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Abstract: Foodborne diseases and outbreaks are significant threats to public health, resulting in
millions of illnesses and deaths worldwide each year. Traditional foodborne disease surveillance
systems rely on data from healthcare facilities, laboratories, and government agencies to monitor and
control outbreaks. Recently, there is a growing recognition of the potential value of incorporating
social media data into surveillance systems. This paper explores the use of social media data as an
alternative surveillance tool for foodborne diseases by collecting large-scale Twitter data, building
food safety data storage models, and developing a novel frontend foodborne illness surveillance
system. Descriptive and predictive analyses of the collected data were conducted in comparison
with ground truth data reported by the U.S. Centers for Disease Control and Prevention (CDC). The
results indicate that the most implicated food categories and the distributions from both Twitter
and the CDC were similar. The system developed with Twitter data could complement traditional
foodborne disease surveillance systems by providing near-real-time information on foodborne ill-
nesses, implicated foods, symptoms, locations, and other information critical for detecting a potential
foodborne outbreak.

Keywords: social media data; text mining; machine learning; bid data; foodborne diseases; Twitter;
PostgreSQL; foodborne outbreaks

1. Introduction

Foodborne diseases, arising from the consumption of contaminated food, pose a signif-
icant public health concern and have a severe impact on human well-being. Annually, these
diseases contribute to a staggering number of illnesses worldwide, leading to 600 million
cases and 420,000 deaths [1,2]. Foodborne disease surveillance plays a crucial role in safe-
guarding human health by monitoring and controlling foodborne diseases and identifying
potential foodborne threats. Traditionally, foodborne disease surveillance has relied on
data from various sources, such as healthcare facilities, laboratories, and government agen-
cies. The CDC’s National Outbreak Reporting System (NORS), Foodborne Disease Active
Surveillance Network (FoodNet), and PulseNet are several foodborne disease surveillance
tools used in the United States [3–5]. For instance, NORS plays a crucial role in detecting
and responding to public health threats by monitoring and reporting foodborne outbreaks
in a timely manner. Local health departments report individual cases or clusters of illnesses
to NORS, providing demographic information, symptoms, onset dates, exposure history,
laboratory results, and other relevant details. Then, NORS integrates data from various
sources, performs data analysis, and generates outbreak reports summarizing the findings,
including the implicated pathogens, affected population, geographic distribution, potential
sources of contamination, and recommended control measures. NORS has been utilized
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as an important data source in the United States for evaluating the impact of foodborne
outbreaks and the associated risk factors with both statistical analysis and data mining
methods [6–8].

Recently, with the advent of social media and the widespread use of online platforms,
there is a growing recognition of the potential value of incorporating social media data into
foodborne disease surveillance systems [9–14]. Social media platforms, such as Twitter,
Facebook, and Instagram, have become popular channels for individuals to share their
thoughts, experiences, and daily activities. These platforms have also become spaces
where users express their health concerns, seek health-related information, and discuss
experiences with diseases and outbreaks [10]. As a result, social media data offer a unique
opportunity to tap into the collective wisdom and sentiments of the public, providing
valuable insights into public health trends, behaviors, and perceptions. For example,
Twitter and Yelp were utilized as tools for detecting unreported cases of foodborne illnesses
in various local public health departments across the United States. These methods were
implemented and evaluated in cities including Chicago, New York, and Las Vegas [11–14].

However, analyzing social media data poses significant challenges due to their in-
herent noise, ambiguity, and unstructured nature. Social media platforms provide users
with the freedom to express themselves in an unrestricted manner. Consequently, the
data generated on these platforms often contain informal language, abbreviations, slang,
misspellings, grammatical errors, and sentiment-laden expressions [15]. This “noisy” na-
ture of social media data makes it challenging to extract meaningful insights and gain
an accurate understanding from the vast volumes of information available. The analysis
of unstructured social media data necessitates the application of advanced natural lan-
guage processing (NLP) technologies. NLP encompasses a set of computational techniques
that enable machines to understand, interpret, and generate human language. It aims to
bridge the gap between human communication and machine understanding, facilitating
the extraction of valuable information from unstructured text. NLP technologies have
made significant advancements in addressing the challenges associated with noisy social
media data. These technologies encompass a wide range of techniques, including text
preprocessing, tokenization, part-of-speech tagging, named entity recognition, sentiment
analysis, topic modeling, and language generation [16]. These advancements have enabled
researchers and practitioners to extract meaningful patterns, sentiments, and insights from
social media data, supporting various applications such as opinion mining, trend analysis,
social network analysis, and public sentiment tracking. In the field of public health, typical
NLP techniques have been widely employed to identify potential cases of public threats
such as COVID-19 diseases [17]. More recently, the language model BERTweet, a variant of
BERT (Bidirectional Encoder Representations from Transformers) was trained to classify
relevant Foodborne illness cases from Twitter data [9]. Also, state-of-the-art single- and
multi-task deep learning models such as RoBERTa and BiLSTM have been trained to extract
critical entities related to foodborne illnesses on Twitter data [18].

