
Citation: Arisanti, C.I.S.; Wirasuta,

I.M.A.G.; Musfiroh, I.; Ikram, E.H.K.;

Muchtaridi, M. Mechanism of

Anti-Diabetic Activity from Sweet

Potato (Ipomoea batatas): A Systematic

Review. Foods 2023, 12, 2810.

https://doi.org/10.3390/

foods12142810

Academic Editors: Evandro Leite de

Souza and José Luiz de Brito Alves

Received: 12 June 2023

Revised: 21 July 2023

Accepted: 22 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Review

Mechanism of Anti-Diabetic Activity from Sweet Potato
(Ipomoea batatas): A Systematic Review
Cokorda Istri Sri Arisanti 1,2, I. Made Agus Gelgel Wirasuta 2, Ida Musfiroh 1 , Emmy Hainida Khairul Ikram 3,4,5

and Muchtaridi Muchtaridi 1,5,*

1 Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy,
Universitas Padjadjaran, Sumedang 45363, Indonesia; cokorda22001@mail.unpad.ac.id (C.I.S.A.);
ida.musfiroh@unpad.ac.id (I.M.)

2 Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University,
Kampus Bukit Jimbaran, Bali 80361, Indonesia; gelgel.wirasuta@unud.ac.id

3 Centre for Dietetics Studies, Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor,
Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia; emmy4546@uitm.edu.my

4 Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences,
Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam,
Bandar Puncak Alam 42300, Malaysia

5 Research Collaboration Center for Radiopharmaceuticals Theranostic, National Research and Innovation
Agency (BRIN), Sumedang 45363, Indonesia

* Correspondence: muchtaridi@unpad.ac.id

Abstract: This study aims to provide an overview of the compounds found in sweet potato (Ipomoea
batatas) that contribute to its anti-diabetic activity and the mechanisms by which they act. A com-
prehensive literature search was conducted using electronic databases, such as PubMed, Scopus,
and Science Direct, with specific search terms and Boolean operators. A total of 269 articles were
initially retrieved, but after applying inclusion and exclusion criteria only 28 articles were selected for
further review. Among the findings, four varieties of sweet potato were identified as having potential
anti-diabetic properties. Phenolic acids, flavonols, flavanones, and anthocyanidins are responsible
for the anti-diabetic activity of sweet potatoes. The anti-diabetic mechanism of sweet potatoes was
determined using a combination of components with multi-target actions. The results of these studies
provide evidence that Ipomoea batatas is effective in the treatment of type 2 diabetes.

Keywords: Ipomoea batatas; flavonoid; phenolic acid; anthocyanins; type 2 diabetes; mechanism
of action

1. Introduction

The prevalence of diabetes in 2021 was 537 million people [1]. This number is an-
ticipated to rise by 10.2% by 2030 and 10.9% by 2045 [2]. Diabetes mellitus (DM) and its
complications were responsible for 12.2% of fatalities worldwide in the age group from 20
to 79 years old in 2021 [1].

The most prevalent form of diabetes is type 2, which is characterized by impaired
hepatic glucose metabolism, reduced pancreatic beta cell function, and peripheral insulin
resistance [3]. The American Association of Clinical Endocrinologists (AACE) recommend
α-glucosidase inhibitors as the first-line therapy because they are safe, effective, have a low
incidence of hypoglycemia, and have tolerance in the cardiovascular system [4]; however,
it has been claimed that this medication produces undesirable side effects [5]. Therefore,
an investigation of natural ingredients that are both effective and safe has the potential to
mitigate the risk of type 2 diabetes and its associated complications.

Sweet potato (Ipomoea batatas) is the sixth most grown food worldwide [6]. Its leaves
are renowned for their antioxidant capabilities, surpassing those of ascorbic acid, tea, and
grape seed polyphenols by a factor of 3.1, 5.9, and 9.6, respectively [7]. Remarkably, the
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leaf parts of 40 sweet potato cultivars contain a significant amount of polyphenols ranging
from 7.39 to 14.66 g/100 g dry weight (DW) [8]. Within sweet potato leaves, phenolic acids,
anthocyanins, and caffeoylquinic acid derivatives were identified as contributors to the
observed hypoglycemic effects [9]. Sweet potato leaf ethanol extract obtained from Aan
village, Klungkung, Bali consists of diverse flavonoids, such as anthocyanins, flavonols, and
flavones, whose concentrations in the extract exhibited a linear correlation with the decrease
in blood glucose and malondialdehyde levels [10]. Additionally, the type and concentration
of phytochemicals found in sweet potatoes affect their anti-diabetic action [11]. Despite
numerous studies investigating the anti-diabetic effects and mechanisms of Ipomoea batatas,
comprehensive documentation is lacking. Therefore, this systematic review aims to provide
an overview of the compounds responsible for the anti-diabetic activity and to elucidate
their mechanisms of action. This review will function as a comprehensive database, aiding
other researchers in identifying the subsequent steps for the development of Ipomoea batatas-
based products.

