,3-diamino phenazine
with yellow-emission fluorescence and the internal filter effect to quench the fluorescence
intensity of red emission carbon dots (RCDs). The fluorescence detection image is shown
in Figure 2B. They also chose actual samples of spinach and tomatoes, with recovery rates
ranging from approximately 94.0% to 106.0% and relative standard deviations (RSDs) under
8.6%. The test results matched those from the HPLCMS test. This technique performs well
and is appropriate for accurate field organophosphate identification in real samples. The
design diversity of 3D µPAD provides a simple and efficient detection platform for the
detection of pesticide samples in complex agricultural samples.
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Figure 2. (A) Schematic diagram of 2D µPAD. (B) Fluorescence detection image. (C) Schematic
diagram of 3D µPAD. (Reprinted/adapted with permission from Ref. [25]. Copyright 2023
Biosensors & Bioelectronics).

Electrochemical technologies [85–88] are more straightforward and sensitive than
fluorescence detection because they directly transform difficult-to-measure chemical pa-
rameters into simple-to-measure electrical ones. Common electrochemical identification
techniques frequently demand intricate electrode production procedures and expensive
detection costs. Yang et al. suggested a method for identifying pesticide residues based on
multilayer paper-based microfluidic chips to address this issue [89]. After spraying pesti-
cides on lettuce, the avermectin, phoxim, and dimethoate identification accuracy remained
consistent at 93%. A stopper microfluidics-based organophosphate-pesticide-detecting
system was created by Wang et al. (2014) [56]. As shown in Figure 3A, the device con-
sists of a glass substrate measuring 11 mm × 33 mm, a Kühler-style inspection thin-film
three-electrode system, and a polydimethylsiloxane (PDMS) substrate with a flow channel
structure. The instrument employs hydrogen peroxide to oxidize the microelectrode ar-
ray. Acetylcholinesterase activity changes following the addition of organo-phosphorus
pesticides, and the charge change is determined using the Kuhler method. Figure 3B
shows the procedure used to process plugs at the T-junction. Finally, the concentration of
organophosphate pesticides is measured. The charge resulting from the organophosphate
concentration’s logarithm has a linear connection. Malathion’s lower detection limit (LOD)
is 33 nM, while the LOD for acephate, methamidophos (MEP), and diazinon are 90 nM. The
Kuhler method, which relies on inhibiting acetylcholinesterase, can be carried out with tiny
volume stoppers, requiring fewer expensive chemicals. The fast mixing of plugs makes it
easier to repeat experiments and take accurate readings.

2.2. Carbamate Compounds

Carbamate pesticides are widely used in agriculture and forestry because of their high
selectivity, easy decomposition, little residual toxicity, and low toxicity to humans and
animals [90–93]. However, carbamate pesticides with heavy usage in foods spread through
the food chain and accumulate in the human body through the digestive system and the
skin’s mucous barrier [9,94–96]. In various studies, carbamate pesticides have been shown
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to quickly produce nitroso compounds with nitrite in food (bread, yogurt, cheese, soy sauce,
and vinegar), which can substantially harm human health [97,98]. They are also mutagenic,
teratogenic, and carcinogenic under acidic circumstances in the stomach [99]. In this case,
some researchers have proposed various methods of detecting carbamate [100–103]. However,
the sample handling and pretreatment steps required for these procedures are complex
and time-consuming. To solve these problems, desirable methods like fluorescence, col-
orimetry, and electrochemistry were proposed with high sensitivity and rapidity [104–106].
Wu’s group discovered Cu2+/Cu+ conversion as the electrochemical signal for detecting
ethyl carbamate. To achieve the visual detection of carbamate, Chen’s group proposed a
fluorescence paper-based sensor to detect carbamate in food [107]. To achieve the automa-
tion of detection, Yan’s group designed a multi-signal readout platform for the sensitive
monitoring of carbamate pesticides [108]. Currently, these desirable methods still suffer
from long-distance transportation and complex environments.
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Figure 3. (A) Schematic diagram of a microfluidic device. (B) Solution mixing procedure diagram.
(a) The first step is to introduce the reaction solution into the mainstream channel. (b–d) Measure
the volume using the auxiliary runner and discard the main runner section. (e) The two solutions
merge in the main channel. (f) Transport the new plug to the sensing area. (Reprinted/adapted with
permission from Ref. [56]. Copyright 2014 Sensors and Actuators B-Chemical).