This paper aims to explore the potential use of social media data in developing an
alternative foodborne disease surveillance system. We discuss the methodologies, tools,
and techniques employed in leveraging Twitter data and NORS data for detecting and
evaluating foodborne illnesses in the United States, including natural language processing,
machine learning, database system, and website development. Furthermore, we address
the challenges associated with the use of social media data. By examining the current
surveillance system and the potential of social media, this paper highlights the oppor-
tunities for developing a complementary and enhanced foodborne disease surveillance
system that can leverage the real-time and wide-reaching nature of social media data. One
practical advantage of such a system would be the substantial reduction in labor required
from experts in the field as they would no longer need to manually examine and extract
essential information from social media. Instead, the system could automatically transform
the unstructured social media data into a more organized format, focusing on important
entities crucial for identifying potential outbreaks of foodborne illnesses.
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Overall, the major contributions of this work include the following:

1. We collected a large volume of Twitter data related to foodborne illness and trans-
formed them into a more structured dataset with critical 3W information (PostgreSQL)
using the pretrained machine learning models.

2. We compared the descriptive statistics of foodborne illness cases from Twitter data
and official NORS data in multiple aspects (numbers, place, time, and food) and built
predictive models for predicting cases based on Twitter and/or NORS data.

3. We developed the frontend applications based on the two sources of data for assisting
the early detection of foodborne outbreaks.

2. Related Work

Foodborne diseases pose significant risks to public health, necessitating effective
surveillance systems for early detection, rapid response, and prevention. Traditional
foodborne disease surveillance systems primarily rely on data from healthcare facilities,
laboratories, and government agencies. However, these systems face challenges such
as underreporting, time delays, and limited coverage. The Internet serves as a valuable
data source for disease surveillance, enabling the early detection of food safety and food
fraud hazards and more digitalized supply chain management in the food industry [19,20].
Across the globe, various information systems have been developed to leverage internet
data retrieval and text mining techniques, aiming to enhance early warning capabilities. For
example, a Japanese group constructed a database of food safety documents by conducting
keyword searches on Google web pages [21]. In Singapore, the National Environment
Agency collaborated with IBM Research to establish the Food Safety Information System
(FoodSIS), which proactively monitors emerging food safety issues by extracting relevant
content from the Internet [22]. In China, a database system of food safety information
was created in 2016, utilizing food safety news from media and government websites
to facilitate the efficient assessment of food safety concerns [23]. Additionally, a food
fraud reporting system MeDISys-FF was developed based on an infrastructure MeDISys
that gathers worldwide reports published in the media [24]. In addition to utilizing
online Internet information, applications that allow the positive reporting of unpleasant
dining experiences can provide another means to record food safety issues. For example,
iwaspoisoned.com is an online platform where individuals can voluntarily report incidents
of foodborne illnesses they have experienced. Users can provide details about the location,
date, symptoms, and the suspected food establishment. The platform aggregates and
analyzes these data, providing insights into detecting potential foodborne outbreaks [25].
Database data and text-based data reported in more structured formats are major data
sources of these related foodborne illness surveillance systems.

In recent years, the widespread use of social media platforms has provided an oppor-
tunity to explore alternative approaches to foodborne disease surveillance. Social media
data are notorious for their unstructured characteristics and for being difficult to analyze,
and they have been widely recognized as a potential data source for the early detection of
public health threats [10]. In the food safety field, classification models were typically used
to identify relevant foodborne illness incidents from Twitter posts [11–14]. These studies
present basic NLP methods and evidence showing that Twitter can provide additional
insights into detecting foodborne illness cases in a sentence classification perspective. In
addition to sentence-level classification to detect if a tweet indicates a foodborne illness, our
previous work constructed token-level models to extract valuable information from Twitter
with high accuracy [18]. The availability of what, where, and when (3W) information about
people’s everyday lives on social media websites has proven to be valuable for predicting
the flu well before outbreaks formally have been reported by the CDC and for preventing
public health crises [26]. In the food safety scenario, what refers to the content of the
tweet describing a potential food safety incident, e.g., the food product and the complaints
about it, while where and when encode the geolocation and the timeframe of the incidents,
respectively. Therefore, critical entities such as food and symptoms related to a food safety
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incident and the location of the incidents are valuable information for detecting a potential
foodborne outbreak and, thus, should not be ignored in the full use of Twitter data. The
potential value of social media data food safety surveillance has been explored in many
previous studies [10–15]. Detecting foodborne illness cases via sentence-level text classi-
fication models and further examinations of whether positive-predicted incidences can
indicate foodborne outbreaks with the assistance of epidemiologists are the major focuses
of these work. In contrast, our work, for the first time, attempts to develop a system that
can automatically transform the unstructured social media data to a more structured format
with 3W information such as food, symptoms, and location, which is essential for the
examination of its relevance to foodborne outbreaks.

