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Abstract: In today’s era of increased food consumption, consumers have become more demanding in
terms of safety and the quality of products they consume. As a result, food authorities are closely
monitoring the food industry to ensure that products meet the required standards of quality. The
analysis of food properties encompasses various aspects, including chemical and physical descrip-
tions, sensory assessments, authenticity, traceability, processing, crop production, storage conditions,
and microbial and contaminant levels. Traditionally, the analysis of food properties has relied on
conventional analytical techniques. However, these methods often involve destructive processes,
which are laborious, time-consuming, expensive, and environmentally harmful. In contrast, advanced
spectroscopic techniques offer a promising alternative. Spectroscopic methods such as hyperspectral
and multispectral imaging, NMR, Raman, IR, UV, visible, fluorescence, and X-ray-based methods
provide rapid, non-destructive, cost-effective, and environmentally friendly means of food analysis.
Nevertheless, interpreting spectroscopy data, whether in the form of signals (fingerprints) or images,
can be complex without the assistance of statistical and innovative chemometric approaches. These
approaches involve various steps such as pre-processing, exploratory analysis, variable selection,
regression, classification, and data integration. They are essential for extracting relevant information
and effectively handling the complexity of spectroscopic data. This review aims to address, discuss,
and examine recent studies on advanced spectroscopic techniques and chemometric tools in the
context of food product applications and analysis trends. Furthermore, it focuses on the practical
aspects of spectral data handling, model construction, data interpretation, and the general utilization
of statistical and chemometric methods for both qualitative and quantitative analysis. By exploring
the advancements in spectroscopic techniques and their integration with chemometric tools, this
review provides valuable insights into the potential applications and future directions of these analyt-
ical approaches in the food industry. It emphasizes the importance of efficient data handling, model
development, and practical implementation of statistical and chemometric methods in the field of
food analysis.

Keywords: food analysis; food authenticity; food chemicals; spectroscopy techniques; chemometrics;
multivariate analysis

1. Introduction

The growing world population is increasing the demand for food in multiple ways,
which is leading to a higher demand for safety and quality control of commercialized
products. Food can become contaminated by chemicals and physical substances through
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accidental or intentional means. In recent years, there have been several major cases of
food adulteration, highlighting the critical need for controlling product authentication [1].
In one instance, wheat gluten samples were infused with melamine to improve their
protein content. In 2008, China experienced a milk scandal where milk was found to
be adulterated with melamine, and in 2012, India had a similar scandal where milk was
found to be adulterated with detergent, urea, and other substances [2]. Several noteworthy
incidents occurred in 2005, including the adulteration of chili powder with dye and the
contaminated chili powder in Indian Worcestershire sauce [3]. Gelatin-like chemicals were
used in the aquaculture market recently to increase weight in many instances in China.
Spices are frequently adulterated with ground material worldwide, particularly in Europe
and India [4,5]. These incidents demonstrate the importance of product authentication and
quality control in the food industry to protect consumers from harmful and potentially
dangerous adulterated products. To gain economic benefit, consumers are at risk of being
exposed to serious health threats if food products are adulterated with cheap or chemical
materials. This was seen in the Chinese milk scandal, where six infants passed and several
thousand were hospitalized. A further case is the contamination of paprika with lead
oxide to give it a reddish color, which caused over sixty hospitalized. In recent years,
both controlling agencies and the public have grown increasingly concerned about the
application of the phthalate plasticizer di-2-ethylhexyl phthalate as a clouding agent in
beverages and food [6,7]. In the past decade, both food and feed products have been
found to be adulterated. Some of the most adulterated agro-food commodities include
honey, edible oils, and spices. Additionally, it has been reported that food products such as
milk products, fruit extract, flour, coffee, alcohol, and meats, are being adulterated more
frequently [8]. All these examples illustrate a significant global problem that poses a threat
to consumers and has prompted food authorities to increase their scrutiny and inspection
of the food production chain from farming to consumption.

Food adulteration can occur for various reasons, including complex production pro-
cesses and long supply chains. Therefore, authentication is crucial for both labeling or-
ganizations and industries that must test raw materials and finished products to ensure
compliance with specifications [9]. Additionally, confirming the authenticity of the food
is essential for maintaining quality and preventing economic fraud. To address authen-
tication challenges and ensure product quality, fast, reliable, and competent analytical
methods are needed. The detection of composition properties and contaminants in food
and agricultural commodities can be accomplished using a wide variety of physical and
chemical methods. These properties, such as density, texture, color, acidity, and solubility,
are typically measured by physical or chemical methods. The chemical composition of the
samples determines the different chemical techniques involved and used in the identifica-
tion of components and contamination detection of food commodities [10]. Despite being
powerful analytical techniques, separation techniques including liquid-chromatography or
gas-chromatography are not always suitable when the workflow is rapid and the exper-
iments are costly, as the samples may be damaged during the study process. Therefore,
advanced spectroscopic techniques, along with chemometrics, are now being used for the
quality analysis and authentication of a wide range of food products. The main advan-
tages of these techniques are that they are non-damaging, rapid, ecologically friendly, and
economical. Spectroscopy data are complex and are typically handled by chemometric ap-
proaches for supervised and unsupervised pattern recognition, such as hierarchical cluster
analysis (HCA), principal component analysis (PCA), linear discriminant analysis (LDA),
soft independent modeling of class analogy (SIMCA), and partial least squares-discriminant
analysis (PLS-DA) among others. These tools are mainly used to assess classes, such as
attributing samples as either adulterated/unadulterated or authentic/not authentic. In
addition to the qualitative chemometric approaches, there are also quantitative approaches
including multivariate calibration tools, including principal component regression (PCR),
and partial least squares (PLS) [11,12]. These tools are mainly used for quantitative parame-
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ters to quantify the number of adulterants and fatty acids content, based on data generated
from spectroscopic techniques.

The focus of this review is to provide an overview of recent studies on advanced
spectroscopy techniques and chemometric methods that are widely utilized in food evalua-
tion, safety assessment, quality analysis, and manufacturing processes. The review aims
to emphasize the advantages of these techniques over traditional analytical methods and
underscore the importance of efficient data handling, model construction, and practical
implementation of statistical and chemometric approaches in the field of food analysis.
Additionally, the review aims to discuss the potential applications and future directions
of these techniques in the food industry, while addressing the challenges associated with
traditional analytical methods, including their destructiveness, laborious nature, time
consumption, cost, and negative environmental impact.

