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Abstract: The present work aimed to develop different formulations of blueberry jam (traditional
and light) made from rabbiteye fruits (Powder Blue and Climax varieties) and then analyze the influ-
ence of storage on their physicochemical and rheological properties at different times: (i) zero time
(i.e., freshly processed), (ii) after 30 days, (iii) after 90 days and (iv) after 120 days. The influence of stor-
age time on these properties of the jams was analyzed using statistical analysis (ANOVA and Tukey
test) and regression. The physical, chemical and rheological properties were predicted by mathemati-
cal simulation using independent variables composed of molecular
descriptors + SMILES codes. It also used time (days), % water, % citric acid, % glucose, % sucrose,
% anthocyanin, % HM pectin, % LM pectin, % xanthan gum, pH and acidity (%), as independent
variables. Several architectures of three and four layers for learning were tested, encompassing testing
and prediction steps in order to predict the dependent variables of hardness, water activity, and adhe-
siveness. According to the results, higher sucrose concentrations and longer cooking times showed
greater anthocyanin instability in products made with HM pectin (i.e., in traditional products). In
the same way, there was no influence of the storage time on soluble solids content in light jellies
(made with LM pectin). Regarding the rheological properties, it was noted that time influenced the
hardness of the jellies, except for the traditional formulation with pectin extracted from the passion
fruit peel (highly hydrated). However, adhesiveness was influenced by time in all products. The
lowest deviations for the dependent variables were obtained, finding the optimal configuration of
10-30-10-3 architecture. The lowest deviations for the dependent variables were obtained, finding the
optimal configuration of 10-30-10-3 architecture.

Keywords: blueberry jam; storage; rheological properties; artificial neural networks;
molecular descriptors

1. Introduction

The blueberry is a fruit that stands out in the world fruit crop due to its excellent
nutritional value. Worldwide, it is considered the fruit of longevity since its anthocyanin
content is high, which prevents several degenerative diseases (due to the high antioxidant
capacity of the anthocyanins) and, thus, contributes to a healthier life [1–4]. Despite this,
anthocyanins are phenolic compounds, which can have negative impacts on the sensory
quality of the fruit, impairing its consumer acceptance. In this context, the manufacture of
jams is an alternative to soften the astringent taste [5,6] and, in addition, the production of
fruit jellies is considered a leading industrially important product, especially in European
countries, such as England, which assumes a prominent role both in terms of consumption
and quality [7,8].
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The literature defines fruit jam as the product obtained by cooking fruit (whole, in
pieces or fruit juice) with sugar and water and concentrated until it achieves a gelatinous
consistency. It cannot be artificially colored or flavored, but the addition of acidulants and
pectin is tolerated, if necessary, to compensate for any deficiency in the natural acidity
and/or pectin content [8,9].

Pectin, used mainly in the food industry as a gelling agent in jellies and jams, is
classified according to the degree of esterification (DE) as low (LM, <50% DE) and high
(HM, >50% DE) methoxy. LM pectin is often used in low sugar jams and is obtained by
controlled de-esterification of HM pectin under acidic or alkaline conditions. However,
pectin processing (e.g., extraction, heat, or pH condition) and functional group distribution
vary between factories. Pectin is an important component in texture variation, which
represents a critical factor for food acceptability [10].

Even industrialized foods remain susceptible to biological activities evidenced by
variations (which can be microbiological, physical, chemical, and even enzymatic), which
can result in loss of nutrients, as well as physical, chemical (pH, acidity), and rheological
(texture and viscosity) changes in properties [11,12]. One of the main quality attributes
that influences the acceptability of jam is texture, which influences its appearance, flavor,
and sensory impressions (gustatory and tactile) [13,14]. That is, the consistency of a jam
must maintain its semisolid state when removed from its flask, with a smooth texture and
without resistance to cutting [15,16].

Texture is defined as the manifestation of the rheological properties of the material,
considered an important attribute of food, considering that it affects the process, storage,
handling, and acceptance of the product by the consumer [17]. Knowledge of the rheological
properties of semisolid foods such as jellies is important for process design, quality control
and new product development [18].

Previous research reports the main factors responsible for the rheological behavior of
fruit-derived products as the type of fruit, temperature, and solid content such as sugars,
pectins and fibers [19].

Broomes and Badrie [20] reported an increase in gel firmness and a decrease in jelly
acceptability the higher the added LM pectin content when investigating the effects of
adding low methoxyl (LM) pectin on the physical and sensory properties of light jellies.
The authors mentioned that all sensory attributes (color, odor, appearance, flavor, texture
and general acceptability) were significantly affected by the presence of LM pectin.

In comparison, Basu and Shivhare [21], when investigating the effects of adding
sorbitol on the rheological and sensory properties of mango jam, found that increasing the
content of this sweetener resulted in a decrease in hardness and an increase in the sensory
evaluation of spreadability.

Despite the availability of some studies involving the stability of phenolic compounds
in blueberry jams [22–24], there are few studies on the effect of storage time on the rheolog-
ical properties of this type of product.

In general, the properties can be predicted through a mathematical model. There are
several methods for identifying a great model that can predict such properties.
One successful method in the academic environment is artificial neural networks (ANN).
In this context, technical information provided to the ANNs can be obtained from specific
properties of the involved substances and from the so-called molecular descriptors.