3. Materials and Methods
3.1. Data Collection and the Pipeline

Twitter allows researchers who are interested in studying historical tweets to visit its
full archive data using Twitter academic accounts. A pipeline (Figure 1) was created to
perform the following tasks in sequence. First, to extract the tweets most likely related
to foodborne illness, the Tweetkit Python package was used to create a specific query to
run on the Twitter archive. The Tweetkit package was used to fit it into our pipeline and
was customized to collect all the data associated with a tweet [27]. The pipeline efficiently
retrieves tweets from the Twitter archive that may indicate a case of foodborne illness
with keywords query: ‘#foodpoisoning’, ‘#stomachache’, ‘food poison’, ‘food poisoning’,
‘stomachache’, ‘vomit’, ‘puke’, ‘diarrhea’, ‘the runs’, ‘nausea’, ‘stomach cramp’, and ‘nau-
seous’. An automatic system was set up to collect the tweets cyclically in 24 h intervals.
Appropriate data cleaning was conducted before data were inserted into the PostgreSQL
database. Specifically, only tweets in English were retained for further processing. Du-
plicates, retweets, and tweets with less than four tokens were removed. Then, the tweets
were normalized by converting user mentions and URL links to @USER and HTTPURL,
respectively. Since emojis may carry important information, we keep emojis and translate
the icons into text strings. These tweets are passed through a refined BERTweet machine
learning model, which will provide a prediction on whether the tweet indicates a foodborne
illness case.
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Finally, the tweets and their predictions are then fed into the PostgreSQL database with
a simple schema to store raw tweets and the attributes, including symptom and food entities
extracted by the machine learning model. Tweets related to foodborne illnesses from 2017
to 2021 and with geolocations in the U.S. were collected and stored in the database. The
ground truth data of real-world foodborne outbreaks collected from the National Outbreak
Reporting System (NORS, https://www.cdc.gov/nors/index.html, accessed on 24 June
2023) were employed to see if the trends observed in the Twitter data correlate to real-world
data. The data that are available for each outbreak include year, month, state, primary
mode, etiology, serotype or genotype, etiology status, setting, illnesses, hospitalizations,
and deaths.

3.2. Information Extraction and Language Models

Twitter provides a unique opportunity to monitor food-safety-related incidents and
the temporal and spatial patterns in a near-real-time fashion. Besides time, location, and
information embedded in the structured meta data, other valuable information may be
expressed in the unstructured text such as the name of the restaurant, grocery store, or
dish. In recent years, deep learning models, especially pretrained BERT [28] models, are
promising techniques for sequence tagging and named entity recognition (NER) tasks
due to their ability to learn from the context surrounding the words in a sequence. In
our previous study, single- and multi-task deep learning models including BERTweet [29],
RoBERTa [30], BiLSTM [31], and MGADE [32] were trained to extract the critical entities
related to foodborne illnesses on Twitter data [18]. As shown in Table 1, important 3W
information, such as food, location, and symptoms, that was useful for the analysis of a
foodborne illness was extracted by the deep learning models and inserted in the database.
The 3W properties together form the core entities essential for food safety outbreak moni-
toring and prevention. However, with social media data being big data, meaning a high
volume of data arriving with high velocity, it is not realistic to conduct reliable analysis on
the fly. Instead, we propose to merge the 3W information extracted from external sources
into a unified data manager.

Table 1. Examples of tweets processed by the language model.

Tweets Food Location Symptom

Biggest regret of #2013: eating sushi from safeway’s
refrigerated section #foodpoisoning
#projectilevomitingatmidnight

Sushi Safeway #projectilevomitingatmidnight

@USER I ate like 3 tacos from jackinbox lastnight in
when I woke up my stomach been hurting every since
I think I got food poison

Tacos Jackinbox Stomach been hurting

@USER @USER Bought family meal in Rustenburg on
my way from mahikeng last weekend. All four of us
had severe cramps and running stomach the next day.
Went to the doctor and was told it’s food poisoning.
Never again will I buy nandos HTTPURL

Nando’s meal Rustenburg Severe cramps,
running stomach

Panda Express got me@and three others sick. Orange
chicken.. we all ate different day at different locations!!
What the hell is going on? I get my days off till next
week. Thanks Panda I am hoping I don’t puke on
my staff [EMOJI_disappointed_face]
[EMOJI_disappointed_face][EMOJI_disappointed_face]
#pandaexpress #foodsafety #foodpoisoning

Orange chicken Panda Express Sick, puke

https://www.cdc.gov/nors/index.html
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3.3. Data Storage

A PostgreSQL database was designed to store a large amount of data that could be
easily and quickly accessed and queried for our frontend visualizations. The PostgreSQL
database allows to store complex data types such as the array data type, which is necessary
to store the ‘symptoms’, ‘locations’, ‘foods’, and ‘others’ values as these all contain multiple
entity words per tweet. All the collected data were stored in one table named “final_tweets”.
This table contains 13 fields, each of which we consider useful for querying on our frontend.
For each of these fields, the appropriate data type was selected so that it would be most
efficient for frontend use, as well as database storage. The ‘id’ is the primary key of our
final_tweets table as it uniquely identifies each individual tweet. Querying the count of
ids can be used to obtain tweet counts based on different factors. The ‘id’ column was
stored as the bigint type as the integer type is ideal for storing ids in a database. The
‘tweet_text’ column is stored as the text type as we found issues trying to limit storage
to a certain number of characters. The ‘created_at’ column stores tweet timestamps as
PostgreSQL timestamps so that we can easily query data over certain time intervals. The
‘city’, ‘state’, and ‘username’ columns are all of the varchar type to ensure that these values
will be stored without taking up too much space in our database. The ‘sentence_pred_prob’
is stored as a numeric type as it has many digits past the decimal point that we want
to preserve for precision. As mentioned above, the ‘foods’, ‘symptoms’, ‘locations’, and
‘others’ entities were stored as text arrays. Lastly, ‘longitude’ and ‘latitude’ were both stored
as numeric types in order to account for precision. These 13 fields were retained in our
database in order to optimize queries for our frontend. The columns here contain data that
are needed to display frontend visualizations or conduct simple statistics. Before inserting
the collected data into the database for frontend use, the data were filtered through the
pretrained machine learning model so that the tweets having a sentence prediction equal to
1/indicating foodborne illness were included in the database used for frontend interface
design. In order to perform a later analysis of all the tweets that ran through the collection
process, we implemented raw data storage that contains all the fields initially collected
from Twitter.