Microfluidic devices [109,110] offer a viable solution to achieve the detection of car-
bamate and overcome the issues associated with complex procedures and transportation.
Interestingly, microfluidics widely utilize unitary and multiple signal readouts [111–115].
For instance, based on colorimetry, M.D. Fernández-Ramos (2020) suggests a bioactive
microfluidic paper device for pesticide determination in water [57]. The proposed device
contains three independent regions: a µPAD at the bottom for sampling, two microchan-
nels separated by deposited acetylcholinesterase and AChCl solutions, and a top µPAD
containing a pH indicator for detection. The paper device, working at room temperature,
sets the reducing reaction’s rate as an analytical signal to be quantified based on the color of
µPAD. Figure 4A,B display two color diagrams to verify carbamate’s existence, where the
purple one is deemed as the presence of carbamate, and the yellow one is regarded as the
absence of carbamate. A drawing of the design of the whole device is exhibited in Figure 4C
to guide the microfluidic chip fabrication. The concentration of carbaryl was determined
using calibration curves and found to be 2.00 µg L−1 for carbaryl. It ranged from 5.5%, and
the detection limit was 2.00 µg L−1. The researchers also conducted recovery trials with
known concentrations of carbaryl, with an average recovery rate of 97.7%. The device with
the capillary holders can be used to conduct many analytical processes, such as sample
buffering, sample filtration, etc.
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Meanwhile, multiple readouts are successfully utilized to achieve the detection of
carbamate, increasing sensitivity and integration. Zhao et al. (2021) built a portable
automatic double-readout detector integrated with a 3D-printed microfluidic nanosensor
on the foundation of the colorimetric method [23]. As shown in Figure 5A,C, the chip,
containing five chambers and several channel structures, was designed to control the
flow and detection of chemical mixtures through centrifugal force [116–118]. The device,
capturing chromatic aberration and fluorescence spectral images, successfully distinguished
six urethane pesticides based on the cross-response mechanism and agglomeration effect of
gold nanoparticles (AuNPs) (Figure 5B). It demonstrated high sensitivity and selectivity
for urethane pesticides at the ppb level and good recognition ability at low concentrations
of 50 ppb–800 ppb. With convenience and integration, the device can also be adapted for
environmental monitoring and home testing (Figure 5C).

The advantage of employing an electrochemical approach over a fluorescence method
is that the analyte of interest does not need to be coupled to a fluorescent reporter or an
imaging setup. It simply requires a pair of electrodes, which are highly sensitive and
versatile and are easily shrunk and integrated into a microfluidic platform. Based on
electrochemical microfluidics, Flavio et al. suggested a method for quickly and accurately
detecting phenyl carbamate herbicides in rivers, lakes, and irrigation water samples. This
technique significantly enhances the C18-based OMIX microtip approach, which enriches
the analyte by a factor of 10, lowers reagent waste, and increases the accuracy of detection
results. It can quickly separate and sensitively detect carbamate pesticides in 6 min. Mean-
while, Gu et al. coupled concentration gradient creation and electrochemical detection to
fabricate a straightforward and reliable droplet dose-reactive enzyme inhibition microflu-
idic device [59]. To introduce reagent and construct concentration gradients, a variety of
slotted flasks and conical-tip capillaries were implicated in this device (Figure 6A). PDMS,
which is integrated with microelectrodes, is used for droplet production and electrochemi-
cal detection. The method is based on the enzyme inhibition principle shown in Figure 6B,
and it was used to calculate the average semi-inhibitory concentration value of carbaryl
with less than 5 µL of total reagent.
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2.3. Other Pesticides

Organochlorine pesticides are organic compounds containing chlorine in their chemi-
cal structure, which are fat-soluble and kill insects by interfering with the function of the
nervous system [119–123]. They are widely used worldwide because of their low price,
broad spectrum of insecticidal efficiency, and ease of use. The excessive use of organochlo-
rine pesticides will not only affect the environment but also cause harm to the human
body [124–126]. Organochlorine pesticides mainly affect human health through food, respi-
ration, and skin contact and can destroy certain hormones, enzymes, growth factors, and
neurotransmitters in the body. Changes in relative homeostasis conditions within cells
lead to oxidative stress and rapid cell death, leading to Parkinson’s [127], cancer [128], and
endocrine and reproductive diseases.