2. Chemometric Approaches in Spectroscopy Data

The advancement of modern instruments, represented by spectroscopy techniques,
has accelerated the development of the food industry and food research in recent decades.
As a result, the data available to food analysts has become increasingly complex. Not
only does the amount of data tend to be large, but the dimensionality of the data can also
increase dramatically. Effectively analyzing and managing large amounts of spectroscopy
data from food production, food processing, and food research is both a practical and
theoretical issue. Chemometrics, which combines the power of statistics and mathematics
for use by chemists, provides a valuable solution to the challenging analytical issues in food
spectroscopy analysis. The general framework and pipeline of advanced spectroscopic
techniques coupled with chemometric approaches applied in food analysis is illustrated
in Figure 1. Advanced spectroscopic techniques combined with chemometric approaches
are of great significance in food analysis. These techniques provide fast, precise, and
non-destructive measurements of diverse food properties (Figure 1). Their integration
offers multiple advantages, such as rapid analysis, non-destructive measurement, multi-
variate data analysis, quality control, process optimization, and allergen detection. These
advancements contribute significantly to enhancing food safety, ensuring quality assurance,
and safeguarding consumer protection. On the other hand, several chemometric tools
have been developed and validated to be powerful in terms of information extraction,
multivariate relationship analysis, prediction, and discrimination analysis, among others,
in food spectroscopy data analytics. A roadmap workflow example in Figure 2 for using
chemometric tools to handle spectral data in different scenarios for either qualitative or
quantitative purposes. However, the interpretation of spectroscopy data, be it in the form
of signals or images, can be intricate without the aid of statistical and innovative chemo-
metric approaches. These approaches encompass crucial steps, including pre-processing,
exploratory analysis, variable selection, regression, classification, and data integration. By
employing these methods, researchers can extract pertinent information and effectively
manage the complexities inherent in spectroscopic data.
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2.1. Pre-Processing Techniques

Pre-processing plays a crucial role in spectral data analysis as it prepares the data
for further analysis and modeling. Various pre-processing techniques are employed to
address common challenges such as scattering correction, baseline correction, peak shift
alignment, denoising, and handling missing values. Effective pre-processing is essential for
enhancing the performance of models by eliminating artifacts from the data and reducing
fitting errors. By applying appropriate pre-processing methods, the spectral data becomes
more reliable and conducive to accurate analysis and interpretation. In the context of
missing data, several chemometric tools have been developed to address this issue [13].
For instance, maximum likelihood PCA-based imputation [14], as well as data regres-
sion methods like KDR-PLSR (kernel density-ratio-based partial least squares regression)
and KDR-PCR (kernel density-ratio-based principal components regression) [14], have
recently emerged as highly effective approaches for handling missing data. For multi-way
data, such as fluorescence data, practical solutions for missing data imputation include
alternating least squares with single imputation, Parallel Factor (PARAFAC) analysis, and
the Levenberg-Marquardt method [15,16]. These techniques offer reliable and efficient
means to impute missing data, enabling more comprehensive and accurate analyses of
complex datasets. In the context of scatter correction, Multiplicative Scatter Correction
(MSC) [17], Standard Normal Variate (SNV) [18], and other normalization methods are
widely employed chemometrics techniques. These methods effectively address the issue
of scatter in spectral data. Additionally, advancements in scatter correction tools have led
to the development of new versions and improved approaches [17]. To tackle baseline
drift problems in spectral data, adaptive reweighing schemes for polynomial fitting and
penalized least squares [19], as well as Tikhonov regularization [20], have proven successful
in removing unwanted baseline variations. These techniques offer reliable means to address
baseline drift and enhance the accuracy of subsequent analysis.

In order to mitigate peak shift problems, several methods have been reported to be use-
ful. Automatic time shift alignment (ATSA) [21], coherent point drift peak alignment [22],
Global peak alignment with point matching algorithm [23], and PARAFAC Applied to Shift
Invariant Amplitude Spectra (PARASIAS) [24] are among the techniques that have demon-
strated effectiveness in aligning peaks accurately despite shifts or distortions. Derivative
calculation of spectral data is a promising solution to some different artefacts problems
especially when it is combined with other techniques, e.g., combining the first derivative
and simple spectral ratio can correct both the additive effects and multiplicative effects [25].

Overall, the utilization of these advanced techniques in scatter correction, baseline drift
correction, and peak shift alignment significantly improve the quality and reliability of spectral
data, facilitating more robust and accurate analyses in various chemometric applications.

2.2. Variable Selection Tools

Variable selection is a valuable technique in spectral data analysis as it enhances model
performance, provides better interpretations, and reduces measurement costs [26]. Several
popular methods are commonly used in chemometrics for spectral data analysis, including
model factors and assessment, model-based feature importance statistics, interval partial
least squares regression (iPLS) [27], and genetic algorithm (GA) [28]. When considering
model parameters, variables with lower loadings and regression coefficients may not be
as important as those with higher values. In the case of model-based variable importance
statistics, variables such as variables important for projection (VIP) [29], which measures
the contribution of a variable in describing the data, and selectivity ratios [30], which
evaluate the predictive performance of variables, are commonly used in chemometrics
analysis of spectral data. These statistics help identify the most influential variables in
the model. The iPLS is a variable selection method that operates by selecting windows of
variables, making the selection of window size a critical aspect of iPLS. On the other hand,
GA performs variable selection by simulating the process of natural selection, estimating
models involving patterns in variable generation [26]. However, GA requires more com-
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plex parameter settings compared to other variable selection methods. Regardless of the
specific variable selection method employed, it is important to remember that validation
is always necessary to avoid erroneous conclusions resulting from overfitting. Validation
procedures help ensure the robustness and reliability of the selected variables and the
overall model performance.

In summary, the utilization of variable selection techniques in spectral data analysis
offers improved model performance, interpretability, and cost-effectiveness. Methods such
as iPLS, GA, and model-based feature importance statistics contribute to selecting relevant
variables and enhancing the accuracy and reliability of chemometric analyses. Validation
procedures are crucial to validate the selected variables and mitigate the risk of overfitting.

2.3. Exploratory and Clustering Tools

Exploratory data analysis is a critical component of food spectroscopy data analysis,
serving as a means to understand descriptive statistical characteristics and gain multivariate
insights from complex datasets. A range of exploratory analysis tools, including both
graphical techniques and quantitative dimensionality reduction techniques, are widely
utilized in the analysis of food spectroscopy data. Graphical techniques such as box plots,
histograms, and scatter plots are valuable for visualizing the distribution, variation, and
presence of missing values in samples. These tools are commonly employed in the analysis
of metabolite data obtained from mass spectroscopy [31]. By utilizing graphical tools,
researchers can effectively explore the properties and patterns present within the data.