2. Materials and Methods
2.1. Literature Search

The Preferred Reporting Items for Systematic Reviews (PRISMA) served as the foun-
dation for the search approach [12]. The literature search in this systematic review aimed
to find relevant articles about the potential of Ipomoea batatas for type 2 diabetes treatment.
We comprehensively selected electronic databases such as PubMed, Scopus, and Science
Direct. Boolean operators were used to conduct the literature search [13]. The keys included
(1) Ipomoea batatas OR sweet potato AND (2) diabetic OR type 2 diabetes.

2.2. Inclusion Criteria

For an article to be included in this study the anti-diabetic potential, chemical compo-
nents, and mode of action of Ipomoea batatas needed to be covered in research articles based
on in vitro and in vivo experiments. The selected article had to be written in English and
should have evaluated at least the following: (1) Ipomoea batatas, (2) chemical components,
(3) anti-diabetic effects, and (4) mechanisms of action involved.

2.3. Exclusion Criteria

Articles not included in the systematic review were in the form of proceedings; the-
ses; dissertations; review articles; articles not written in English; articles with titles, ab-
stracts, and keywords that did not meet the inclusion criteria; and articles that focused on
other diseases.

2.4. Study Selection

The full text of the relevant published article was then reviewed. The articles that were
chosen to be included in this study were compiled using Mendeley, a reference manager.

2.5. Data Extraction and Management

The articles that met the inclusion criteria were then analyzed, and the data col-
lected included (1) type/cultivar, (2) material used, (3) detected phytochemical compound,
(4) predicted bioactive compound, (5) type of study, (6) dose, (7) action and mechanism of
anti-diabetic activity of Ipomoea batatas.

3. Results
The Literature Search

A literature search was able to identify 269 articles relevant to the topic. After duplica-
tion detection, 41 papers were deleted. Based on the title, abstract, keywords, and inclusion
criteria mentioned above, an additional 198 articles were excluded. Two reports could not
be accessed in the full paper version, so finally 28 papers were discussed in depth in this
review. A flow diagram summarizing the filtering, identification, and reasons for exclusion
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is shown in Figure 1. Data extraction was performed based on the selection of completed
articles, as shown in Table 1.

Foods 2023, 12, x FOR PEER REVIEW 3 of 16 
 

 

3. Results 
The Literature Search 

A literature search was able to identify 269 articles relevant to the topic. After dupli-
cation detection, 41 papers were deleted. Based on the title, abstract, keywords, and inclu-
sion criteria mentioned above, an additional 198 articles were excluded. Two reports could 
not be accessed in the full paper version, so finally 28 papers were discussed in depth in 
this review. A flow diagram summarizing the filtering, identification, and reasons for ex-
clusion is shown in Figure 1. Data extraction was performed based on the selection of 
completed articles, as shown in Table 1. 

 
Figure 1. Flow chart showing the literature search. 

 

Figure 1. Flow chart showing the literature search.



Foods 2023, 12, 2810 4 of 16

Table 1. Study of cultivar variation, chemical components, anti-diabetic activity, and mechanism of action of Ipomoea batatas.

Type/Cultivar Part of Material Detected Phytochemical
Compound Predicted Bioactive Compound Type of

Study Dosage Action and Mechanism Refs.

White sweet potatoes Powdered white sweet potatoes
(Caiapo)

- Acidic glycoprotein In vivo 4 g/day for 12 weeks.

• Decreased HbA1c
• Decreased fasting blood glucose
• Decreased two-hour glucose level
• Lowering mean cholesterol
• Decreased body weight

[14]

White sweet potato
Lyophilized powder of skin or
flesh and combination skin and
flesh aqueous extracts

• 85% Ethanolic extract
• 15% TCA supernatant
• Active fraction
• Ultrasonic fraction

Acidic glycoprotein In vivo 20–2000 mg/kg BW/day
for 3 weeks

• Increased insulin activity
• Ultrasonic fraction decreased body

weight and blood glucose, and
increased blood insulin level compared
to the control group

[15]

White sweet potato
cultivar Simon No. 1

• Freeze-dried 70% leave
ethanolic extract

• Sweet potato leave
phenolic acid (SPLPA)
was purified using
dynamic adsorption and
desorption on AB-8 resin

• Sweet potato leave
flavonoid (SPLF) was
purified using
liquid–liquid extraction