3.4. Frontend Website Design

Next.js (Next.js, 2023), a frontend web development framework based on the React
(React, 2023) library, was chosen as our frontend web framework. The implementation
of Next.js in the system ensures a responsive user interface and boosts system perfor-
mance [33]. An additional benefit of Next.js is that it leverages the React frontend library
with well-supported React resources online. D3.js (D3.js, 2023) was chosen as our visu-
alization library for the frequency graph, which is widely used and considered by many
to be an industry standard. Mapbox (Mapbox, 2023), a hosted GIS mapping service, was
used to connect the tweets in our database to an interactive Mapbox map, allowing users
to interact with the tweets on a US map. Finally, Tailwind CSS (Tailwind CSS, 2023) was
chosen as our UI library as it is small and efficient while also providing significant flexibility
to developers.

4. Results and Discussion
4.1. Statistics of the Collected Data

The pipeline collected around 430,000 geolocated tweets from the beginning of 2017 to
the end of 2022, with 110,000 predicted as positive for indicating a foodborne illness and
stored in the database after passing through a machine learning model. Figure 2 shows the
number of tweets by state and the number of tweets per capita. This visualization allows
one to visually compare the difference between the number of identified tweets related to
foodborne illnesses from each state to the number of tweets by state per capita.
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One potential issue is the repeated author IDs, which could possibly mean a Twitter
account dedicated to foodborne illnesses and tweet foodborne illness information rather
than instances of foodborne illness, such as news from the CDC, FDA, and associated
agencies. This would not be an issue if the tweets were relevant to the research goal, for
example, the official Twitter account iWasPoisioned posts about instances of foodborne
illness and, thus, should not be excluded from the raw data. Luckily, in searching samples of
collected tweets for repeated author IDs, the only one that did appear to come up often was
the iWasPoisioned Twitter account, so we deemed that not an issue since the iWasPoisoned
Twitter account most likely offers cases of foodborne illness. After filtering the raw data
with the pretrained machine learning model, less than 0.5% (less than 300 tweets) of over
56,000 tweets collected from iWasPoisoned were predicted not related to a case of foodborne
illness. Meanwhile, the other repeated Twitter accounts had few tweets that were predicted
to be related to foodborne illness incidences, posing little impact on the whole dataset.

4.2. Descriptive Analysis

As mentioned above, the pretrained machine learning model extracted ‘food’ entities
from a tweet. These entities are identified words that most likely indicate a key food or
ingredient. To evaluate the validity of the collected tweets in indicating real foodborne
illness cases, the most frequent food entities extracted by the model were compared with
the real food vehicles involved in historical foodborne outbreaks reported in the NORS
data (Figure 3). As shown in Figure 3a, the top 15 most frequent food entities that appeared
in the Twitter database from 2017–2021 were “chicken”, “sandwich”, “salad”, “cheese”,
“pizza”, “fries”, “burger”, “burrito”, “shrimp”, “beef”, “steak”, “rice”, “bacon”, “meat”,
and “cream”. “Chicken” was identified as the most frequent food entity mentioned in
tweets related to foodborne illnesses, with a much greater number compared to the rest of
the other food entities. Figure 3b shows the top 15 most frequent food entities mentioned
in the NORS reports of foodborne outbreaks from 2017–2021. It was noticed that some of
the food entities retrieved from NORS were not necessarily food related. As shown in the
figure, “chicken” also appears as the most frequent food entity in the NORS reports. The
other frequent food entities are “oysters”, “salad”, “fish”, “beef”, “tuna”, “rice”, “pork”,
“sandwich”, “turkey”, “milk”, “cheese”, “lettuce”, “beans”, and “pizza”. Aquatic products
appeared more frequently in the NORS reports than in the Twitter dataset. It should be
noticed that less frequent food entities such as “lettuce”, “sprouts”, “tomato”, and “lettuce”
belong to the category of “vegetable”. Therefore, a comparison of food categories might
help to identify patterns in related food entities.
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Figure 3. Graph displaying the 15 most frequent food entities found in collected tweets (a) and NORS
data (b) from 2017–2021.

The Interagency Food Safety Analytics Collaboration (IFSAC) Food Categorization
Scheme, used to categorize food sources of contamination in an outbreak and perform
attribution analysis, was created by three federal agencies: the CDC, the U.S. Food and
Drug Administration (FDA), and the U.S. Department of Agriculture Food Safety and
Inspection Services (USDA-FSIS) [34]. Based on the IFSAC category, identified foods are
labeled into one of seventeen categories. Identified foods causing historical foodborne
outbreaks were labeled with an IAFSC category in the NORS database. Because of the sheer
number of unique food entities, grouping the foods into general categories for analysis
could provide valuable insight. In order to automatically convert foods extracted from
the Twitter data into corresponding categories, we hand-labeled the top 250 common food
entities into their respective categories based on the IFSAC Food Categorization Scheme.
These labels were put into a JSON dictionary, which could be easily read to convert entities
to categories.