Principal Component Analysis (PCA) is a representative dimensionality reduction
technique and one of the most popular tools employed in food spectroscopy data analysis.
The earliest invention of PCA dates back to the early 20th century [32]. However, this first
invention focused more on the modeling property and explained the variation of PCA.
However, it was later expanded upon by Hotelling, who introduced the concept of PCA
as a linear combination of variables [33]. Nowadays, PCA is now widely recognized for
its ability to reveal complex relationships within multivariate data, making it a powerful
tool for obtaining an overview of complex datasets. It is frequently used to explore relation-
ships between samples and variables, identify outliers, discover and determine patterns
(groups), as well as generating new hypotheses [34]. Moreover, PCA can also be utilized
for conducting clustering analysis. By examining the relationships between samples, PCA
can effectively divide samples with different statistical characteristics into distinct groups.
In addition to PCA, Hierarchical Cluster Analysis (HCA) [35] and k-means clustering
analysis [36] are widely used as clustering analysis tools in food spectroscopy data analysis.
In the format of a dendrogram, HCA constructs a dendrogram that hierarchically divides
samples into groups based on their similarities, facilitating the identification of distinct
clusters. On the other hand, K-means clustering analysis partitions objects into k-clusters,
with each object belonging to the group with the closest average.

Overall, exploratory data analysis, comprising graphical techniques, dimensionality re-
duction methods like PCA, and clustering analysis tools such as HCA and k-means, enables
researchers to gain insights into complex food spectroscopy datasets. These approaches
facilitate the understanding of data properties, identification of patterns, and generation of
hypotheses, ultimately advancing the knowledge and interpretation of food analysis.

2.4. Regression and Prediction Tools

Prediction models are essential in food spectroscopy data analysis, as they enable the
successful prediction of chemical and physical properties, supporting green food research
and the sustainable food industry. Partial least squares (PLS) regression is a standard
chemometric method used for prediction analysis of spectral data [37]. By projecting the
predictor variables and response variables onto a new space, PLS seeks to uncover the
underlying relationship between X and Y matrices by modeling the covariance structures
in this new space [38]. PLS has the added advantage of effectively handling the collinearity
problem often encountered in spectral data [39]. In addition to PLS, N-way PLS [40]
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is a powerful tool for handling multi-way spectral data and the N-way PLS model is
advantageous in well modeling performance, robustness to noise, stabilized solution, and
improved prediction capabilities [41] specifically for multi-way spectral data. Various other
regression methods, such as support vector machine (SVM) regression artificial neural
network (ANN) and multiple linear regression (MLR), are also employed in spectral data
analysis [42]. MLR is a linear regression method that establishes the relationship between
independent variables and dependent variables by fitting a linear model. However, MLR
has strict assumptions that need to be met, including constant variance of the residuals,
multivariate normality, and linear assumption [43], which can limit its applications in
certain cases. In contrast, SVM regression and ANN are often utilized for non-linear
prediction analysis in spectral data. For instance, ANN can capture highly non-linear
relationships between inputs and outputs, enabling the prediction of an output variable
based on input data [44]. The non-linear models such as SVM and ANN can offer attractive
predictive performance in many applications [42], but the issue of overfitting must be
carefully addressed. Therefore, validation is a crucial step in non-linear prediction analysis
to ensure the reliability and generalization of the models when applied to spectral data.

In short, prediction models, including PLS regression, N-way PLS, SVM regression,
ANN, and MLR, are valuable tools in food spectroscopy data analysis. These models
enable the prediction of chemical and physical properties, and their selection depends
on the nature of the data, linearity assumptions, and the need for handling collinearity
or capturing non-linear relationships. Validation procedures are essential to evaluate
and validate the performance of these models, ensuring their accuracy and robustness in
spectral data analysis.

2.5. Classification Tools

Classification is an essential task in food analysis, aimed at identifying and assigning
categories to samples in order to detect pattern differences and enable subsequent analysis.
Various chemometrics techniques are employed for the classification analysis in food
analysis, including tree-based methods, regression-based methods, discriminant analysis,
and neural networks, among others. One popularly used classification tool in food analysis
is partial least squares-discriminant analysis (PLS-DA) [45]. PLS-DA is a discrimination
method based on PLS regression but incorporates an additional classification step based on
the thresholding of predicted y-values. Another method, the soft independent modelling
class analogy (SIMCA) method combines the concept of PCA in performing classification
analysis [46]. SIMCA utilizes the residuals from disjoint PCA models to assign samples
to one or several classes, with the critical distance being based on the F-distribution [47].
In addition to PLS-DA and SIMCA models, Linear Discriminant Analysis (LDA) [48]
and SVM [49] are also frequently used for classification analysis in food analysis. LDA
models the differences between groups by finding a linear combination of features and
projecting them from a higher dimensional space into a lower dimensional space, effectively
separating them into distinct classes. On the other hand, SVM can also be used for non-
linear classification analysis. In the case of non-linear classification, SVM employs a
kernel function to transform the data from a non-linear space to a linear space, enabling
the classification task in a high-dimensional space. However, it’s important to note that
performing SVM classification on large spectroscopy datasets may be time-consuming due
to the training and kernel computation requirements.

In brief, classification is a fundamental data analysis task in food analysis, and several
chemometric techniques such as PLS-DA, SIMCA, LDA, and SVM are commonly utilized
for this purpose. These methods enable the identification of patterns and the assignment
of samples to different categories, facilitating subsequent analysis and decision-making
in the field of food analysis. It’s important to consider the nature of the data, linear or
non-linear relationships, and computational considerations when selecting the appropriate
classification method for a given analysis.
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2.6. Mixture Analysis Tools

Mixture analysis is a critical area of focus in food analysis, driven by advancements
in omics technologies and the demand for improved production processes in the food
industry. A wide range of chemometric tools is employed to analyze mixtures in food,
encompassing both two-way analytical methods and multi-way analytical methods.

Multivariate curve resolution-alternating least squares (MCR-ALS) is one of the rep-
resentative two-way chemometrics tools used for food mixture analysis. It allows for the
extraction of chemically meaningful bilinear models from a data matrix that includes mixed
measurements, with an additive model structure [50]. Basically, MCR-ALS decomposes the
mixture data matrix into two matrices and a residual matrix. For instance, in the case of
high-performance liquid chromatography with diode array detection (HPLC-DAD) data,
MCR-ALS separates the data into a matrix containing elution profiles of all components,
another matrix containing the corresponding pure spectra, and a residual matrix of the
same dimensions as the raw data, capturing unexplained variations. Although MCR-ALS
encounters challenges such as permutation ambiguity, intensity ambiguity, and rotational
ambiguity, these issues can be partially addressed through specific strategies [51]. Parallel
Factor Analysis (PARAFAC) [52] and Parallel Factor Analysis2 (PARAFAC2) [53] models
are widely used multi-way models for complex mixture analysis. These models generalize
the bilinear models to handle multi-way data. Instead of generating a set of bilinear com-
ponents, PARAFAC and PARAFAC2 decompose the high-order tensor data into a set of
trilinear components (in the case of three-way data) in which each vector represents the
information from each mode. Due to the unique advantages of PARAFAC and PARAFAC2
models [54], they are powerful for decomposing the pure chemical from the multi-way
fluorescence and mass spectroscopy data. The main difference between PARAFAC and
PARAFAC2 models is that the strict multilinear assumption in the PARAFAC model is
relaxed in PARAFAC2 model, meaning that the profiles for each slab in the multi-way data
is not required to be the same in PARAFAC2 model if the cross products of the components
keep the same [55].