An artificial neural network is a system or information-processing paradigm, com-
posed of highly interconnected processing elements or “neurons”, called artificial (nodes),
that work to solve specific problems. It is inspired from the biological nervous system,
similar to how the brain processes information. In engineering, they greatly resemble
human neurons and are also interconnected, just as their human counterparts (Figure 1).
These ensembles are arranged into interlinked layers along specified architectures. The
most common for the engineering applications is multilayer perception (MLP), which is a
feed forward neural network. It consists of input and output layers with hidden layers in
between. Each layer has several artificial neurons. The outputs from the input layer are fed
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to hidden nodes. Input nodes receive some type of information (stimulus) from the outside
or other neighboring neurons and process it by sending a hidden link and then the output
to neighboring neurons through their related links [25,26].
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The field of molecular descriptors is based on the mass of different theories such as
algebra, graph theory, information theory, computational chemistry, theories of organic
reactivity and physical chemistry. The molecular descriptor is a logic and mathematical
procedure transforming chemical information encoded within a symbolic representation
of a molecule into a useful number (such as code SMILES) or the result of some standard-
ized experiment. They are fundamental tools used in several areas such as chemistry,
pharmaceutical sciences, environmental protection policy, health research, quality control,
etc. [28,29].

Molecular descriptors consider the invariance with respect to labeling and numbering
of the molecule atoms and to the molecule rototranslation, an unambiguous algorithmically
computable definition, and values in a suitable numerical range for the set of molecules. All
of them consider the connectivity of atoms in molecules, molecular size, shape, atom distri-
butions, number of atoms, bond count, atom type, ring count, and molecular weight, etc.
Thus, they are called topological indexes, geometrical, constitutional, and thermodynamic
descriptors, etc., defining the chemical structures [30].

Dragon 7.0 [31] is one of the most important computer programs used to calculate
molecular descriptors of the properties of compounds. Dragon calculates the molecular
descriptors and fingerprints for more than 5000 molecular descriptors. They are divided
into 30 logical blocks, each one divided into subblocks to allow easy retrieval of molecular
descriptors. In this work, it is used to obtain the molecular descriptors of five components of
blueberry jam (water, citric acid, glucose, sucrose, and anthocyanin). Dragon requires tech-
nical information from molecular structure files for calculating the molecular descriptors.
These structure files are previously generated by other specific chemical drawing programs.
The SMILES format file (.smi) is the most used to obtain the molecular descriptors.

The combination of artificial neural networks (ANN) and molecular descriptors (MD)
is a technique recently used for the prediction of physical, chemical, and thermodynamic
properties of pure fluids and solutions or mixtures. The authors have already used this
technique in several research studies [32,33]. SMILES (Simplified Molecular Input Line
Entry System) is a specific, easy, and flexible chemical notation to represent a chemical
structure in a way that can be interpreted by the Dragon [34,35]. The SMILES notation
requires that the user learns a set of rules. SMILES is used to translate a chemical’s
three-dimensional structure (atoms, bonds, aromatic and nonaromatic rings, stereoisomers,
isotopes, etc.) into a type of symbol string that is easily understood by the computer
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software. Other computer programs are available to translate a chemical structure into
SMILES codes [36,37].

The present study includes four blueberry jam formulations based on the Climax
and Powder Blue varieties. They were prepared as conventional and light jams. High
methoxyl pectin (HM) and low methoxyl (LM) pectin were used for gelling and the prod-
ucts were analyzed according to their physical and chemical properties, water activity and
texture properties (hardness and adhesiveness), immediately after processing and after
30, 90 and 120 days to analyze the storage effect on jam characteristics. Considering the
need for studies that correlate storage time with changes in physical and chemical prop-
erties, this study evaluates the influence of storage time on these properties of traditional
and light blueberry jam formulations (Climax and Powder Blue). Experimental data were
submitted to the mathematical simulation. This approach used artificial neural networks,
with which the study was performed based on several configurations to find the optimal
configuration. Independent variables assumed in this work were: time (days), % water,
% citric acid, % glucose, % sucrose, % anthocyanin, % HM pectin, % LM pectin, % xanthan
gum, pH and acidity (%). The jelly molecule is complex, for this reason it was necessary
to study and use the molecular descriptors (Dragon 7.0) as independent variables. In the
mathematical simulation approach, hardness (N), water activity and adhesiveness (mJ)
were assumed as the dependent variables.

2. Materials and Methods
2.1. Materials

For processing into jam, blueberries of the Climax Rabbiteye (most commonly planted
Rabbiteye blueberry cultivar in Brazil, whose bush has green elliptical foliage that produces
large light blue fruits) and Powder Blue Rabbiteye (native to the warm regions of the
southern U.S., medium size with a very light blue color, small dry scars, and average firm-
ness and flavor) varieties were pulped by pulper. Conventional products were processed
according to Santos et al. [38] and Guimarães et al. [24], using the proportion pulp/sugar of
3/2 with HM pectin added at a ratio of 1.0% of pulp quantity. The pulp, added to 30% of the
sucrose amount, was processed in a stainless steel-jacketed cooker until the mixture reached
35◦ Brix (measured in refractometer). Once the consistency was reached, the remaining
sugar with hydrated pectin (in 0.15 kg of water for each 0.008 kg of pectin) was added
and the mixture was kept heated until it reached 67◦ Brix. Synthetic HM pectin and HM
pectin extracted from the passion fruit peel were used for the Powder Blue and Climax
fruit varieties, respectively, since these formulations were the most accepted, according to
Guimarães et al. [24].

For the extraction of pectin from passion fruit peel, the same methodology followed
by Guimarães et al. [24] was applied, where a mixture of passion fruit peel and water,
in a 1:1 ratio, was well homogenized, with the pH adjusted to 3.0 by adding 3% citric
acid. Then, the mixture was heated to a boiling point for 30 min and, after cooling, it was
filtered through a thin cloth and 95% ethanol was added until pectin was precipitated. Such
processing resulted in the extraction of pectin, with a final moisture content of 94.08%.