• The phenolic acids were
8 isomeric caffeoylquinic
acids, esculin,
protocatechualdehyde,
CA, 7- hydroxycoumarin
and ethyl caffeate

• The flavonoids were
rutin, hyperoside,
isoquercitrin, astragalin,
quercetin, kaempferol,
diosmetin, jaceosidin,
chrysin, and
pectolinarigenin

• Protocatechualdehyde
• Ethyl caffeate
• Quercetin In vitro (0.25–100 µg)

• Antioxidant activity (DPPH, ABTS, and
FRAP assay)

• α-glucosidase inhibition
• α-amylase inhibition

[16]

Sweet potatoes were
collected from the Hebei
province district in October

40 to 90% ethanolic viscous
leaves extract Flavonoids - In vivo 50–150 mg/kg BW for

28 days

• Decreased in the concentration of
fasting blood glucose (FBG), total
cholesterol (TC), and triglyceride (TG)
in diabetes mellitus mice

• Increased body weight (BW) and serum
high-density lipoprotein cholesterol
(HDL-c) level

[17]

Sweet potatoes were
obtained by a local farmer
(Hebei province) in
autumn

Flavone extracts Flavones - In vivo 25–100 mg/kg BW for
2 weeks

• Decreased in the concentration of
plasma triglyceride (TG), plasma
cholesterol (TC), and weight in
NIDDM rats

• Decreased fasting plasma insulin level,
blood glucose (FBG) level, low-density
lipoprotein cholesterol (LDL-C), and
malondialdehyde (MDA) levels, and
significantly increased the insulin
sensitive index (ISI) and superoxide
dismutase (SOD) level in NIDDM rats

[18]
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Table 1. Cont.

Type/Cultivar Part of Material Detected Phytochemical
Compound Predicted Bioactive Compound Type of

Study Dosage Action and Mechanism Refs.

Sweet potato (family of
clones B 0059-
3) were harvested in July
from the Bandungan,
Central Java Indonesia.

Evaporated petroleum ether
leave extract

• Flavonoids
• Phenolic content - In vivo 0.25–0.8, 2.5 g/kg BW

for 14 days

• Lowest fasting blood glucose among
treatment groups

• Normalizing functional beta cells
[19]

Purple sweet potatoes
(Cultivar Eshu No.12) from
the Institute of Food Crops,
Hubei Academy of
Agricultural Sciences
(Wuhan, China)

• Protein-bound
anthocyanin compounds
(p-BAC-PSP)

• Free anthocyanin
compounds (FAC-PSP)

Total anthocyanin content
and protein

• 13 different anthocyanins
• (cyanidin-3-sophoroside-5-

glucoside, peonidin-3-
sophoroside-5-glucoside)

• 17 protein groups

In vivo

p-BAC-PSP
(500 mg/kg BW)
FAC-PSP
(200 mg/kg BW) with
total anthocyanin
content in
FAC-PSP = 40.74
± 2.88 mgC3G/g

• Improvement of glucose tolerance and
lipid metabolism

• Decreased oxidative stress and liver
damage of diabetic mice

• Induced the expression of
AMP-activated protein kinase (AMPK)
in the liver. With p-BAC-PSP or
FAC-PSP treatment, glucose
transporter type 2 (GLUT2), the protein
levels of glucokinase (GK), and insulin
receptor α (INSR)

• Up-regulated glycolysis key genes,
phosphofructokinase (PFK), pyruvate
kinase (PK)

• Down-regulated gluconeogenic genes,
glucose-6-phosphatase (G6Pase), and
phosphoenolpyruvate carboxykinase
(PEPCK)

[20]

The sweet potato was
purchased from the local
market of Faisalabad
(Pakistan).

Evaporated methanolic extract -

• Glycoprotein
• Anthocyanins
• Alkaloids
• Flavonoids

In vivo 4 g/kg BW/day for
14 days

• Decreased blood glucose level, protein
glycation level, total cholesterol,
triglycerides, and low-density
lipoprotein (LDL)-cholesterol.

• Increased in high-density lipoprotein
(HDL)-cholesterol level

• Beneficial effects on total protein
concentration, albumin, globulin, and
liver enzymes (serum glutamic
oxaloacetic transaminase (SGOT), and
serum glutamic pyruvic transaminase
(SGPT))

[21]

Purple sweet potato leaves
were collected in Luzhu
District, Taoyuan City,
Taiwan

Crude extracts, including
n-hexane- (IBH), 95% MeOH-
(IBM), n-BuOH- (IBB), and
H2O-soluble (IBW) fractions

Twenty-four pure compounds

• Quercetin
3-O-β-D-sophoroside

• Quercetin
• Benzyl β-d-glucoside,
• 4-hydroxy-3

methoxybenzaldehyd
• Methyl decanoate

In vitro

Crude extract
(0.1 mg/mL) pure
compounds
(0.01 mg/mL) were

• Increased glucose uptake, most likely
via activation of Glut4 and regulation
of the PI3K/AKT pathway

[22]
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Table 1. Cont.