In outline, mixture analysis holds significant importance in food analysis, and a
range of chemometric tools are applied for this purpose. MCR-ALS is a powerful two-
way method for mixture analysis, while PARAFAC and PARAFAC2 models are widely
used in multi-way analysis of complex mixtures. These methods enable the extraction of
chemically meaningful information from mixture data, aiding in the identification and
characterization of individual components within complex food matrices. While certain
challenges exist, strategies have been developed to address them and enhance the reliability
and applicability of these chemometric tools in mixture analysis.

In this section, a general overview was provided regarding the various chemomet-
ric tools utilized for handling spectroscopy data. These tools encompass pre-processing
techniques, exploratory analysis methods, variable selection approaches, regression mod-
els, classification algorithms, and mixture analysis methodologies. However, the specific
methodologies and algorithms underlying each technique were not thoroughly explored,
nor were the advantages or disadvantages of individual approaches discussed in detail.

3. Advanced Spectroscopy Techniques with Chemometrics in Food Analysis

Advanced spectroscopy techniques paired with chemometric tools are crucial in
analyzing food by providing a fast, non-destructive, and efficient means of obtaining
detailed information about food samples. This information can be used to improve the
quality, safety, and authenticity of food products. Table 1 summarizes recent applications of
advanced spectroscopic techniques and chemometric approaches for quantitative analysis
in food whereas a summary of recent applications of advanced spectroscopic techniques
linked to chemometric approaches for qualitative analysis in food can be found in Table 2.
In this section, the focus was on discussing the most notable studies conducted on advanced
spectroscopic techniques, including X-ray-based methods, hyperspectral and multispectral
imaging, NMR, Raman, IR, UV, visible, fluorescence, and portable techniques. These
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studies were examined with respect to their applications, both qualitative and quantitative,
and their overall utility in the field of food analysis.

Table 1. Advanced spectroscopic techniques combined with chemometric approaches for quantitative
analysis in food application. Table was ordered regarding used techniques.

Quantitative Analysis

Authors Food Materials Fingerprinting
Technique

Analysed
Components Objectives Chemometric

Analysis Ref.

Gamela et al. Cocoa beans EDXRF Cu, K, Sr and Zn Cocoa beans PLS [56]

Sperança et al. Bananas X-ray fluorescence Zn Determination Zn
content in Banans PLS [57]

Priyashantha et al. Cheese
Near-infrared
hyperspectral
(NIR-HS) imaging

-
Explain the relationship
between average spectra
and cheese maturity

PLS [58]

Darnay et al. Semi-hard cheese HSI Transglutaminase
Detection of the enzyme
of transglutaminase in
the cheese

PLS [59]

Lu et al. Potatoes Fluorescence HSI Solanine Predict the solanine
content in potatoes SVR [60]

Xiao et al. Fresh-cut potato HSI
Color parameters
(bruising index)
and water content

Assess the quality
of potatoes LS-SVM and PLS [61]

Tian et al. Purple sweet
potato Vis-NIR HSI Moisture and

anthocyanins

Predict the critical
indexes of moisture and
anthocyanins in purple
sweet potato

PLSR [62]

Li et al. Plum VNI-HSI Nan
Predict the soluble solid
contents and the color of
two plums cultivars

PLS [63]

He et al. Wheat flour HSI Talcum powder
Detection of talcum
powder adulterated in
wheat flour

SNV-CARS-PLS [64]

Kim et al. Wheat flour SWIR-HSI Benzoyl peroxide
Detecting the bleaching
agent of benzoyle
peroxide in wheat flour

PLS [65]

Sun et al. Melons HSI Nan Predict the sugariness
and hardness of melons PLS, SVM and ANN [66]

Wang et al. Chinese steamed
bread FT-NIR Potato flour content Predicting potato flour in

Chinese steamed bread PLS-R [67]

Tu et al. Wheat flour FT-NIR Talcum powder
Quantitation of low
content of talcum
powder in wheat flour

Gradient-boosted
decision tree (GBDT) [68]

Kandpal Tuber flour NIR and MIR

Chemical compo-
nents:amylose, starch,
protein, glucose,
cellulose, and
moisture contents

Prediction of quality
traits in tuber traits by
mean of Data fusion of
FT-IR and FT-NIR

SOPLS [69]

Kamboj et al. Wheat FT-NIR Crude protein
and carbohydrate

Compare chemometrics
for predicting the quality
parameters of wheat

PLS, MLR, SVM [70]

Liang et al. Potatoes FT-NIR Sugar content Detection of zebra chip
disease (ZC) in potatoes PLS [71]

Jiang et al. Wheat flour Portable NIR Fatty acid Quantitation of fatty
acids in wheat

Variable combination
population analysis
(VCPA), extreme
learning machine
(ELM)

[72]
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Table 1. Cont.

Quantitative Analysis

Authors Food Materials Fingerprinting
Technique

Analysed
Components Objectives Chemometric

Analysis Ref.