The preparation of the light formulations followed Granada et al. [8] and Lago
et al. [39] using 50% of the sucrose amount used for conventional jellies and LM pectin
(on 1.5% pulp amount) was added at once in a stainless steel-jacketed cooker until the prod-
uct reached a total solid content corresponding to 37◦ Brix. In this stage, CaCl2 was added
(55 mg per gram of pectin proportion). A mix of xantana and carrageenan gums (1:1 w/w)
was used, on 2% of sucrose weight proportion, to increase the light jam consistency and
coloration.

After processing, the jelly was hot filled in 250 g glass containers, closed with a metal
lid (previously sanitized), inverted for 15 min, and then cooled with cold water and stored
at room temperature.
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2.2. Analytical Methods

The influence of storage on the characteristics of the jams was verified through
the following physicochemical analyses: pH ([40] Method 981.12), acidity ([40] Method
942.15); soluble solids ([40] Method 932.12), nonreducing and reducing sugars [41]; an-
thocyanins [42], water activity (in Alpax 650 AW meter) and textural properties at the
following times: immediately after processing (zero time) and after 30, 90 and 120 days.

For the quantification of anthocyanins, 10 g of the sample were homogenized with
an extracting solution (95% ethanol: 1.5 M HCl—85:15 v/v) and stored for 12 h at 4 ◦C.
After 12 h, the samples were filtered, and the residues washed using the extractor solution
until the complete removal of the pigments. The filtrates were then collected in 100 mL
volumetric flasks, checked with the extracting solution, and left to rest in the absence of
light at room temperature, for two hours, when the absorbance at 532 nm was measured.
Anthocyanin content was estimated as cyanidin-3-gucoside at 532 nm, using a molar
absorptivity coefficient of 26,900 L/cm.mol and molecular weight of 449.2 g/mol [40].

The rheological measurements were performed using a texturometer (Texture Ana-
lyzer, TA-TX2, manufactured by Brookfiels Engineering Laboratories, INC, Middleboro,
Massachusetts, USA) with a 1.0 cm2 probe (TA3/100), 30 mm and pretest, test and posttest
velocities equal to 2, 1 and 1 mm/s, respectively. The texturometer has a load capacity of
4500 g, and is widely used for measuring parameters related to the consistency and/or
texture of the gels. The principle of operation of the texturometer is based on the application
of a load on a sample and this load is applied with adjustable penetration speeds, being
able to operate both for penetration and for traction, through different types of probes,
which are chosen according to the material to be tested and the consistency and/or texture
parameter to be analyzed. The probe used for measurements in gels is cylindrical, with a
diameter of 38 mm, where the test consisted of a penetration of 30.0 mm into the product,
and the necessary force was verified. The results, obtained from the force × time curve,
were calculated by the Texture Expert Software Version 1.22.

The analyzed parameters were hardness (which is related to the physical force, in N
or Newton, of the first bite, that is, to the maximum force applied in the first compression
cycle of the sample) and adhesion (which corresponds to a negative force (in Newton)
resulting from the work required to overcome the attraction between the sample and the
probe; that is, it is a surface characteristic that depends on the combination of adhesion
forces and cohesion). These analyses of the rheological properties (related to the texture
of the product) were performed in triplicate, where the average of the replicates served
as data for statistical analyses and artificial neural network simulation. Both hardness
and adhesiveness have been constantly determined in scientific works to characterize the
rheological behavior of jellies [43–46].

2.3. Statistical Analysis

The analysis of the results referring to the physicochemical and rheological properties
of the product followed the procedure described by Guimarães [16], according to the
following statistical methodologies: (i) Analysis of Variance (ANOVA), which, according to
Ferreira [47], measures the level of significance of the main effects and interactions; and
(ii) Regression analysis, which evaluates the influence of time on changes during storage.
According to ANOVA, the results had no significant effect and were not submitted to the
regression analysis.

2.4. Simulation with Artificial Neural Networks

The physical, chemical and rheological properties of blueberry jam were analyzed to
study the capabilities of artificial neural networks (ANNs) to learn, test and predict the
properties: hardness (N), water activity and adhesiveness (mJ). The main learning variables
for the ANN method developed in this research were the following properties: time (days),
% water, % citric acid, % glucose, % sucrose, % anthocyanin, % HM pectin, % LM pectin,
% xanthan gum, pH and the acidity (%), all considered as independent variables to define
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the physical, chemical and rheological properties of four types of blueberry jam. To
distinguish between the physical and rheological characteristics of the blueberry jams
studied in this work, molecular descriptors were obtained from computational chemistry
(Dragon 7), which are shown in Table 1.

Table 1. Molecular descriptors from Dragon 7.0 used.

Molecular
Descriptors Name Subblock Block

MW Molecular weight

Basic descriptors Constitutional indexes

AMW Average molecular weight

nH Number of Hydrogen atoms

nC Number of carbon atoms

nStructures Number of disconnected structures

Pol Polarity number Distance-based indexes Topological indexes

X1Av Average valence connectivity index of
order 1

Kier–Hall molecular
connectivity indexes

Connectivity indexes
X1SOL Solvation connectivity index Solvation connectivity indexes

XMOD Modified Randic index
Randic-like

connectivity indexesRDCHI Reciprocal distance sum
Randic-like index

P_VSA_p_1 P_VSA-like polarizability, bin 1 Polarizability P_VSA_like descriptors

nHDon Number of donor atoms for H-bonds Basic descriptors Functional group counts

SAtot Surface area (total)

Basic descriptors Molecular propertiesVvdwMG Van der Waals volume for
McGowan volume

PDI Packing density index

In this work, four types of blueberry jams were studied, identified as: FA, FB, FC and
FD. In each blueberry jam, the % water, % citric acid, % glucose, % sucrose or % anthocyanin
is the highest value (in mass percentage). The effect of time on the physical and chemical
properties, based on the ANOVA summary, is shown for the four products, where FA is
jam with synthetic high methoxyl pectin (HM) and Powder Blue fruit variety; FB is light
jam with Powder Blue fruit variety and synthetic low methoxyl amidated (LM) pectin;
FC is jam with high methoxyl pectin (HM) extracted from passion fruit and Climax fruit
variety; and FD is light jam with Climax fruit variety and synthetic low methoxyl amidated
(LM) pectin. To this end, these variables were used to determine the molecular descriptors
according to the mass percentage. First, by using the water, citric acid, glucose, sucrose and
anthocyanin molecules, the SMILES code for each component was found. Second, based on
the SMILES codes, the numeric values for the fifteen molecular descriptors were obtained
using Dragon 7 (Table 1).