Figure 4 shows the total percentage breakdown of each category for Twitter data and
NORS data. The volume of food categories between the NORS dataset and the Twitter
dataset were relatively similar, which is promising for an accurate comparison. The per-
centage of meat, poultry, fruit/nut, and fish categories in both datasets are close to each
other, while NORS reports include a significantly higher percentage of vegetable category
than Twitter data. Dairy, oil/sugar, and grain/bean are mentioned more frequently than in
the NORS data after the percentage breakdown. Researchers have found similar trends in
the percentage composition of food categories in comparison to Yelp data and NORS data
collected in 2006–2011 [35]. With a small number of expert evaluation (labeling) data, the
pretrained machine learning model combined with an automatic category conversion mech-
anism found that foods implicated in foodborne illness posts on Twitter correlated with
foods implicated in reports from the CDC, indicating that Twitter posts could complement
traditional surveillance systems by providing near-real-time information on foodborne
illnesses and the implicated foods.
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4.3. Outbreak Forecasting Model

Traditional epidemiological models for outbreak forecasting include a variety of regres-
sion models, such as timeseries regression, multivariant regression for the prediction of case
numbers, and multinomial regression, binary regression, and logistic regression for the pre-
diction of a class, whether it is high/low risk classification or multiple outbreak/sporadic
outbreak classification. In the foodborne illness outbreak forecasting scenario, ARIMA and
Gaussian distribution models were used to conduct a timeseries analysis of foodborne
outbreaks and predict potential outbreaks in India [36]. In addition to timeseries regression
models, a multivariate regression model was used for the prediction of cases of Salmonella
enterica serovar Enteritidis infections [37]. Regression models can also be regarded as
classification models when the goal of prediction turns out to be a class. For example, a
multinomial regression model was used to predict caustic pathogens of food poisoning
cases for assisting outbreak analysis and forecasting possible pathogens of contamination
in future outbreaks [38]. A binary regression model was used to classify the restaurants
as high risk or low risk from Twitter data [13]. Logistic regression, a classical statistical
regression model in which the response variable is categorical, was employed to classify
Yelp reviews indicating “sick” and “multiple outbreaks” [14]. Similarly, logistic regression
was used as the classification method in this study with the goal to classify the response
variable as “outbreak”–1 or “not outbreak”–0 by establishing a threshold. The threshold
is the number of cases in a specific time period, a hyperparameter that could be modified
during modeling. This is useful to show days that have more than a certain number of
cases, indicating when the higher risk times are. The logistic regression equation resembles
the linear regression equation; however, it generates a value ranging from 0 to 1. The
predicted label is determined by its proximity to either end of the range.

The accuracy score of a logistic model indicates the number of correct predictions
made by the model. When Twitter data was used in combination with the NORS data, a
best accuracy score of 0.82 was obtained on the validation set (Figure 5a). Since NORS
data are not as timely as Twitter Data, we further explored the effectiveness of the models
built upon tweets only. For tweets-only modeling, the best accuracy score reached 0.8 on
the validation set (Figure 5b), which shows a great chance of employing tweets to detect
significant foodborne illness outbreak. In previous studies, classifiers with performance
scores of 0.74, 0.84, and 0.64 were obtained with fairly good performance when predicting
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foodborne illness cases [13,14]. The logistic regression model appears to be quite accurate in
predicting whether the NORS and/or Twitter cases will exceed 200. A foodborne outbreak
was defined as an event when two or more people get sick after eating the same food [39].
While most of the foodborne outbreaks are sporadic and only affect a small number of
people, some outbreaks especially multistate outbreaks often cause a significant number of
sicknesses. The prediction model helps to identify time periods with high risk (prediction
with the class “outbreak” or “1”) when the number of cases exceeds the threshold.
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4.4. Frontend Visualizations

A website was created, and made publicly available at https://usda-foodpoisoning.
wpi.edu/, to communicate the results of our work to both policymakers and ordinary
people. Three core data sections are included, each presenting a different aspect of our data
collection. Firstly, on the homepage, the user is presented with several meaningful statistics
about the collected tweets. The number of tweets collected, the number of tweets that we
are more than 90% confident were correctly identified by the algorithm, the number of
tweets with symptom entities, the number of tweets with city information, and the top
five states ranked by tweet volume (California, Texas, Florida, New York, and Ohio) are
displayed. The purpose of this section is to provide quick insights into the extensive volume
of analyzed tweets. Secondly, a graph is displayed illustrating the top symptoms over time
for key foodborne illness-related keywords. This data is generated in real time from the
backend since users will have the ability to filter results within a specific time range. An
increase in frequency for a particular keyword could indicate the occurrence of a foodborne
illness event. Finally, an interactive map (as shown in Figure 6) was created to display the
geocoordinates of every tweet containing location data in a heatmap format. Dark shades
of red indicate areas with the highest number of tweets about foodborne illness, while teal
represents areas with lower foodborne illness tweet density. The heatmap is essential for
accurately presenting the data due to a limitation in the geodata received. In most cases, the
geolocation provided is a city or neighborhood rather than exact coordinates matching the
original user’s location when tweeting. Consequently, multiple tweets often have the same
geocoordinates, which are plotted on the map. For instance, there are over 700 tweets with
the same coordinates in different parts of New York City. Fortunately, with the properties
of the heatmap, an increase in tweets with the same coordinates results in a darker shade
of red, enabling users to identify significant tweet volume associated with a specific point.

https://usda-foodpoisoning.wpi.edu/
https://usda-foodpoisoning.wpi.edu/
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Figure 6. The heat map of tweets within the U.S.