Ning et al. Wheat grains FT-NIR Zearalenone Detection of zearalenone
in wheat SVM [73]

Cámara et al. Clove and
pomegranate IR Antioxidant activity

Estimation of antioxidant
activity in clove
and pomegranate

MCR-ALS and PLS [74]

Castro et al. Peanut oil NIR and Raman Adulterants (corn
oil and vegetable oil)

Assessment of
vibrational spectroscopy
with chemometrics

MCR-ALS and
PLS regression [75]

Castro et al. Saffron FT-NIR

Saffron adulterants
(onion, calendula,
pomegranate, and
turmeric)

Detection of
Saffron adulterants

MCR-ALS and
PLS regression [76]

Li et al. Saffron FT-NIR
Saffron adulterants
(lotus stamens and
corn stigmas)

Detection of
saffron adulterants

Synergistic interval
PLS (SI-PLS),
competitive adaptive
reweighted sampling
PLS (CARS-PLS)

[77]

Li et al. Saffron FT-NIR Corcin Determination of corcin
content in Saffron PLS [78]

Liu et al. Panax notoginseng FT-NIR

Adulterants
(hizoma curcumae,
Curcuma longa and
rhizoma alpiniae
offcinarum)

Quantification of Panax
notoginseng with its
adulterants

PCR, PLS, ELM
and SVR [79]

Liu et al. Vegetable oils FT-NIR Phytosterols
Determination of
phytosterols in
vegetable oils

Pls [80]

Joshi et al. Eggs FTIR
Constituents of
eggs (yolk
and albumen)

Detection of
fabricated eggs PLS-DA and SVM [81]

Mazivila et al. Milk FT-NIR Melamine and
sucrose

Estimation the adulterant
contents in the milk MCR-ALS [82]

Novianty et al. Palm fruit FT-NIR Oil content Quantitation of oil
content in palm fruit EMD-ANN [83]

Basar et al. Honey FTIR
Adulterant (beet
sugar and
corn syrup)

Determination of
honey adulteration

Genetic-algorithm-
based inverse least
squares (GILS)
and (PLS)

[84]

Qin et al. Wheat flour Raman chemical
imaging Benzoyl peroxide Detection of

benzoyle peroxide PLS [85]

Yuan et al. Duck meat Surface-enhanced
Raman

Testosterone
propionate and
nandrolone residues

Quantitation of residues
in the duck meat LS-SVR [86]

Nakajima et al. Banana Raman Starch Quantification of starch
in banana PLS [87]

Hara et al. Tomatoes Raman Carotenoids Determination of
carotenoids in tomatoes PLS [88]

De Olieveira
mendes et al. Raw milk Raman Whey Quantitation of whey in

raw milk PLS [89]

Czaja et al. Youghurts Raman Fat, lactose,
and protein

Determination of
nutritional parameters
of yoghurts

PCA and PLS [90]
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Table 1. Cont.

Quantitative Analysis

Authors Food Materials Fingerprinting
Technique

Analysed
Components Objectives Chemometric

Analysis Ref.

Tian et al. Milk Raman

Adulterants
(maltodextrin,
sodium carbonate,
and whey)

Prediction of adulterants
in raw milk PLS [91]

Berzins et al. Breast milk Raman and FTIR
Macronutrients
(protein, fat, and
carbohydrate)

Determination of
macronutrients in the
breast milk

PLS [92]

De sa
oliveira et al. Spreadable cheese Raman Starch

Quantitation of starch
in adulterated
spreadable cheese

PLS [93]

Liu et al. Edible oils Raman and FT-IR
data fusion

Peroxide values and
acid values

Determination of
chemical quality indices
of edible oils during
thermal oxidation

PLS [89]

Puertas et al. Egg yolk Data fusion of FTIR
and UV-Vis Cholesterol Prediction of cholesterol

in egg yolk PLS and PCR [94]

Wang et al. Infant formula Vis-NIR and Raman
data fusion -

Assessment of infant
formula storage
temperature and time

SVM [95]

Valinger et al. Honey UV-Vis and NIR
data fusion Sugar syrups Detection of

honey adulteration PLS and ANN [96]

Wang et al. Camelia oil Excitation-emission
matrix fluorescence Vegetable oils Quantitation of

adulterant in camelia oil
N-PLS and
PARAFAC [97]

Baretto et al. Milk Fluorescence Melamine Determination of
melamine in milk

PARAFAC
and UPLS [98]

Gu et al. Rapessed oil
in water Fluorescence Lipid

Quantitative assessment
of lipid oxidation in a
rapeseed oil-in-water

GA-SVR [99]

Tarhan Extra virgin olive
oil (EVOO)

FTIR, UV–Vis and
fluorescence Squalene

Quantification of
squalene in extra
virgin olive oils

PLS [100]

Wu et al. Edible blend oil UV-Vis Adulterant
(vegetable oil)

Quantification of
vegetable oils in
edible blend oil

Weighted
multiscale SVR [101]

Zhang et al. Edible oils UV-Vis Acid value Impact of heating on
edible oils PLS and PCR [102]

Rios-Reina et al. Wine and
balsamic vinegar UV-Vis Grape-must caramel

(E-150d caramel)

Quantitation of grape-
must caramel in wine
and balsamic vinegars

PLS [103]

Cavdaroglu et al. Vinegar UV-Vis and MIR

Phenolic components,
p-coumaric and
syringic acids, citric
and acetic acids,

Predict quality and
chemical parameters
of vinegar

PLS and OPLS [104]

Santos et al. Milk NMR

Adulterants (Whey,
urea, hydrogen
peroxide, synthetic
urine and
synthetic milk)

Quantification of
milk adulteration PLS [105]

Liu et al. Cream NMR Artificial bright
blue pigment

Detecting additives
content in cream PLS and MLR [106]

Sun et al.
Carrot, banana
and pleurotus
eryngii

NMR Moisture

Monitor water states
of typical fruits
and vegetables
during microwave
vacuum drying

PLS, SVM
and BP-ANN [107]
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Table 1. Cont.

Quantitative Analysis

Authors Food Materials Fingerprinting
Technique

Analysed
Components Objectives Chemometric

Analysis Ref.

Hajjar et al. Hen egg NMR Fatty acids Quantification of fatty
acids in hen eggs PLS [108]

Galvan et al. Edible oils NMR Fatty acids and
iodine value Analysis of edible oils PLS and SVR [109]

Haddad et al. Cheese NMR Fatty acids Quantitation of
individual fatty acids PLS [110]

Jiang et al. Rice Surface-enhanced
Raman scattering

Chlorpyrifos
residue

Quantify chlorpyrifos
residues in rice samples

GA-PLS, UVE-PLS,
VCPA-PLS and
CARS-PLS

[111]

Richardson et al. Coconut water Raman Sugars Detection of adulteration
in Coconut water PLS [112]

Table 2. Advanced spectroscopic techniques combined with chemometric approaches for qualitative
analysis in food application. Table was ordered regarding used techniques.

Qualitative Analysis

Authors Food Materials Fingerprinting
Technique

Analysed
Components Objectives Chemometric

Analysis Ref.