Representative molecular descriptors of the jam were obtained using the mass per-
centages of each component for a given time and for each type of blueberry jam using the
following simple equation:

MDBLUEBERRY JAM =
5

∑
1

%COMPONENT ∗MDCOMPONENT (1)

where %COMPONENT and MDCOMPONENT represent the mass percentage and the molecular
descriptor of the component (water, citric acid, glucose, sucrose, and anthocyanin). Molec-
ular descriptors of the blueberry jam were considered as independent variables of % HM
pectin, % LM pectin, % xanthan gum, pH and acidity (%). Dependent variables used in this
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work for the simulation of the physical, chemical and rheological properties of blueberry
jam were hardness (N), water activity and adhesiveness (mJ).

The methodology used for the learning, testing and prediction of the physical, chemical
and rheological properties of the four types of blueberry jams was the same used in
other previous works [34,35]. In this work, a spreadsheet file (MS-Excel) was also used
with six worksheets. The first, third and fifth worksheets for the learning, testing and
prediction steps, respectively, contain the independent variables. The second, fourth and
sixth worksheets for the learning, testing and prediction steps, respectively, contain the
dependent variables. The data and amount of data were different for the first, third and
fifth worksheets. A computer routine, developed in MatLab [48], was adapted for the three
dependent variables [31]. The routine interacts with each worksheet of the spreadsheet file.
More information about these interactions between the spreadsheet and the routine for
each step can be found in our previous works.

3. Results and Discussion
3.1. Experimental

Table 2 shows the calculated F values, where the comparison of the means of these
variables at different times was performed using the ANOVA, where the physicochemical
properties highlighted with * are those that showed significant interaction with time
(i.e., where the Fcal value resulted in a value greater than Ftab).

Table 2. Summary of the ANOVA referring to the physicochemical properties of blueberry jam
during storage.

Product

Fcal

Ftab pH Acidy
Nonreducing

Sugars
(Sucrose)

Reducing
Sugars

(Glucose)
Anthocyanins Soluble

Solids
Water

Activity

FA 3.240 0.034 2.390 1.347 0.0904 1.165 16.468 * 2.286
FB 3.240 0.080 0.065 1.759 0.325 23.439 * 1.429 0.096
FC 3.240 0.222 2.286 0.214 5.912 * 53.650 * 3.516 * 11.636 *
FD 3.240 0.584 1.913 1.755 1.040 41.514 * 0.169 0.973

* are the physicochemical properties that showed significant interaction with time.

The Fcalc value is obtained by dividing the mean square of the factor (obtained by
dividing the sum of squares by the degrees of freedom) by the mean square of the error.
For the determination of Ftab, consult the F distribution table of Snedecor Fx,y,5%, where
x is the degrees of freedom of the factor, y is the degrees of freedom of the error and
the significance or the error of the type α is 5% (probability of the accepted hypothesis
being false).

In other words, Table 2 outlines the influence of time on the physicochemical properties
of the jellies, based on the ANOVA summary, where the Fcalc values were obtained from
the means of the three repetitions, referring to the physical and chemical analyses of the
four different formulations of jam (Supplementary Material: Tables S1 and S2).

Based on the results in Table 2, the regression models at the 5% significance level
were obtained and are shown in Table 3, where x corresponds to the independent variable
(time) and y is the response variable (such as reducing sugars, anthocyanins, soluble solids
or water activity). The adequacy of such models can be examined by the coefficient of
determination (R2). According to the results presented in Table 3, it is verified that the
linear model did not fit properly with the experimental data relating time with the soluble
solids content in the traditional jelly made with fruits of the Climax variety and HM pectin
extracted from the peel of the passion fruit (FC).
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Table 3. Linear regression equations for the physicochemical analyzes of blueberry jam.

Variable Response Product Estimating Model R2

Reducing sugars FC y = 64.79− 0.083x 0.75
Anthocyanins FB y = 53.09− 0.117x 0.92
Anthocyanins FC y = 39.25− 0.136x 0.96
Anthocyanins FD y = 73.52− 0.251x 0.95
Soluble solids FA y = 47.85 + 0.046x 0.89
Soluble solids FC y = 52.11− 0.009x 0.08
Water activity FC y = 0.73− 0.001x 0.85

According to Table 2, it is noted that in all products, there was no significant interaction
of pH and acidity with time, and, in the case of light products, they also did not show sig-
nificant interaction between time and content of soluble solids. However, for conventional
products (FA and FC), it is possible to notice a significant interaction of this property with
time, which points to a possible tendency for the product to crystallize during storage [49].
In the present work, the use of HM synthetic pectin (in the FA) favored the crystallization
of the jelly compared with the pectin extracted from the passion fruit peel (in the CF) since,
in the latter, the level of hydration is very high. The water activity varied significantly
over time only the product prepared with the Climax variety and pectin extracted from
passion fruit (FC), which can be explained by the occurrence of sucrose hydrolysis, which
was confirmed by the increase in the reducing sugar content.