In addition to zooming in and out, the map supports click actions. When a user taps
on a location with tweet density, a popup appears displaying the text of the tweet. This
feature is crucial in validating the results of our model as users can independently assess
the raw text of a tweet that we have predicted to be related to foodborne illness and form
their own conclusion about the accuracy of our prediction. In cases in which multiple
tweets are stacked on top of each other, users are provided with “Previous” and “Next”
buttons to cycle through potentially hundreds of tweets associated with a specific location.

The Python module Dash [40] was used to create an interactive dashboard (Figure 7)
for the frequency module. An interactive dashboard was developed using the React
framework. The focus of this prototype was on interactivity, allowing users to modify
date ranges and explore specific food groups. The interactivity of the dashboard can be
advantageous for both government officials and the general public, enabling them to gain
a broader perspective on potential foodborne illness outbreaks.
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4.5. Limitations and Implications of This Study

In this study, we successfully developed a pipeline that efficiently collects Twitter data,
identifies foodborne illness cases, and extracts important information from those cases.
The frontend visualizations also allow users to observe the geographical distribution of
potential foodborne illnesses on a map, compare common food categories associated with
historical outbreaks (based on CDC data) with the categories detected in positive-predicted
cases from Twitter data, and track changes over time for different food categories in both
datasets. Overall, our system offers an alternative approach to assist foodborne outbreak
surveillance. However, there are certain limitations to consider, as described below.

Firstly, our data collection mechanism relies on sampling Twitter data, which means
that a substantial number of foodborne illness cases may be missing from our dataset.
Additionally, we only include tweets with geolocation information, which may result in
the exclusion of informative tweets lacking such location data. Secondly, when classify-
ing newly captured tweets, we utilize a pre-trained RoBERTa model that demonstrates
high accuracy but may have limited generalization capability for unseen tweets. Finally,
the existence of multiple platforms can lead to redundancies. For instance, websites like
iwaspoisoned.com offer similar functionalities to our system but utilize structured data pos-
itively reported by users. In contrast, we aimed to leverage the largely untapped potential
of unstructured data from social media, although a portion of our collected data does come
from that platform. Despite appearing redundant, these two types of systems can comple-
ment each other in various ways, such as evaluating model performance using different
datasets and leveraging diverse data sources to assist in identifying foodborne outbreaks.
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5. Conclusions

A unique information system for monitoring foodborne illnesses was developed by
utilizing social media data. By converting unorganized Twitter data into a structured
database format that includes essential 3W information, the system enables more efficient
detection of potential outbreaks related to foodborne illnesses. One valuable outcome of
implementing this system is the reduction in human efforts needed to extract important
entities from social media, while also preparing for the analysis of large-scale datasets in
close to real time. Through descriptive and predictive analyses of the collected data, we
compared the results with the ground truth data reported by the CDC. Our study revealed
that the most implicated food categories and their distributions in both the Twitter dataset
and NORS dataset were similar. This finding suggests that our system, developed using
Twitter data, can complement traditional surveillance systems by providing near-real-time
information on foodborne illnesses and implicated foods. The outbreak forecasting model
also helps to identify time periods with a high risk of causing a certain number of cases.
By incorporating social media data into surveillance systems, we can benefit from timely
and comprehensive insights, allowing for quicker responses and more effective control
measures. In conclusion, this research highlights the potential of social media as a valuable
resource for enhancing foodborne disease surveillance and ultimately improving public
health outcomes. The continued exploration and refinement of such alternative surveillance
approaches will contribute to the development of more robust and proactive systems for
monitoring and preventing foodborne diseases.

Author Contributions: Conceptualization, D.T., H.F. and E.R.; methodology, J.L., A.L., T.K., L.R.,
R.H. and D.Z.; data collection and curation, J.L., A.L., T.K., L.R., R.H. and D.Z.; writing—original
draft preparation, D.T., R.H. and D.Z.; writing—review and editing, H.F. and E.R.; visualization, R.H.
and D.Z.; supervision, E.R.; project administration, H.F. and E.R.; funding acquisition, H.F. and E.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Agriculture and Food Research Initiative (AFRI) award
No. 2020-67021-39133 from the U.S. Department of Agriculture (USDA) National Institute of Food
and Agriculture (NIFA).

Data Availability Statement: The datasets collected and analyzed during the current study are
available from the corresponding author on reasonable request. In addition, we would like to clarify
that the terms of service of Twitter were followed in order to collect the data used in our study. The
CDC dataset of historical foodborne outbreaks would be available from a CDC National Outbreak
Reporting System (NORS) data request application by emailing the NORS Dashboard mailbox.

Acknowledgments: We express our gratitude to the Worcester Polytechnic Institute MQP team,
including Katy Hartmann, Isabel Alvarado Blanco Uribe, John Carroll, David Leandres, Cole Noreika,
and Nick Vachon, for their valuable assistance in processing the tweet data, conducting model
validation, and designing the frontend interface. We specially thank the NORS team for sharing
the NORS dataset and Cassie Hartley’s kind assistance with data interpretation and answering
any questions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness

acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [CrossRef]
2. Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; De Silva, N.R.; Gargouri, N.;

et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS
Med. 2015, 12, e1001923. [CrossRef] [PubMed]

3. Swaminathan, B.; Barrett, T.J.; Hunter, S.B.; Tauxe, R.V.; Force, C.P.T. PulseNet: The molecular subtyping network for foodborne
bacterial disease surveillance, United States. Emerg. Infect. Dis. 2001, 7, 382–389. [CrossRef]