Galvan et al. Tomato and
sweet paper EDXRF -

Discrimination of tomato
or sweet pepper samples
effectively according to
the agronomic
production mode or
geographical origin

PLS-DA [113]

Scatigno et al. EVOO EDXRF Ni, Fe and Ti Discrimination of EVOO PCA [114]

Panebianco et al. Tomato fruit XRF -

Establish an assessment
procedure for the origin
and quality assessment
of Sicilian tomato fruits

PCA [115]

Allegretta Beans TXRF -
Clustering of the seeds of
beans according to their
geographical origin

PCA and PLS-DA [116]

Vitali et al. Croatian wines TXRF

Contents of metals
(K, Ca, Fe, Cu, Zn,
Mn, Sr, Rb, Ba, Pb,
Ni, Cr and V)

Classification of
origin and type
of Croatian wines

PCA and
cluster analysis [117]

Li et al. Peaches

Short-wave near-
infrared (SW-NIR)
and long-wave near-
infrared (LW-NIR) hy-
perspectral imaging

- Detection bruises
in peaches PCA [118]

He et al. Flour Vis-NIR HSI
Mites Tyrophagus
putrescentiae and
Cheyletus eruditus

Detection of mites
Tyrophagus putrescentiae
and Cheyletus eruditus
in flour

Random forest
and PCA-ANN [119]

Al-Sarayreh et al. Meat NIR-Vis HSI -

Deep learning approach
for red-meat
classification by
combining the spectral
and spatial features of
HSI data

CNN [120]

Pan et al. Peaches Hyperspectral
reflectance imaging - Detection of cold injury

in peaches ANN [121]

Sun et al. Peaches Hyperspectral
reflectance imaging - Characterization of

chilling injury in peaches
PLS-DA, ANN
and SVM [122]



Foods 2023, 12, 2753 14 of 46

Table 2. Cont.

Qualitative Analysis

Authors Food Materials Fingerprinting
Technique

Analysed
Components Objectives Chemometric

Analysis Ref.

Babellahi et al. Green bell peppers HSI -
Detection of chilling
injury in green
bell peppers

PLS-DA [123]

Cen et al. Cucumber fruit HSI - Detection of chilling
injury in cucumber fruit SVM and KNN [124]

Carreiro
Soares et al. Cotton seeds HSI -

Discrimination of
different varieties
of seeds

PLS-DA [125]

Fan et al. Blueberry HSI -
Detection of blueberry
internal bruising
over time

LS-SVM [126]

Sun et al. Tomatoes HSI - Characterization of
bruised tomatoes PLS-DA [127]

Susic et al. Tomatoes HSI -

Discrimination between
abiotic and biotic
drought stress
in tomatoes

PLS-DA PLS-SVM [128]

Zhao et al. Wheat seeds HSI - Characterization the
purity of wheat seeds CNN [129]

Zhao et al. Maize seeds HSI - Classification of
maize seeds Neural network [130]

Tsouvaltzis et al. Eggplant fruit FT-NIR and NIR-HSI -

Evaluating the
temperature effect on
chilling injury
of eggplant

PLS-DA, SVM
and KNN [131]

Liang et al. Potatoes FT-NIR Sucrose, glucose
fructose

Detection of zebra chip
disease (ZC) in potatoes

Canonical
discriminant
analysis

[71]

Huang et al. Honey NIR and FTIR Syrup adulterant
Distinguish the normal
honey from
adulterant one

SVM [132]

De Girolamo Wheat FT-MIR and FT-NIR Ochratoxin A
Assessment of the
adulteration of wheat
by ochratoxin

PLS-DA and
PC-LDA [133]

Chen et al. Eggs FT-NIR - Verifying the authenticity
of native eggs

Data-driven-based
class-modeling
(DDCM), PCA

[134]

Liu et al. Panax
notoginseng FT-NIR

Adulterants
(rhizoma curcuma,
Curcuma longa and
rhizoma alpiniae
offcinarum)

Identification of panax
notoginseng with
its adulterants

PLS-DA and SVM [79]

Marquetti et al. Arabica Coffee FT-NIR -
Evaluation of geographic
and genotypic origin of
arabica coffee

PLS-DA [135]

Mazivila et al. Milk FT-NIR Melamine and
sucrose

Discrimination of pure
milk from the
adulterant one

DD-SIMCA [82]

Miao et al. Rice FT-NIR - Classification of rice
based on storage time

PCA, KNN
and PLS-DA [136]

Rovira et al. Cashew nuts FT-NIR Adulterants
(peanuts)

Characterization of the
adulterant cashew nuts
by other nuts

SIMCA [137]

Visconti et al. Cheese FT-NIR Cellulose and
silicon dioxide

Determination of
additives in the grated
hard cheese

PLS-DA [138]
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Table 2. Cont.

Qualitative Analysis

Authors Food Materials Fingerprinting
Technique

Analysed
Components Objectives Chemometric

Analysis Ref.

Xie et al. Waxy rice FT-NIR Amylose and
amylopectin

Determination of quality
parameters by FT-NIR

Modified PLS
(MPLS) [139]

Ziegler et al. Kernels and
flours FT-NIR -

Differentiation of flours
and kernels of costly
ancient species from less
expensive bread wheat

PLS-DA [140]

Joshi et al. Eggs FTIR
Constituents of
eggs (yolk
and albumen)

Detection of
fabricated eggs PLS-DA and SVM [81]

Rozali et al. Crude palm oil FTIR -

Authentication of
different geographical
and temporal origins of
crude palm oils

OPLS-DA [141]

Li et al. Hazelnuts FT-Raman and NIR
data fusion Almonds adulterant

Discriminate the
unadulterated hazelnuts
from the adulterated
hazelnuts with almonds

SIMCA [142]

Yuan et al. Duck meat Surface-enhanced
Raman

Testosterone
propionate and
nandrolone residues

Classification of duck
meat based on residues

Particle swarm
optimization–
support vector
classification
(PSO-SVC)

[86]

Unuvar et al. Durum wheat
flour

Raman spectroscopy,
FT-NIR, synchronous
fluorescence spec-
troscopy (SFS),
(ATR-FTIR)

-

Distinguishing common
and durum wheat
flour samples with
different genotypes

PCA, PLS-DA [143]

Amjad et al. Milk Raman Proteins, milk
fats, lactose

Differentiation between
milk samples of
different species

Random forest
classifier (RF),
PCA

[144]

De Oliveira et al. Enriched eggs Raman Omega-3 fatty acids

Discrimination between
conventional and
omega-3-fatty acids
enriched eggs

PLS-DA [145]

De sa
oliveira et al. Spreadable cheese Raman Starch

Classify spreadable
cheese as adulterated or
without starch

PLS-DA [93]

Nieuwoudt et al. Milk Raman spectroscopy
Nitrogen-rich
molecules and
sucrose

Detecting adulteration
of milk PLS-DA [146]

Ning et al. Duck meat Raman Sulfadimidine and
Sulphapyridine

Classification of duck
meat based on
Sulfadimidine and
Sulphapyridine

SVM and PCA [87]

Robert et al. Meat Raman -

Discrimination between
different species of meat
(intact beef, venison, and
lamb meat)

PLS-DA [147]

Tian et al. Milk Raman spectroscopy

Adulterants
ofaltodextrin,
sodium carbonate,
and whey

Distinguishing raw milk
from the adulterated one PLS-DA [91]

Tian et al. Rice Raman spectroscopy - Distinguishing rice based
on producing areas

PCA-KNN,
SPA-KNN,
PCA-LS-SVM
and SPA-LS-SVM

[148]
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Authors Food Materials Fingerprinting
Technique

Analysed
Components Objectives Chemometric

Analysis Ref.