Regarding the reduction in anthocyanin content during storage, the results presented
in Table 2 show that such reduction was not significant, except for the conventional product
made with synthetic HM pectin (FA). According to Guimarães et al. [24], under these
conditions, the anthocyanin content was lower in the jelly immediately after processing
(i.e., at zero storage time) in relation to the other formulations (FB, FC and FD), due to the
longer cooking time and the higher concentration of sucrose. Thus, the lower proportion
of anthocyanins in the FA inhibited possible interactions of the pigment with ascorbic
acid, oxygen or light during storage. In contrast, Howard et al. [23], when analyzing
the effect of storage time on the polyphenolic compounds of blueberry jam, found that
sugar-free products retained higher levels of anthocyanins than traditional jams at the
end of storage. However, in the present work, the light products are not free of sugar
since they were prepared with 50% of the amount of sugar in conventional jellies and,
therefore, this proportion of sugar was sufficient to reduce the stability of the antho-
cyanins due to the production of polymers from degradation products. Additionally, the
results of the anthocyanin content of the jellies produced in the present work corrobo-
rate the experimental results achieved by Melgarejo et al. [50], who, when analyzing the
influence of storage time on pomegranate jelly, found great instability of these phenolic
compounds with time for the product stored at room temperature. Sellappan et al. [51]
classified blueberries and blackberries as rich sources of anthocyanins and, although cook-
ing can reduce the content of these pigments, jam can still be considered a source of this
phenolic compound.

Table 4 shows the influence of time on the rheological parameters and, from these, the
regression models (at a level of 5% of significance) were set, according to Table 5.

Table 4. Summary of ANOVA of the rheological properties of blueberry jam during storage.

Product
Fcal

Ftab Hardness Adhesiveness

FA 3.240 13.083 * 95.474 *
FB 3.240 24.147 * 79.775 *
FC 3.240 0.199 7.234 *
FD 3.240 17.982 * 5.272 *

* are the physicochemical properties that showed significant interaction with time.
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Table 5. Linear regression equations for the rheological (texture) parameters of blueberry jam.

Variable Response Product Estimating Model R2

Hardness FA y = 11.64− 0.027x 0.87
Hardness FB y = 6.37− 0.018x 0.92
Hardness FD y = 6.01− 0.011x 0.90

Adhesiveness FA y = 86.29 + 0.583x 0.78
Adhesiveness FB y = 34.42− 0.146x 0.96
Adhesiveness FC y = 68.41− 0.260x 0.78
Adhesiveness FD y = 33.05− 0.104x 0.56

The results presented in Table 4 show that, in all products, time significantly influenced
adhesiveness, while hardness was not significantly influenced by time when the product
was prepared with the Climax fruit variety and pectin extracted from passion fruit peel.
(i.e., in the FC formulation, the gel remained stable). Regarding hardness in the other
formulations (FA, FB and FD), the negative angular coefficient present in the regression
equations shows a reduction of this property over storage time, possibly due to syneresis.
The same effect was observed by Dias et al. [52] when analyzing the effects of temperature
on changes in the physicochemical and microbiological properties of jam made from the
banana (Musa spp.) peel.

The adhesiveness of the traditional jam prepared from the Powder Blue fruit (FA)
increased significantly during storage, most likely due to the increase in the soluble solids
content, with a consequent decreasing in the moisture content [53]. In contrast, since the
pectin extracted from the passion fruit peel is highly hydrated, it caused the adhesiveness
of the traditional jelly prepared from the Climax fruit (FC) to reduce over time during
storage, which is consistent with Oliveira et al. [11], who, when analyzing the stability of
traditional umbu-caja jam during storage, reported a tendency for adhesiveness to reduce
during storage. For light products, FB and FD presented similar fluidity, showing no effect
of the fruit variety on the texture properties of the jams.

3.2. Prediction
3.2.1. SMILES Code

The SMILES codes generated for the main components present in the blueberry jam,
are shown in Table 6.

Table 6. SMILES code for the main components contained in the blueberry jam.

Component SMILES Code

Water O
Citric acid OC(=O)CC(O)(CC(O)=O)C(O)=O

Glucose OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O

Sucrose OC[C@H]1O[C@H](O[C@]2(CO)O[C@H](CO)[C@@H](O)[C@@H]2O)
[C@H](O)[C@@H](O)[C@@H]1O

Anthocyanin C1CCC(CC1)C2CCC3CCCCC3[O+]2

3.2.2. Molecular Descriptor

Numeric values of the selected molecular descriptors, obtained by using the SMILES
codes (Table 6) and the Dragon 7.0 software, are shown in Table 7.
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Table 7. Numeric values for the molecular descriptors (MD) used in this work.

Molecular Descriptor Water Citric Acid Glucose Sucrose Anthocyanin

MW 18.020 192.140 180.180 342.340 207.260
AMW 6.007 9.150 7.507 7.608 7.676

nH 2 8 12 22 11
nC 0 6 6 12 15

nStructures 1 1 1 1 1
Pol 0 16 16 43 23

X1Av 0 0.264 0.302 0.294 0.297
X1sol 0.000 5.776 5.540 10.807 7.933

XMOD 0.000 38.622 36.964 72.190 48.412
RDCHI 0.000 2.190 2.154 3.143 2.966

P_VSA_p_1 0.000 47.084 82.398 164.795 129.482
nHDon 2 4 5 8 0
SAtot 58.196 301.051 332.384 539.621 259.272

VvdwMG 14.767 87.516 89.375 155.050 114.516
PDI 0.478 0.682 0.631 0.686 1.046

3.2.3. Artificial Neural Networks

To find the most accurate artificial neural network, several network architectures
composed of three and four layers, with different numbers of neurons in each layer, were
tested. The optimum number of layers and neurons was determined by trial and error
because there is no information about the optimum number of layers and neurons for the
calculation of properties for any type of blueberry jam. Furthermore, specific conditions
were imposed, because the architecture had to be simple and results have to have the best
accuracy [27].