4. Jones, T.F.; Scallan, E.; Angulo, F.J. FoodNet: Overview of a decade of achievement. Foodborne Pathog. Dis. 2007, 4, 60–66.
[CrossRef]

https://doi.org/10.3201/eid1701.P11101
https://doi.org/10.1371/journal.pmed.1001923
https://www.ncbi.nlm.nih.gov/pubmed/26633896
https://doi.org/10.3201/eid0703.017303
https://doi.org/10.1089/fpd.2006.63


Foods 2023, 12, 2769 14 of 15

5. White, A.E.; Tillman, A.R.; Hedberg, C.; Bruce, B.B.; Batz, M.; Seys, S.A.; Dewey-Mattia, D.; Bazaco, M.C.; Walter, E.S. Foodborne
illness outbreaks reported to national surveillance, United States, 2009–2018. Emerg. Infect. Dis. 2022, 28, 1117–1127. [CrossRef]

6. Thakur, M.; Olafsson, S.; Lee, J.S.; Hurburgh, C.R. Data mining for recognizing patterns in foodborne disease outbreaks. J. Food
Eng. 2010, 97, 213–227. [CrossRef]

7. Sanchez, E.; Simpson, R.B.; Zhang, Y.; Sallade, L.E.; Naumova, E.N. Exploring risk factors of recall-associated foodborne disease
outbreaks in the United States, 2009–2019. Int. J. Environ. Res. Public Health 2022, 19, 4947. [CrossRef]

8. Simpson, R.; Sallade, L.; Sanchez, E.; Zhang, Y.; Naumova, E. Analysing foodborne illness outbreak severity in the USA, 2009–19.
Lancet Glob. Health 2022, 10, S5. [CrossRef]

9. Tao, D.; Zhang, D.; Hu, R.; Rundensteiner, E.; Feng, H. Crowdsourcing and machine learning approaches for extracting entities
indicating potential foodborne outbreaks from social media. Sci. Rep. 2021, 11, 21678. [CrossRef]

10. Paul, M.J.; Dredze, M. Social monitoring for public health. In Synthesis Lectures on Information Concepts, Retrieval, and Services;
Morgan & Claypool: San Raferl, CA, USA, 2017; Volume 9, pp. 1–183.

11. Harris, J.K.; Mansour, R.; Choucair, B.; Olson, J.; Nissen, C.; Bhatt, J. Health department use of social media to identify foodborne
illness—Chicago, Illinois, 2013–2014. Morb. Mortal. Wkly. Rep. 2014, 63, 681–685.

12. Harrison, C.; Jorder, M.; Stern, H.; Stavinsky, F.; Reddy, V.; Hanson, H.; Waechter, H.; Lowe, L.; Gravano, L.; Balter, S. Using online
reviews by restaurant patrons to identify unreported cases of foodborne illness—New York City, 2012–2013. Morb. Mortal. Wkly.
Rep. 2014, 63, 441–445.

13. Sadilek, A.; Kautz, H.; DiPrete, L.; Labus, B.; Portman, E.; Teitel, J.; Silenzio, V. Deploying nEmesis: Preventing foodborne illness
by data mining social media. Ai Mag. 2017, 38, 37–48. [CrossRef]

14. Effland, T.; Lawson, A.; Balter, S.; Devinney, K.; Reddy, V.; Waechter, H.; Gravano, L.; Hsu, D. Discovering foodborne illness in
online restaurant reviews. J. Am. Med. Inform. Assoc. 2018, 25, 1586–1592. [CrossRef] [PubMed]

15. Tao, D.; Yang, P.; Feng, H. Utilization of text mining as a big data analysis tool for food science and nutrition. Compr. Rev. Food Sci.
Food Saf. 2020, 19, 875–894. [CrossRef]

16. Zhai, C.; Massung, S. Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining; Morgan &
Claypool: San Rafael, CA, USA, 2016.

17. Al-Garadi, M.A.; Yang, Y.C.; Sarker, A. The Role of Natural Language Processing during the COVID-19 Pandemic: Health
Applications, Opportunities, and Challenges. Healthcare 2022, 10, 2270. [CrossRef]

18. Hu, R.; Zhang, D.; Tao, D.; Hartvigsen, T.; Feng, H.; Rundensteiner, E. TWEET-FID: An Annotated Dataset for Multiple Foodborne
Illness Detection Tasks. arXiv 2022, arXiv:2205.10726.

19. Waldner, C. Big Data for Infectious Diseases Surveillance and the Potential Contribution to the Investigation of Foodborne Disease in
Canada; National Collaborating Centre for Infectious Diseases: Winnipeg, MB, Canada, 2017.

20. Subramaniyam, M.; Halim-Lim, S.A.; Mohamad, S.F.B.; Priyono, A. Digital supply chain in the food industry: Critical success
factors and barriers. In Proceedings of the 2021 IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM), Singapore, 13–16 December 2021; pp. 404–410.

21. Maeda, Y.; Kurita, N.; Ikeda, S. An early warning support system for food safety risks. In New Frontiers in Artificial Intelligence:
Joint JSAI 2005 Workshop Post-Proceedings; Springer: Berlin/Heidelberg, Germany, 2006; pp. 446–457.