Type/Cultivar Part of Material Detected Phytochemical
Compound Predicted Bioactive Compound Type of

Study Dosage Action and Mechanism Refs.

White sweet potato
Tainung No. 10

Lyophilized powder of leave
and tuber -

Flavonoids, terpenoids, tannins,
saponins, glycosides, alkaloids,
steroids, and phenolic acids in tuber

In vivo

Powdered leaf:
5–50 mg/kg BW
Powdered tuber:
100–300 mg/kg BW

• Lowered plasma glucose, insulin,
glucose area under the curve (AUC),
homeostatic model assessment of
insulin resistance (HOMA-IR), alanine
transaminase, triglyceride, and tumor
necrosis factor alpha levels.

• Restoration of the Langerhans’s areas
• Increased expression of

insulin-signaling pathway-related
proteins, phosphorylated insulin
receptor and protein kinase B, and
membrane glucose transporter 4

• Inducing pancreatic islet regeneration
and insulin resistance amelioration

[23]

White sweet potato Powdered white sweet potatoes
(Caiapo) - - In vivo 2–4 g/d for 6 weeks

• Increased insulin sensitivity
• No significant changes were seen in

any of the parameters related to insulin
dynamics: insulin secretion (from
C-peptide), distribution, clearance, and
hepatic extraction remained virtually
the same after the treatment

• Improved metabolic control in type 2
diabetic patients by decreasing insulin
resistance without affecting body
weight, glucose effectiveness, or
insulin dynamics

[24]

Leaves and stems of ‘Suioh’
which was harvested in the
summer of 2009 in
Kumamoto prefecture,
Japan

Lyophilised powder of 60%
ethanolic extract

CQA derivatives
Mono-CQAs
Di-CQAs
Tri-CQAs

Total polyphenols
CQA derivatives g
Mono-CQAs
In-CQAs
Tri-CQAs

In vitro and
in vivo

2 g/kg BW/day for
5 weeks

• Lowered glycemia in type 2
diabetic mice.

• Sweet potato extract and CQA
derivatives significantly enhanced
glucagon-like peptide-1 (GLP-1)
secretion in vitro

• Significantly stimulated GLP-1
secretion and was accompanied by
enhanced insulin secretion in rats,
which resulted in a reduced glycemic
response after glucose injection

[25]
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Table 1. Cont.

Type/Cultivar Part of Material Detected Phytochemical
Compound Predicted Bioactive Compound Type of

Study Dosage Action and Mechanism Refs.

Genotypes raised in the
National Agricultural
Research Center for
Kyushu Okinawa Region
in Japan

Purification of 3,4,5-triCQA
from sweet potato leaves Caffeoylquinic acid derivatives 3,4,5-tri-O-caffeoylquinic acid In vitro 100–500 µM

• Inhibited aldose reductase
• Has the same IC50 value as epalrestat, a

drug used in diabetic neuropathy
[26]

The sweet potato was
grown in Kagawa
Prefecture (Japan)

Powdered white sweet
potatoes (Caiapo)

• Protein
• Carbohydrate
• Fiber

- In vivo 5 g/kg of BW/day for
4 weeks

• Suppressed the increases of fasting
plasma glucose and hemoglobin
A1c levels

• Restored body weight loss during
diabetes

• Increased serum insulin levels after
oral glucose administration tests

• Reduced superoxide production from
leukocytes and vascular homogenates,
serum 8-oxo-2′ deoxyguanosine, and
vascular nitrotyrosine formation of
diabetic rats to comparable levels of
normal control animals

• Depressed stress- and
inflammation-related p38 mitogen
activated protein kinase activity and
tumor necrosis factor-α

• Improvement of pancreatic β-cells

[27]

White-skinned
sweet potato

Powdered white sweet potatoes
(Caiapo) - - In vivo Once daily 4 g for

5 months

• Reduced HbA1c, fasting glucose and
triglycerides

• Insulin remained unchanged.
• Increased adiponectin
• Decreased fibrinogen, no significant

changes
• Improvement of insulin sensitivity

[28]
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Table 1. Cont.

Type/Cultivar Part of Material Detected Phytochemical
Compound Predicted Bioactive Compound Type of

Study Dosage Action and Mechanism Refs.