In order to detect organochlorine pesticide residues, many people have carried out
research. Malik et al. successfully determined organochlorine pesticide residues using an
electron capture detector (GC-ECD) in 2011 [129], and Chowdhury et al. achieved the same
in 2013 using gas chromatography–tandem mass spectrometry (GC-MS) [130]. However,
the testing equipment used requires professional personnel to operate it, and the equipment
is expensive. In order to develop a simple, efficient, and stable method for the detection
of organochlorine pesticide residues, Wang et al. developed a paper-based microfluidic
device using fluorescence detection, as shown in Figure 7A [60], which consists of three
three-port valves, six peristaltic pumps, and a 3D-printing-based, paper-based test platform
(Figure 7B). The team proved the device’s practical applicability and high sensitivity with
good recovery and close-to-peak detection of dicofol content in tea by adding multiple
interference terms.
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Pyrethroid pesticides are synthesized by simulating the chemical structure of natural
pyrethroids, also known as biomimetic synthetic pesticides. They have a wide insecticidal
spectrum, high efficacy, sterilization, and mold inhibition [131]. Pyrethroids have effec-
tively reduced the incidence of malaria in Africa and other places [132], but overuse has
seriously affected people’s health, causing cardiovascular diseases, reproductive diseases,
and so on [133–137]. Pyrethroid analysis is routinely used in gas chromatography–electron
capture detector (GC-ECD), gas chromatography–mass spectrometry (GC-MS), liquid
chromatography–ultraviolet (LC-UV), and liquid chromatography–mass spectrometry (LC-
MS). The instrument technologies mentioned above have high accuracy and precision,
good sensitivity, and very low detection limits, but they are expensive, complex to operate,
and unsuitable for most environments.
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In order to develop a low-cost and convenient pyrethroid detection method [138],
Sumate et al. developed a layered paper microfluidic device using colorimetric detection
to screen pyrethroids type II [61], including cypermethrin, deltamethrin, cyhalothrin,
and fenvalerate in environmental water samples. The detection principle is shown in
Figure 8A,D; through cyanide ions and ninhydrin reaction color, on µPAD, a color intensity
corresponding to pyrethroid pesticide concentration formed, using a red, green, and
blue color-matching system for digital image analysis (Figure 8B,C). The detection limits
for cypermethrin, deltamethrin, cyhalothrin, and fenvalerate were 2.50, 1.06, 3.20, and
5.73 µg/mL, respectively. Due to the paper-based layered structure, the device is easier
to manufacture and use. It provides a detection platform for pesticide contamination
in environmental surface water, with the advantages of portability, low reagent/sample
consumption, and low-cost detection.
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2.4. Commercialized Products

In order to meet the demand for quick and precise studies, several microfluidic devices
have been created in the fields of food safety and pesticide detection. The commercial items
that are currently utilized for pesticide testing are listed in Table 2 below. These gadgets
use diverse microfluidic technology and have unique benefits and drawbacks.

For the quick and precise detection of pesticides in food and environmental samples,
a number of microfluidic devices have been developed. The portable, highly sensitive
My-coLabTM AflaQuickTM by EnviroLogix Inc. can identify aflatoxins in just 10 min. Envi-
roLogix Inc.’s QuickTM has a high sensitivity and mobility level and can detect aflatoxins in
under 10 min. Multiplexed pesticide detection is available with the Advanced Animal Diag-
nostics RaptorTM Integrated Analysis Platform, although it is more expensive and demands
specialist training. Pesticide identification is possible with the Biosensing Instrument Inc.
ToxiQuantTM Pesticide Microarray Kit. However, it requires refrigeration and has longer
test times. The portable microfluidic sensor with SERS technology from GBC Scientific
Equipment allows for label-free detection but calls for SERS equipment. The RapidChek®

SELECTTM Salmonella from Romer Labs quickly identifies salmonella but has low sensitiv-
ity. Although it needs specialist equipment, Detection’s BioFlash Biological Identifier offers
quick and sensitive findings. Mass spectrometry equipment is necessary for the ATHENA
Integrated System, a lab-on-a-chip with quick results and customizable choices.
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Table 2. Commercialized products for pesticide testing.

Product Name Manufacturer Detected Pesticides Types of Microfluidics
Technology Time Target Sensitivity Storage and Stability Ref.