Wu et al. Honey Raman spectroscopy

Adulterants
(fructose corn
syrup, rice syrup,
maltose syrup,
blended syrup)

Characterization of
adulterant honey CNN [149]

Wang et al. Infant formula Vis-NIR and Raman
data fusion -

Assessment of infant
formula storage
temperature and time

SVM [95]

Yao et al. Boletus
mushrooms

Data fusion of FT-IR
and UV -

Discrimination of
different geographical
origins of Boletus
mushrooms

PLS-DA and SVM [150]

Antonio et al. Honey Spectrofluorimetry

Adulterants (corn
syrup, sugar cane
molasses and
polyfloral honey)

Detection of
adulterations in a
valuable Brazilian honey

Multilinear
PLS-DA
(NPLS-DA),
unfolded PLS-DA
(UPLS-DA),
PARAFAC

[151]

Fang et al. Chinese lager
beers

Excitation-emission
matrix fluorescence -

Characterization and
classification of Chinese
pale lager beers
produced by different
manufacturers

PARAFAC-KNN [152]

Jiménez-
Carvelo et al.

Extra virgin
olive oils Fluorescence and NIR Adulterant

(vegetable oil)

Authenticate the
geographic origin of
Argentinean EVOO
samples

NPLS–DA [153]

Meng et al. Olive oil Excitation-emission
matrix fluorescence

Adulterant
(soybean)

Detection of adulteration
of olive oil with
soybean oil

Multiway-PCA
(MPCA), ANN,
PLS-DA

[154]

Yuan et al. Edible vegetable
oils

Infrared, NIR and
fluorescence - Identification of different

vegetable oils MPCA, NPLS-DA [155]

Uncu et al. Fresh olive oils Mid-infrared, UV–Vis
and fluorescence

Adulterant (old
olive oil)

Detection of adulteration
of olive oil OPLS-DA [156]

Gonçalves et al.
Monovarietal
Extra Virgin
Olive Oils

UV-Vis Phenolic
compounds

Monitor the behavior of
autoxidative processes
through the storage time
in two packaging systems
of different EVOO

MCR-ALS [157]

Suhandy et al. Peaberry coffee UV-Vis -
Classify coffee samples
as either pure peaberry
or pure normal coffee

SIMCA and
PLS-DA [158]

Torrecilla Vinegar UV-Vis -

Characterization of
vinegars produced from
six different
raw materials

PLS-DA and ANN [159]

Cavdaroglu et al. Vinegar UV-vis and FTIR
Adulterant (spirit
vinegar and
acetic acid)

Discrimination of
non-adulterated vinegar
from the adulterated

ANN [160]

Kucharska-
Ambrożej et al. Mint UV-Vis and FTIR

Distinguish between
two species of
mint (peppermint
or spearmint)

PLS-DA and SVM [161]

Botoran et al. Fruits NMR Amino acid
Differentiation of the
fruit samples in
varietal origin

PCA and LDA [162]
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Authors Food Materials Fingerprinting
Technique
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Components Objectives Chemometric
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Consonni et al. Coffee NMR

Fatty acids, β-(1-3)-
d-galactopyranose,
quinic acid and its
cyclic ester)

Characterizing organic
roasted coffee from the
conventional roasted
coffee

OPLS-DA [163]

De Moura
Ribeiro et al. Roasted coffee NMR

Adulterants (corn,
coffee husks, barley,
and soybean)

Investigating the
authenticity of the
roasted coffee

PCA [164]

Da Silva et al. Larger beer NMR Carbohydrates

Discriminate lager beer
samples from two
different classes,
according to their style
and information
provided on the label

PCA, PLS-DA [165]

Gougeon et al. Wines NMR -
Classifying wines of
different geographical
origins

OSC-PLS-DA [166]

Marseglia et al. Cocoa beans NMR

Amino acids,
polyalcohols,
organic acids, sugars,
methylxanthines,
lipids

Assess the geographical
origin of cocoa beans

OSC-PCA,
OPLS-DA [167]

Milani Ground coffee NMR Adulterants
Authentication of roasted
and ground coffee based
on adulterants

PCA, SIMCA [168]

Rachineni et al. Honey NMR
Adulterants (brown
rice syrup, corn syrup,
and jaggery syrup)

Identifying type of sugar
adulterants in honey

Deep learning-
based neural
network

[169]

Santos et al. Milk NMR

Adulterants (Whey,
urea, hydrogen
peroxide, synthetic
urine and
synthetic milk)

Detection of
adulterated milk SIMCA, KNN [105]

Shi et al. Camelia oils NMR Adulterants (cheap
vegetable oils)

Detection of adulteration
in camellia oils PCA, OPLS-DA [170]

Zhang et al. Edible oils NMR Fatty acids Distinguishing plant
origin of edible oils PCA, OPLS-DA [171]

3.1. X-ray-Fluorescence-Based Methods

Energy dispersive X-ray spectroscopy (EDXRF) is a technique commonly used for
determining mineral content in food samples. Additionally, its association with the un-
supervised and supervised data analysis tools demonstrated its efficiency to deal with
the challenges of food analysis. The scope of this section is to discuss the application and
usefulness of X-ray-based spectroscopic techniques in combination with chemometric tools
for qualitative and quantitative analysis of various food samples.