Fresh orange-fleshed (Jishu
No. 16) sweet potato

Ethanolic fraction of distillated
water extract

• Trans-N-(p-
coumaroyl)tyramine

• Trans-N-
feruloyltyramine

• Cis-N-feruloyltyramine
• 3,4,5-tricaffeoylquinic

acid
• 3,4-dicaffeoylquinic acid
• 3,5-dicaffeoylquinic acid
• 4,5-dicaffeoylquinic acid
• 4,5-

feruloylcourmaoylquinic
acid

• Caffeic acid
• Caffeic acid ethyl ester
• 7-hydroxy-5-

methoxycoumarin
• Quercetin-3-O-α-D-

glucopyranoside,
• 7,3′-dimethylquercetin
• Rhamnetin
• Indole-3-carboxaldehyde

Glucosidase inhibition:

• Trans-N-(p-
coumaroyl)tyramine

• Trans-N-feruloyltyramine,
• Cis-N-feruloyltyramine
• 3,4,5-tricaffeoylquinic acid
• Caffeic acid ethyl ester
• 7-hydroxy-5-

methoxycoumarin
• Indole-3-carboxaldehyde

Antioxidant:

• 3,4,5-tricaffeoylquinic acid
• 3,4-dicaffeoylquinic acid
• 3,5-dicaffeoylquinic acid
• 4,5-dicaffeoylquinic acid
• 4,5feruloylcourmaoylquinic

acid
• Caffeic acid
• Quercetin-3-O-α-D-

glucopyranoside
• 7,3′-dimethylquercetin

In vitro 50 µL • α-glucosidase inhibition
• Antioxidant activity [29]

The white-skinned
sweet potato Arabinogalactanprotein arabinogalactanprotein arabinogalactanprotein In vivo 20 mg/kg BW of for

8 weeks

• Reduced plasma glucose levels
• Changed insulin, TG, NEFA, leptin,

and adiponectin levels
• Lowering Hs-CRP
• Suppressed the secretion of

aggravating factors in insulin resistance
• Improvement in insulin sensitivity

[30]

White-skinned
sweet potato

White-skinned sweet
potato powder

Three fractions of WSSP (≤10,
10–50, and >50 kDa - In vivo 180–230 g/kg BW for

6–7 weeks

• Reduced blood glucose levels
• Improvement of glucose tolerance
• Activated the phosphorylation of Akt,

activating insulin signaling in the
skeletal muscles and liver

• The ≤10 kDa fraction considerably
reduced blood glucose levels per the
OGTT and ITT.

• Suppressed gluconeogenesis and the
expression of key enzymes in
hepatocytes by the >50 kDa fraction

• Improved insulin sensitivity in skeletal
muscles in normal rats

[31]
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Table 1. Cont.

Type/Cultivar Part of Material Detected Phytochemical
Compound Predicted Bioactive Compound Type of

Study Dosage Action and Mechanism Refs.

Caiapo®

• A mixture of the
pulverized tuber of
Caiapo and the mulberry
leaf

• Powder mixture of the
pulverized skin of Caiapo
and the powdered loquat
leaf extract

- - In vivo

• Caiapo
(357 mg/kg BW)
and the mulberry
leaf powder
(143 mg/kg BW)

• Pulverized skin of
Caiapo
(194 mg/kg BW)
and the powdered
loquat leaf extract
(6 mg/kg BW)

• Inhibited increase in blood glucose
levels in the glucose loading test

• Lowering blood glucose levels at
glucose tolerance test

• Reduction in blood glucose
concentration

[32]

Purple sweet potato 96% ethanol (96%) and tartaric
acid extract - - In vivo 0.5 cc • Reduced high glucose levels in mice [33]

White-skinned sweet
potato

Lyophilized powder of
distillated water tuber extract - - In vivo 400 mg/kg BW/day

• Lowered blood glucose
• Increased ACRP30 expression, which is

a homolog of adiponectin
• Low tumor necrosis factor-a expression
• A greater tendency expression of the

β-3-adrenoreceptor
• Improved action to the abnormal

secretion of adipose tissue
adipocytokines

[34]

Purple sweet potato Commercial anthocyanin

• Cyanidin-3- glucoside
• Cyanidin-3,5-glucoside
• Cyanidin-3-rutinoside
• Peonidin-3-glucoside

• Cyanidin-3- glucoside
• Cyanidin-3,5-glucoside
• Cyanidin-3-rutinoside
• Peonidin-3-glucoside

In vitro and
in silico 2.5, 5, 10, and 15 mg/mL • Inhibited porcine pancreatic α-amylase [35]

White sweet potato
(Simon No. 1)

Tuberous ethanol extract,
ethyl-acetate and water fraction

• The total
phenolic content - In vitro 5–250 µg/mL

• Increased the uptake of fluorescence
glucose analogue
(2-[N-(7-nitrobenz-2-oxa-1,
3-diazol-4-yl)
amino]-2-deoxy-d-glucose, and
2-NBDG) in a dose-dependent manner

• Enhanced glucose uptake through
activation of phosphorylation of IR
(pIR), IRS-1 (pIRS-1) and Akt (pAkt)
involved in PI3K (phosphatidylinositol
3-kinase)/protein kinase B (Akt)
pathway, and up-regulated glucose
transporter 4 (GLUT4) expression
in myotubes.