MycoLab™
Afla-Quick™ EnviroLogix Inc. Aflatoxins Lateral Flow

Immunoassay (LFIA) 10 min Aflatoxins in various
food samples

Detects aflatoxin B1, B2,
G1, and G2 at low ppb

levels

Stable at room temperature;
shelf life of 12 months [139]

Raptor™ Integrated
Analysis Platform

Advanced Animal
Diagnostics (AAD)

Various pesticides
(customizable)

Microfluidic
Immunoassay 30 min Pesticides in food and

feed samples

Customizable to
different pesticide

targets

Stable at room temperature;
shelf life of 18 months [140]

Pesticide Detect™ CerTest Biotec Various pesticides
(customizable)

Microfluidic Im-
munochromatography 10 min Pesticides in food and

water samples

Customizable to
different pesticide

targets

Stable at room temperature;
shelf life of 12 months [141]

ToxiQuant™ Pesticide
Microarray Kit

Biosensing Instrument
Inc.

Various pesticides
(customizable)

Microarray-based
detection 2–3 h Pesticides in food and

environmental samples

Customizable to
different pesticide

targets

Stable at refrigeration
temperature; shelf life of

6 months
[142]

SERS-based Portable
Microfluidic Sensor

GBC Scientific
Equipment

Various pesticides
(customizable)

Surface-Enhanced
Raman Spectroscopy

(SERS)
Minutes Pesticides in food and

water samples

Customizable to
different pesticide

targets

Stable at room temperature,
dependent on the instrument [143]

iTube Ayanda Biosystems Various pesticides
(customizable)

Smartphone-based
colorimetric assay Minutes Pesticides in food

samples

Customizable to
different pesticide

targets

Stable at room temperature,
dependent on the smartphone [144]

RapidChek® SELECT™
Salmonella Romer Labs Various pesticides

(customizable)
Lateral Flow

Immunoassay (LFIA) 15 min Pesticides in food
samples

Customizable to
different pesticide

targets

Stable at room temperature;
shelf life of 12 months [145]

BioFlash Biological
Identifier Smiths Detection Various pesticides

(customizable)
Immunomagnetic
Separation (IMS) Minutes Pesticides in food and

environmental samples

Customizable to
different pesticide

targets

Stable at room temperature,
dependent on the instrument [146]

MELISA-45 System IBIS Technologies Various pesticides
(customizable) Mass spectrometry Minutes Pesticides in food and

environmental samples

Customizable to
different pesticide

targets

Stable at room temperature,
dependent on the instrument [147]

ATHENA Integrated
System

Centre for Advanced
BioNano Systems

(Australia)

Various pesticides
(customizable) Lab-on-a-chip Minutes Pesticides in food

samples

Customizable to
different pesticide

targets

Stable at room temperature,
dependent on the instrument [148]
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The microfluidic devices mentioned above have special features and capabilities to
detect pesticides in food and environmental samples. While each technology has benefits
like quick results, portability, and customizability choices, it also has drawbacks like con-
strained detection targets, reduced sensitivity, the need for specialized equipment, and a
range of prices. These aspects are important when choosing the best microfluidic device to
meet the unique pesticide detection and food safety application demands.

3. Conclusions and Future Perspectives

Pesticide residues in food have an impact on human life and health. As more people
become aware of food safety issues, researchers have started looking into several rapid,
easy, and effective ways to check food safety, of which, microfluidic technology is one
of the simplest and most effective methods. This paper reviews the latest developments
in microfluidics for the detection of pesticide residues in food. Compared to traditional
pesticide detection devices, microfluidic technology has the advantages of ease of use, low
sample consumption, low reagent waste, and high sensitivity and accuracy. In particular,
an increasing number of microfluidic detection technologies for pesticide residues have
started to be integrated with 3D-µPAD, allowing for a greater variety of assay device
de-signs and providing a direct and effective platform for pesticide detection in complex
agricultural samples. In addition, a growing number of microfluidic devices are opting
to use this combination of nanomaterials and microfluidic technology, as it allows for the
enrichment of the target analyte between 10 and 100 times while using fewer reagents and
obtaining better detection results and sensitivity.

Currently, there are three primary types of microfluidic technology detection methods
for the detection of pesticide residues in food: colorimetric methods, fluorescence intensity
methods, and electrochemical approaches. Each of these categories has its own bene-
fits. Current research in fluorescence detection continues to focus on the monochromatic-
fluorescence-based detection of pesticide residues, which has limited detection sensitivity.
In the future, the contrast can be improved by adding a variety of colors to increase the
detection sensitivity. Microfluidics is just beginning to develop in pesticide detection, but as
people’s quality of life improves, they will become more concerned about food safety. With
the development and exploration of 3D printing, nanomaterials and other technologies in
the future, microfluidics will find more uses in food pesticide residue detection, providing
simpler, more effective, fast, sensitive, and affordable methods.
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