Generally, the ANN analysis is made in three basic steps: learning, testing, and
prediction (Figure 2) [29]. In this work, 585 points were used for the learning step, 55 points
were used in testing and 40 points were set aside for the prediction step. In all steps, the
information of each point was different. This was achieved using “random separation”
of the data available in these three groups. It is very important if users want to have a
network with good and acceptable predicting capabilities. Several architectures were used
and run to find the most appropriate for this study. The calculation methodology used was
as follows: first, the configuration with three layers was used and, second, the configuration
with four layers, considering that each layer was composed of different nodes.
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tained [32,54]: feed forw4rd back propagation, the error between iterations was set to
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0.0001, the maximum number of iterations was set to 500 and the computer program
was developed to run 50 times (Levenberg–Marquardt function). Table 8 shows some
characteristics of the AAN model.

Table 8. Some characteristics of the ANN model.

Type of Network Training Algorithm

Feed-Forward Backpropagation
(newff MatLab function)

Levenberg–Marquardt backpropagation
(trainln MatLab function)

The average absolute deviation and the maximum absolute deviation were evaluated
in function of the appropriate selection of data and the best selection of the architecture and
variables. From this choice, an acceptable correlation between the data and the predicted
properties was found in terms of the physical, chemical, and rheological properties of
blueberry jams and of new cases not used for learning or testing.

The optimized architecture for the artificial neural network was composed of four lay-
ers (10-30-10-3): an input layer with 10 neurons, two hidden layers with 30 and 10 neurons,
and an output layer with three neurons. A sigmoid hyperbolic tangent activation function
was used for the two hidden layers, and a linear activation function was used for the
output layer.

The weight matrices and diagonal vectors for the optimized ANN model are listed in the
Supplementary Material (Tables S3–S5) for the interaction between the input layer and the
hidden layer, the first hidden layer and the second hidden layer, and the second hidden layer
and the output layer, respectively. In these tables, wI represents the weight matrix
(thirty lines × ten columns) for the connection between the input layer and the first
hidden layer, wH1−H2 is the weight matrix (ten lines × thirty columns) for the connec-
tion between the first and the second hidden layer, wH2 represents the weight matrix
(three lines × ten columns) for the connection between the second hidden layer and the
output layer, bH1 is the diagonal vector (thirty lines) of the first hidden neuron, bH1−H2
is the diagonal vector (ten lines) of the second hidden neuron, and, finally, b0 represents
the diagonal vector (three lines) of the output neurons. The accuracy of this optimized
configuration was checked for the prediction step. Results, in terms of the lowest maximum
absolute deviations for the three dependent variables, confirm that the configuration for the
run 44 is the best (Supplementary Material: Table S10).

The results, in terms of the maximum absolute deviations for the other analyzed
architectures, such as X-X-3, 3-X-X-3, 5-X-X-3, 7-X-X-3, 10-X-X-3 and 15-X-X-3, are shown in
the Supplementary Material (Tables S6–S11). In these tables, the average absolute deviations
|%∆ hardness (N)|, |%∆ water activity| and |%∆ adhesiveness (mJ)|, for a set of N data,
are defined as:

|%∆ DV| = 100
N

N

∑
1

∣∣∣(DV)pred − (DV)exp
∣∣∣
i

(DV)
pred
i

(2)

where DV represents any of the dependent variables: hardness (N), water activity or
adhesiveness (mJ).

In the learning step, individual absolute deviations between correlated and experimen-
tal values of the physical, chemical and rheological properties of blueberry jam were below
5.0% for most of the data. For the hardness (N), 105 points showed absolute deviations
greater than 2.0%, with 7.85% being the highest value. For water activity, 90 points showed
absolute deviations greater than 3.0% (4.78% for the highest value), and for adhesiveness
(mJ), 120 points showed absolute deviations greater than 2.6% (3.85% for the highest value),
while all the other 270 points gave absolute deviations below 1.0%. The average absolute
deviations for the hardness (N), water activity and adhesiveness (mJ) are 1.8%, 1.5% and
2.1%, respectively. These values indicate that the ANN learned correctly.

Once the learning step was successfully performed and the optimal network architec-
ture was determined, 55 and 40 input data points (independent variables) of the four types
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of blueberry jams, not used in the learning process, were included in the third (testing step)
and fifth (prediction step) worksheets of the excel file, respectively, and were read by the
computer program. For the testing (Table 9) and the prediction step (Table 10), some of the
30 and 19 values tested for the three dependent variables studied are shown.

Table 9. Some average individual deviations for the hardness (N), water activity and adhesiveness
(mJ) for the testing step of the configuration 10-30-10-3.