[36]
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Table 1. Cont.

Type/Cultivar Part of Material Detected Phytochemical
Compound Predicted Bioactive Compound Type of

Study Dosage Action and Mechanism Refs.

Purple sweet potato
powder cultivar Eshu
No. 8

Anthocyanins
• Diacylated and

mono-acylated
anthocyanins

• Diacylated anthocyanins In vitro and
in vivo 160 mg/kg BW

• Inhibited α-amylase and α-glucosidase
• Decreased blood glucose level [37]

Orange-fleshed sweet
potato cultivar ‘Bophelo’

Aqueous-methanol extracts of
tuber (OSPT) and leave (OSPL)

• Flavonoids
• Phenolic acid

Flavonoids

• Hyperoside
• Catechin
• Iso-orientin
• Kaempferol
• Orientin
• Quercetin
• Routine
• Vitexin
• Phenolic acid
• Caffeic acid
• isovanillic acid
• Protocatechuic acid
• Vanyllic acid

In vitro
500 µg/mL and
100 µg/mL of OSPT
and OSPL

• Increased intracellular GSH level,
reduction in the level of malonaldehyde
improvement in the intracellular
antioxidant of the insulin resistant cells

• Modulated the expression levels of the
type 2 diabetes-associated genes
glucose transporter 4 (glut4), nuclear
respiratory factor 1 (nrf1), myocyte
enhanced factor 2A (mef2a), Carnitin
palmitoy ltransferase 1 (cpt1), and
Acetyl-CoA carboxylase 2 (acc2)

[38]

Korean purple sweet
potato
(ShinzamiSaeungbone9,
Saeungyae33,
Gyeyae2469, and
Gyeyae2258)

15 individual anthocyanins

• 3-caffeoyl-p-
hydroxybenzoyl-
sophoroside-5-glucoside

• Peonidin 3-caffeoyl
sophoroside-5-glucoside

• Peonidin 3-(6′′-caffeoyl-
6′′′-feruloyl

• Sophoroside)-5-glucoside
• Peonidin 3-caffeoyl-p-

hydroxybenzoyl-
sophoroside-5-

• Cyanidin 3-caffeoyl-
phydroxybenzoylsophoroside-
5-glucoside

• Peonidin
3-(6′′-caffeoyl-6′′′-feruloyl
sophoroside)-5-glucoside

In vitro and
in vivo 80 mg/kg BW

• Antioxidant capacity (DPPH
and ABTS)

• Inhibited glucose secretion in HepG2
cells (hepatic gluconeogenesis).

• Significantly lower blood glucose levels
1 and 2 h post-administration

[39]
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4. Discussion
4.1. Varieties of Ipomoea Batatas Developed for Type 2 Diabetes

Sweet potatoes are distinguished by their color, width, thickness, shape of the leaves,
size, and color of the skin and flesh of the tubers [40]. Research on the anti-diabetic activity
includes white [14–16,23,24,28,30–32,34], purple [20,22,33,35,37,39], orange [29,38], and
Japanese green sweet potatoes [25]. Understanding of the Ipomoea batatas varieties that
are proven to exhibit anti-diabetic activity will facilitate the identification and isolation of
specific bioactive components that can serve as starting molecules or models for creating a
novel synthetic medicine [41,42].

4.2. Types and Concentrations of Phytochemicals Contained in Ipomoea batatas Which Have
Anti-Diabetic Effects

The leaves of white sweet potato have a total polyphenol concentration of 6.4 g/100 g,
which is greater than that of the orange varieties as well as Japanese green sweet pota-
toes [16,25,38]. The plant parts used also have an impact on the variation in polyphenol
concentration. The total polyphenols in the leaves are more significant when compared to
the tuber [43]. Green leaves have higher total phenolics than green or purple leaves [44].
Different maturity stages of sweet potato plants exhibit a significant amount of variation
in flavonols and phenolic acids of the sweet potato leaves. The quantity of bioactive com-
pounds rises as the plant ages [45]. Anthocyanin concentrations are more significant in
purple than orange tuber sweet potatoes. The concentration of phenolic acids in purple
tubers is ten times greater than that in orange and white sweet potatoes [46].