22. Kate, K.; Chaudhari, S.; Prapanca, A.; Kalagnanam, J. FoodSIS: A text mining system to improve the state of food safety in
singapore. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New
York, NY, USA, 24–27 August 2014; pp. 1709–1718.

23. Chen, S.; Huang, D.; Nong, W.; Kwan, H.S. Development of a food safety information database for Greater China. Food Control
2016, 65, 54–62. [CrossRef]

24. Bouzembrak, Y.; Steen, B.; Neslo, R.; Linge, J.; Mojtahed, V.; Marvin, H.J.P. Development of food fraud media monitoring system
based on text mining. Food Control 2018, 93, 283–296. [CrossRef]

25. Quade, P.; Nsoesie, E.O. A platform for crowdsourced foodborne illness surveillance: Description of users and reports. JMIR
Public Health Surveill. 2017, 3, e7076. [CrossRef]

26. Aramaki, E.; Maskawa, S.; Morita, M. Twitter catches the flu: Detecting influenza epidemics using Twitter. In Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27–31 July 2011; pp. 1568–1576.

27. Tweetkit. Tweetkit 0.2.8. Available online: https://pypi.org/project/tweetkit/ (accessed on 24 February 2023).
28. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
29. Nguyen, D.Q.; Vu, T.; Nguyen, A.T. BERTweet: A pre-trained language model for English Tweets. arXiv 2020, arXiv:2005.10200.
30. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
31. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.
32. Wunnava, S.; Qin, X.; Kakar, T.; Kong, X.; Rundensteiner, E. A dual-attention network for joint named entity recognition and

sentence classification of adverse drug events. In Proceedings of the Findings of the Association for Computational Linguistics:
EMNLP 2020, Online, 16–20 November 2020; pp. 3414–3423.

https://doi.org/10.3201/eid2806.211555
https://doi.org/10.1016/j.jfoodeng.2009.10.012
https://doi.org/10.3390/ijerph19094947
https://doi.org/10.1016/S2214-109X(22)00134-6
https://doi.org/10.1038/s41598-021-00766-w
https://doi.org/10.1609/aimag.v38i1.2711
https://doi.org/10.1093/jamia/ocx093
https://www.ncbi.nlm.nih.gov/pubmed/29329402
https://doi.org/10.1111/1541-4337.12540
https://doi.org/10.3390/healthcare10112270
https://doi.org/10.1016/j.foodcont.2016.01.002
https://doi.org/10.1016/j.foodcont.2018.06.003
https://doi.org/10.2196/publichealth.7076
https://pypi.org/project/tweetkit/


Foods 2023, 12, 2769 15 of 15

33. Lazuardy, M.F.S.; Anggraini, D. Modern front end Web Architectures with React. Js and Next. Js. Res. J. Adv. Eng. Sci. 2022,
7, 132–141.

34. Richardson, L.C.; Bazaco, M.C.; Parker, C.C.; Dewey-Mattia, D.; Golden, N.; Jones, K.; Klontz, K.; Travis, C.; Kufel, J.Z.; Cole, D.
An updated scheme for categorizing foods implicated in foodborne disease outbreaks: A tri-agency collaboration. Foodborne
Pathog. Dis. 2017, 14, 701–710. [CrossRef] [PubMed]

35. Nsoesie, E.O.; Kluberg, S.A.; Brownstein, J.S. Online reports of foodborne illness capture foods implicated in official foodborne
outbreak reports. Prev. Med. 2014, 67, 264–269. [CrossRef]

36. Bisht, A.; Kamble, M.P.; Choudhary, P.; Chaturvedi, K.; Kohli, G.; Juneja, V.K.; Sehgal, S.; Taneja, N.K. A surveillance of food
borne disease outbreaks in India: 2009–2018. Food Control 2021, 121, 107630. [CrossRef]

37. Rojas, F.; Ibacache-Quiroga, C. A forecast model for prevention of foodborne outbreaks of non-typhoidal salmonellosis. PeerJ
2020, 8, e10009. [CrossRef] [PubMed]

38. Inoue, H.; Suzuki, T.; Hyodo, M.; Miyake, M. Evaluation of multinomial logistic regression models for predicting causative
pathogens of food poisoning cases. J. Vet. Med. Sci. 2018, 80, 1223–1227. [CrossRef]

39. Greig, J.D.; Ravel, A. Analysis of foodborne outbreak data reported internationally for source attribution. Int. J. Food Microbiol.
2009, 130, 77–87. [CrossRef]

40. Dash 2.11.1. 2014, pp. 1709–1718. Available online: https://pypi.org/project/dash/ (accessed on 30 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1089/fpd.2017.2324
https://www.ncbi.nlm.nih.gov/pubmed/28926300
https://doi.org/10.1016/j.ypmed.2014.08.003
https://doi.org/10.1016/j.foodcont.2020.107630
https://doi.org/10.7717/peerj.10009
https://www.ncbi.nlm.nih.gov/pubmed/33240587
https://doi.org/10.1292/jvms.17-0653
https://doi.org/10.1016/j.ijfoodmicro.2008.12.031
https://pypi.org/project/dash/

	Introduction 
	Related Work 
	Materials and Methods 
	Data Collection and the Pipeline 
	Information Extraction and Language Models 
	Data Storage 
	Frontend Website Design 

	Results and Discussion 
	Statistics of the Collected Data 
	Descriptive Analysis 
	Outbreak Forecasting Model 
	Frontend Visualizations 
	Limitations and Implications of This Study 

	Conclusions 
	References