Blueberry
Jam

Experimental Experimental Testing with ANN % Deviation

Time HM LM xf pH ac Hard wa adhe Hard wa adhe Hard wa adhe

FB 10 0.0 1.2 2 3.77 0.39 6.25 0.90 66.55 6.26 0.90 66.50 0.06 0.02 0.08
FD 78 0.0 1.2 2 3.49 0.44 5.04 0.90 25.07 5.04 0.90 25.13 0.09 0.06 0.24
FB 28 0.0 1.2 2 3.98 0.34 5.92 0.85 60.38 5.93 0.85 60.68 0.27 0.00 0.50
FB 34 0.0 1.2 2 3.99 0.34 5.78 0.85 58.59 5.80 0.85 58.57 0.29 0.03 0.03
FA 92 0.6 0.0 0 3.42 0.57 9.26 0.75 27.57 9.27 0.75 28.91 0.07 0.19 4.63
FB 30 0.0 1.2 2 3.97 0.34 5.88 0.84 59.75 5.92 0.84 60.09 0.70 0.04 0.57
FC 66 0.6 0.0 0 3.25 0.69 6.64 0.78 22.14 6.65 0.78 22.07 0.12 0.01 0.34
FD 84 0.0 1.2 2 3.48 0.44 4.93 0.89 25.34 4.94 0.89 25.32 0.17 0.10 0.08
FA 98 0.6 0.0 0 3.44 0.58 9.02 0.77 25.86 9.02 0.77 26.25 0.13 0.02 1.48
FD 24 0.0 1.2 2 3.51 0.43 5.90 0.91 25.89 5.89 0.91 25.88 0.04 0.05 0.05
FB 62 0.0 1.2 2 3.84 0.38 5.08 0.89 50.45 5.08 0.89 50.52 0.01 0.03 0.13
FA 62 0.6 0.0 0 3.37 0.56 10.38 0.75 49.41 10.38 0.75 49.47 0.02 0.00 0.13
FA 22 0.6 0.0 0 3.32 0.56 11.43 0.75 77.78 11.44 0.75 77.81 0.17 0.05 0.05
FD 92 0.0 1.2 2 3.47 0.44 4.83 0.89 25.30 4.82 0.89 25.30 0.25 0.39 0.03
FC 72 0.6 0.0 0 3.25 0.69 6.74 0.78 21.75 6.75 0.78 21.67 0.04 0.00 0.34
FB 54 0.0 1.2 2 3.91 0.37 5.28 0.88 52.78 5.28 0.88 52.90 0.04 0.02 0.23
FD 112 0.0 1.2 2 3.49 0.40 4.85 0.92 22.13 4.85 0.92 22.11 0.10 0.05 0.10
FD 14 0.0 1.2 2 3.42 0.44 5.91 0.90 30.87 5.90 0.90 30.93 0.02 0.06 0.19
FB 48 0.0 1.2 2 3.95 0.36 5.43 0.87 54.52 5.43 0.87 54.50 0.04 0.01 0.04
FA 94 0.6 0.0 0 3.43 0.57 9.18 0.76 27.00 9.19 0.76 27.97 0.12 0.11 3.48
FB 80 0.0 1.2 2 3.69 0.40 4.63 0.92 45.23 4.61 0.92 44.94 0.26 0.08 0.63

Independent variables: time (days); HM: % HM pectin; LM: % LM pectin; xf: % xanthan gum; pH; ac: acidity (%).
Dependent variables: hard: hardness (N); wa: water activity; adhe: adhesiveness (mJ).

Table 9 shows the average individual absolute deviations for the hardness (N), water
activity and adhesiveness (mJ), tested by the proposed ANN architecture for some selected
points not used in the learning process. In most cases, results for the ANN configuration
show the hardness (N) with absolute deviations below 0.70%, water activity with absolute
deviations below 0.39%, and adhesiveness (mJ) with absolute deviations below 1.48%,
except for two cases where absolute deviations were below 4.63%.

The average absolute deviations for hardness (N), water activity and adhesiveness (mJ),
predicted by the best ANN architecture are shown in Table 10. Data used in this process are
different than those used during the learning and testing steps. In Table 10, the best ANN
model is capable of reproducing the hardness (N), water activity and adhesiveness (mJ) of
the four types of blueberry jams with average absolute deviations between 0.06%, 0.07% and
0.13%, respectively, being that the maximum individual absolute deviation in predicting
the hardness (N) is 0.43%. The water activity is predicted, in all cases studied, with average
absolute deviations from 0.00% to 0.39%, and for the adhesiveness (mJ), the average absolute
deviations vary from 0.00% to 0.43%. In the Supplementary Material, results obtained for
the prediction step of the hardness (N), water activity and adhesiveness (mJ) are plotted for
the six architectures studied (Figures S1–S6). It is important to note from these figures that
only the architecture 10-X-X-3 presents the minimum deviations (less than 0.4%) for the
three dependent variables, when compared to the other architectures. Another comparison
that can be made is through the average of the deviations of the three dependent variables.
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Table 10. Some average individual deviations for the hardness (N), water activity and adhesiveness
(mJ) for the prediction step of the configuration 10-30-10-3.