4.3. Mechanism of Action Chemical Components in Ipomoea batatas for Anti-Diabetic Effects
4.3.1. Protects the Integrity of Islet Structures and Modulates Pancreatic β Cell Function

β-pancreatic cells are responsible for insulin secretion. Therefore, maintaining the islet
structure of pancreatic β cells is essential for treating diabetes. The results of the pancreatic
histopathological analysis showed that the administration of white sweet potato ethanol
extract at doses of 80 and 150 mg per kg BW of mice for four weeks could improve the islet
structure by enlarging the islet area and inhibiting apoptosis of β-pancreatic cells [47,48]. In
addition, administering purple sweet potato extract containing anthocyanins and protein
at a dose of 200 mg/kg body weight reduced oxidative stress and pancreatic damage in
diabetic mice [20]. However, a larger dose of cloned B 0059-3 sweet potato extract obtained
from Bandungan, West Java, Indonesia was required to protect β-pancreatic cells [19]. The
ability to protect and modulate the function of pancreatic β polyphenols contained in
ethanol extracts of white and purple sweet potato is more significant than resveratrol and
polyphenols contained in Ginger (Zingiber officinale) rhizome [49,50]. The administration of
polyphenol or protein-bound anthocyanins and free anthocyanins induced the expression
of AMP-activated protein kinase (AMPK) in the liver, significantly increased levels of
glucose transporter type 2 (GLUT2), glucokinase protein (GK), and insulin receptor α

(INSR) [20,51].

4.3.2. Increased Insulin Secretion and Improved Insulin Sensitivity

In vivo studies have demonstrated that the administration of Caiapo, glycoprotein
acid, and 3,4,5-tricaffeoylquinic results in an increased insulin sensitivity [15,24,25,52].
The effectiveness of Caiapo as an antidiabetic was proven by conducting clinical trials on
30 patients given Caiapo 4 g/day orally, once a day, in the morning before meals. Caiapo
administration led to a significant reduction in HbA1c compared to the placebo group
after 2 and 3 months of the administration. In addition, from the study’s results, it was
found that the administration of Caiapo caused the average fasting blood glucose level
to reach 126 mg/dl, weight loss, and a significant decrease in postprandial glucose levels
and cholesterol [14]. The caffeoylquinic derivative significantly increased glucagon-like
peptide-1 (GLP-1) secretion [25,53] and glycoprotein acid increased modulation of insulin
sensitivity (adiponectin) [28,54]. Similar results were obtained from the administration
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of polyphenols, such as phenolic acids and flavonoids, from the sweet potato leaf extract,
with an improved insulin sensitivity through activation of insulin signaling in the skeletal
muscles [23]. Flavonoids, such as methyl decanoate, have the potential to increase insulin
sensitivity in skeletal muscles [22,55–57]. The increased insulin sensitivity is due to Akt
phosphorylation, thereby activating insulin signals in the skeletal muscles of phosphatidyli-
nositol 3-kinase/protein kinase B/glucose transporter 4 (PI3K/AKT/GLUT-4) and liver
(PI3K/AKT/GSK-3β) [23,31,47,58–60].

4.3.3. Regulation of Carbohydrate Metabolism

Ethyl caffeate has the ability of α-glucosidase inhibition with an IC50 value
6.77 times lower than acarbose. Flavonoids, such as kaempferol, quercetin, hyperoside,
isoquercitrin, and rutin, also showed a stronger inhibition of α-glucosidase compared to
acarbose [16]. Phenethyl cinnamates, 3,4,5-tricaffeoylquinic acid, quercetin-3-O-glucosidase,
and 7-hydroxy-5-methoxy coumarin also showed excellent α-glucosidase inhibitory activ-
ity, where the IC50 values were much lower than that of the positive control acarbose. The
increasing number of caffeoyl groups bound to quinic acid and methoxylation in flavonol
compounds led to increased inhibition of α-glucosidase [29,61]. The inhibitory ability of
α-glucosidase by phenolic acids and flavonoids is possible through binding enzyme surface
amino acid residues, thereby altering the conformation of α-glucosidase, distorting the ac-
tive site, and decreasing enzyme activity [53]. Ethyl caffeate, quercetin, hesperetin, luteolin,
rutin, catechins, and cyanidin-3-glucoside also have an α-amylase inhibitory action [16,62].
Anthocyanins and protein-bound anthocyanins were able to control the expression of
genes essential in glycolysis, such as phosphofructokinase (PFK) and pyruvate kinase (PK),
and suppress the expression of gluconeogenic genes glucose-6-phosphatase (G6Pase) and
phosphoenolpyruvate carboxykinase (PEPCK) [20].

4.3.4. Suppression of Glucose Production in the Liver

Glycoproteins may play a role in suppressing gluconeogenesis [31,63,64]. The admin-
istration of acetylated anthocyanins cyanidin, 3-caffeoyl-p-hydroxybenzolsophoroside-5-
glucoside, peonidin, and 3-caffeoyl sophoroside-5-glucoside have been shown to decrease
glucose production in HepG2 cells. However, only cyanidin reduced the fasting blood
glucose levels to 186–205 mg/dL after 1 and 2 h of in vivo administration [39].

4.3.5. Inhibition of Glucose Transport in the Intestine and Increased Uptake of
Tissue Glucose

The administration of hexane and a water fraction of purple sweet potato leaf methanol
extract increased the glucose uptake in 3T3-L1 adipocyte tissue and rat hepatocytes.
Flavonoids, such as quercetin, have a more remarkable glucose uptake ability than other
components such as 3-O-β-D-sophoroside, benzyl β-D-glucoside, and 4-hydroxy-3-methoxy
benzaldehyde. The ability of some of these active compounds in glucose uptake in
adipocyte tissue is most likely through the activation of GLUT4 and regulation of the
phosphatidylinositol 3-kinase (PI3K)/AKT pathway [22,65]. However, the administration
of 5% white sweet potato powdered leaves increased the expression of p-IR, p-AKT, and
M-GLUT4, but had no significant effect on the PI3K/AKT pathway [23].

4.3.6. Repair of Insulin Signals and Glycogen Synthesis

There was an increase in mRNA insulin receptor (IR) expression, insulin receptor
substrate 2 (IRS-2), PI3K, and AKT genes, and a decrease in glycogen synthase kinase-3β
(GSK-3β) expression with white sweet potato extract administration [16]. This proved
that these extracts promote liver glycogen synthesis by activating the insulin-mediated
PI3K/AKT/GSK-3β signaling pathway [47,66]. Moreover, the administration of ethyl ac-
etate fraction from white sweet potato ethanol extract and flavonoids contained in the water
fraction of the extract was able to activate GLUT4 and regulate the phosphatidylinositol
3-kinase (PI3K)/AKT pathway [36].
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4.3.7. Inhibition of Inflammatory Pathways

The commercial administration of anthocyanins from purple sweet potato decreased
the expression of cyclooxygenase-2, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6.
Anthocyanins can inhibit the phosphorylation induction/activation of extracellular signal-
regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein
kinase (MAPK) [67]. The administration of 5 g/kg BW/day Caiapo significantly decreased
p38 MAPKs and TNF-α production in diabetic rats. These findings imply that the inhibition
of oxidative stress and the creation of pro-inflammatory cytokines, followed by an increase
in the pancreatic cell mass, are what cause the hypoglycemic effects of Ipomoea batatas [27].

5. Conclusions and Perspective

Sweet potatoes that have the potential to be anti-diabetic include white, purple, or-
ange, and Japanese green sweet potatoes. Phenolic acids, flavonols, flavanones, and
anthocyanidins are responsible for the anti-diabetic activity of sweet potatoes. The anti-
diabetic mechanism of sweet potatoes is determined by a combination of components with
multi-target actions.

Given the increasing prevalence of diabetes, it is crucial to conduct research on the
utilization of unstudied sweet potato varieties and cultivars. Additionally, implementing
quality control measures to ensure product uniformity during production is imperative for
medicinal purposes. A comprehensive approach must be taken to ensure consistency in
the quality, efficacy, and safety of sweet potatoes as an anti-diabetic treatment. Although
numerous studies have described the benefits of the bioactive compounds of Ipomoea batatas
as anti-diabetic agents, there are still some limitations. The type and concentration of the
bioactive compounds of Ipomoea batatas are influenced by many factors such as genetics, the
time of harvest, the post-harvesting process, and the extraction process. Standardization
and quality control are necessary to guarantee the consistency of the type and amount of
bioactive components responsible for the anti-diabetic effect. Standardized, validated, and
characterized herbal drugs, along with their identified biochemical compounds, can be used
in clinical trials and, subsequently, could contribute to advancements in the pharmaceutical
industry. The quality marker (Q-marker) concept emphasizes the relationship between
chemical components, manufacturing processes, and the efficacy and safety of herbal
medicines. Similarly, there needs to be an accurate determination of the pharmacokinetics
and dynamics of polyphenols contained in sweet potatoes. Therefore, further studies are
required to determine the Q-marker for quality control of Ipomoea batatas as an anti-diabetic
agent, as well as to investigate the bioavailability of its active components.
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