Blueberry
Jam

Experimental Experimental Predicted with
ANN % Deviation

Time HM LM xf pH ac Hard wa adhe Hard wa adhe Hard wa adhe

FB 22 0.0 1.2 2 3.94 0.36 6.03 0.86 62.48 6.03 0.86 62.53 0.09 0.01 0.09
FD 106 0.0 1.2 2 3.48 0.41 4.84 0.91 23.08 4.84 0.91 23.10 0.05 0.07 0.08
FB 120 0.0 1.2 2 3.63 0.36 4.51 0.91 39.54 4.53 0.90 39.51 0.43 0.77 0.07
FB 78 0.0 1.2 2 3.70 0.40 4.67 0.91 45.81 4.68 0.91 45.68 0.02 0.04 0.28
FB 110 0.0 1.2 2 3.65 0.38 4.47 0.91 40.46 4.47 0.91 40.48 0.05 0.03 0.05
FD 16 0.0 1.2 2 3.44 0.44 5.90 0.90 29.87 5.90 0.90 29.86 0.05 0.01 0.05
FB 42 0.0 1.2 2 3.98 0.35 5.58 0.86 56.26 5.58 0.86 56.24 0.01 0.04 0.04
FB 40 0.0 1.2 2 3.99 0.35 5.63 0.86 56.85 5.64 0.85 56.82 0.04 0.05 0.04
FD 86 0.0 1.2 2 3.47 0.44 4.90 0.89 25.43 4.90 0.89 25.43 0.05 0.06 0.02
FC 6 0.6 0.0 0 3.24 0.69 6.77 0.73 35.89 6.80 0.73 35.87 0.07 0.03 0.06
FD 70 0.0 1.2 2 3.50 0.44 5.18 0.90 24.71 5.17 0.90 24.82 0.06 0.03 0.43
FB 68 0.0 1.2 2 3.79 0.39 4.93 0.90 48.71 4.93 0.90 48.77 0.05 0.02 0.12
FD 104 0.0 1.2 2 3.48 0.41 4.84 0.91 23.40 4.83 0.90 23.40 0.09 0.06 0.02
FC 106 0.6 0.0 0 3.26 0.70 6.96 0.79 19.60 6.96 0.79 19.55 0.00 0.01 0.26
FA 54 0.6 0.0 0 3.37 0.56 10.68 0.75 55.63 10.68 0.75 55.58 0.00 0.01 0.09
FC 80 0.6 0.0 0 3.24 0.69 6.88 0.79 21.22 6.88 0.79 21.24 0.00 0.00 0.07
FD 66 0.0 1.2 2 3.51 0.44 5.26 0.90 24.53 5.26 0.90 24.60 0.06 0.02 0.30
FB 72 0.0 1.2 2 3.75 0.39 4.83 0.90 47.55 4.83 0.90 47.55 0.02 0.04 0.00
FA 100 0.6 0.0 0 3.45 0.58 8.93 0.77 25.29 8.93 0.77 25.40 0.04 0.02 0.42

Independent variables: time (days); HM: % HM pectin; LM: % LM pectin; xf: % xanthan gum; pH; ac: acidity (%).
Dependent variables: hard: hardness (N); wa: water activity; adhe: adhesiveness (mJ).

If the optimal configurations of the six architectures studied are compared (10-10-3,
3-2-20-3, 5-25-30-3, 7-10-20-3, 10-30-10-3 and 15-25-10-3) (Supplementary Material: Figure S7),
the minimum average deviation is minimum for the configuration 10-30-10-3. It can also
be seen that with the three-layer architecture, the average deviation is the highest of all the
architectures.

4. Conclusions

This study demonstrated that longer cooking times and higher amounts of sucrose
in traditional formulations, despite resulting in jellies with less anthocyanin content (com-
pared to light products), can contribute to the inhibition of possible interactions of pigment
(with oxygen, light or ascorbic acid). The inhibition of these interactions resulted in lower
losses of this phenolic compound over the storage period.

The traditional jelly made from Climax fruits and HM pectin extracted from passion
fruit peel (FC) was the most influenced by storage time with respect to physical and
chemical properties. In this case, in addition to the reduction in the anthocyanin content,
the storage time significantly influenced the content of reduced sugars and soluble solids,
as well as water activity.

Regarding the rheological properties, with the exception of the hardness of the FC
product (made from Climax fruits variety and HM pectin extracted from the passion fruit
peel), practically all the texture parameters were influenced by storage time. In this context,
the conventional product prepared with fruits of the Powder Blue variety and synthetic
HM pectin (FA) was the most affected, in terms of hardness and adhesiveness of the final
product.

The variables of time (days), % water, % citric acid, % glucose, % sucrose, % antho-
cyanin, % pectin HM, % Pectin LM, % xanthan gum, pH and acidity (%) were used as
independent variables in an artificial neural network model to predict the physical, chemi-
cal and rheological properties of four types of blueberry jam. Mathematical simulations,
using different architectures of an ANN model, were also implemented using molecular
descriptors as independent variables to predict the physical, chemical and rheological prop-
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erties of blueberry jam. Experimental data composed of 680 points were used (independent
and dependent variables), 585 points were used in the learning step, 55 points were used
in testing and 40 points were set aside for the prediction step. ANN architectures were
developed with three and four layers, and the four-layer architecture was found to be
the most accurate, represented as 10-30-10-3 (10 is the number of nodes or independent
variables in the input layer, 30 and 10 are the numbers of nodes in the hidden layers,
and 3 is the number of nodes or dependent variables in the output layer). Numerical
results were obtained in function of general mean absolute deviations, which were less
than 0.06%, 0.07% and 0.13% for each dependent variable: hardness (N), water activity and
adhesiveness (mJ).

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/foods12152853/s1, Table S1: Means and standard deviations of
the results of the physicochemical analyses of the blueberry jams of the Climax and Powder Blue
varieties during the storage period. Table S2: Texture analysis results of Climax and Powder blue
blueberry jellies. Table S3: Weights and bias of the optimized ANN architecture for the Input—First
Hidden layer connections. Table S4: Weights and bias of the optimized ANN architecture for the First
Hidden layer—Second Hidden layer connections. Table S5: Weights and bias of the optimized ANN
architecture for the Second Hidden layer—Output connections. Table S6: Results obtained for the
three dependent variables for the prediction step for architectures X-X-3. Table S7: Results obtained
for the three dependent variables for the prediction step for architectures 3-X-X-3. Table S8: Results
obtained for the three dependent variables for the prediction step for architectures 5-X-X-3. Table S9:
Results obtained for the three dependent variables for the prediction step for architectures 7-X-X-3.
Table S10: Results obtained for the three dependent variables for the prediction step for architectures
10-X-X-3. Table S11: Results obtained for the three dependent variables for the prediction step for
architectures 15-X-X-3. Figure S1: Architecture X-X-3. Figure S2: Architecture 3-X-X-3. Figure S3:
Architecture 5-X-X-3. Figure S4: Architecture 7-X-X-3. Figure S5: Architecture 10-X-X-3. Figure S6:
Architecture 15-X-X-3. Figure S7: Optimal architectures for three and four layers.
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