For example, [57] EDXRF has been applied with PLS Regression for analyzing the
micronutrient zinc in biofortified banana samples. This method showed good results
mainly on low limits of detection (LOD) and quantification (LOQ). Another research work,
conducted by Gamela et al. [56] used the same combination of EDXRF and PLS to determine
not only zinc but also the contents of copper and strontium in cocoa bean samples. The
study proved satisfactory results through the evaluation of developed PLS models in terms
of the same criteria. Additionally, this study has been extended and proved the ability of
EDXRF to be fused with Laser Induced Breakdown Spectroscopy (LIBS) to determine the
micronutrient potassium in cocoa beans using the supervised technique of multivariate
calibration. This fusion showed besides the satisfactory results an advantage to minimize
the matrix effect induced by samples of cocoa beans.
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The combination of Energy-Dispersive X-ray Fluorescence (EDXRF) and chemometric
tools have been used for qualitative purposes too. Galvan et al. [113] carried out an analysis
by EDXRF under two measurement conditions, to classify the geographical area of two
food species and also according to the production mode by PLS-DA. These food species
were tomato and sweet pepper samples Based on the good results of classification EDXRF
was considered an excellent technique for authentication of plant-based food products
based on the mineral elements K, Ca, Mn, and Fe. Another study for the same qualitative
purpose [115] carried out by the association of X-ray Fluorescence (XRF) to (PCA) permitted
to identify elements like Cl, K, Ca, Fe, Br, Cl, Rb and Sr which establish a clear fingerprint
pattern of the tomato. Similarly, other work applied several chemometrics tools for the
discrimination of Italian Extra Virgin Olive Oil (EVOO) geo-markers through the analysis
of mineral constituents using EDXRF and associated with PCA and SIMCA [114]. Besides
EDXRF and XRF, Total-Reflection X-ray Fluorescence was also employed for food screen-
ing [172]. For example, different wine samples from two different geographical regions of
Croatia were discriminated against based on the analysis of thirteen metal contents through
the association of TXRF with PCA, cluster analysis, and Linear Discriminant Analysis
(LDA). Thanks mainly to PCA, elements such as K, Mn, Ba, and Ni were determined as the
most relevant to characterize between different origins of wines [117]. TXRF has already
been associated with both PCA to obtain the clustering of the bean seeds according to their
geographical origin, then it was coupled to PLS-DA for classification purposes [116]. Spe-
cific studies that utilize EDXRF in combination with chemometric tools for qualitative and
quantitative analysis of various food samples are highlighted. The end points emphasize
EDXRF’s efficiency in determining mineral content, addressing challenges in food analysis,
and its application in food authentication and geographical classification.

XRF-based methods are commonly used in food quality control and analysis due to
their non-invasive and time-efficient nature. They can simultaneously detect and quantify
trace elements and contaminants in food. However, they have limitations such as limited
sensitivity, making them unsuitable for some applications, and being a surface analysis
technique, they may not provide information on deeper layers of the sample. The presence
of other compounds in the food matrix may also interfere with the analysis, necessitating
calibration and standardization to minimize such effects.

3.2. Hyperspectral and Multispectral Imaging

In contrast to traditional spectroscopy, hyperspectral imaging affords continuous
and high-resolution narrow-band spectral data linked to both physical and chemical sam-
ple composition [173]. With The HSI, an object’s spectral and spatial information can
be retrieved simultaneously by integrating spectroscopic and imaging techniques. This
technique has immense potential and has been reported in the detection of various food
adulteration, especially when it is associated with chemometric approaches for quanti-
tative purposes. The scope of the proposed paragraph is to discuss the application and
advantages of hyperspectral and multispectral imaging combined with chemometric tools
in detecting food adulteration, assessing food composition, monitoring food quality, and
classifying different food products.

Various studies have been conducted recently on wheat flour to estimate its different
contents [174]. Unlike conventional methods, HSI is a reagent-free, non-invasive [175]. One
of the special HSI characteristics is to exhibit metabolic transformations, making it useful to
assess food composition. A significant amount of recent work has been focused on the appli-
cation of HSI to various food and agricultural products and animal products. For instance,
hyperspectral imaging was used within 400–800 nm to develop a method for analyzing
impurities of mites in wheat flour through the supervised chemometric tool of ANN [119].
Benzoyl peroxide, which can also be found as a bleaching agent in wheat [85], was inves-
tigated using shortwave infrared (SWIR) HSI and PLS regression [65]. The estimation of
talcum content has also been done using hyperspectral imaging and the SNV-PLS model,
which proved to estimate adequately the talcum content [64]. In terms of food analyzed
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by HSI, research by Al-Sarayreh et al. investigated the efficiency of hyperspectral imaging
systems to detect meat adulteration, depending on its storage conditions. This analysis
proved efficiently the advantage of CNN compared to SVM for this analysis purpose [120].
In addition to wheat and meat, HSI has also been applied to other food samples such as
cheese. Priyashantha et al. developed and evaluated a predictive model based on coupling
the NIR-HS imaging technique and PLS for determining the maturity state of cheese. The
model was then applied on a pixel-wise basis, producing prediction images, and allowing
for the determination of how and where the maturity spread in the cheese [58]. On the same
food product, PLS and Monte Carlo Cross Validation (MCCV) were applied to HSI to detect
the main wavelengths of fat and microbial transglutaminase (mTG), which is responsible
for the color and yield of the cheese. Additionally, this study mentioned the possibility of
using HSI to inspect the cheese remotely through its transparent foil [59]. Potato is another
food sample that has recently started to be useful for monitoring its quality with HSI. Lu
et al. assessed the impact of storage times on the evolution of solanine content in potatoes
by using HSI in the spectral region of 500–1000 nm and support vector regression (SVR)
and then allowed estimating the edibility of the potatoes [60]. Besides solanine content,
the color is another indicator, that is also considered as a parameter to judge the quality of
potatoes. Xiao et al. combined HSI in the region of 477–947 nm and used and compare two
supervised tools: (PLS) and (LS-SVM) for predicting this last parameter [61]. The sweet
potato has been subjected to HSI analysis. Tian et al. investigated how the moisture and
total anthocyanin contents of potato samples under various drying conditions, by using
HSI in the region of 400–1000 nm and PLS. The obtained results of this method showed a
low prediction error and a high R2p [62]. The use of HSI has been shown to be useful in
predicting specific parameters that characterize food products. Recently, Li et al. analyzed
the quality of plum fruit based on color and soluble solid content using HSI and PLSR and
showed how short-wave infrared (SWIR) hyperspectral imaging can predict soluble solid
content, [63]. Sun et al. monitored the quality of melon through its indicators as sweetness
and hardness by associating NIR hyperspectral imaging system to PLSR [66].

Besides the quantitative advantages of HSI that have been cited, HSI has also been
widely used for qualitative purposes. HSI in the spectral domain has been applied to
detect chilling injury in agri-food products, which could not be achieved without subjecting
HSI to multivariate data analysis. For example, Cen et al. employed HSI in reflectance
(500–675 nm) and transmittance (675–1000 nm) modes with supervised classification tools
for the detection of chilling injury in cucumbers [124]. Tsouvaltzis et al. evaluated the
chilling injury in eggplant fruit by coupling visible and Near-Infrared (NIR) HSI to clas-
sification tools such as PLS-DA, SVM, and KNN to classify eggplant fruit according to
storage temperature [131]. Recently, Babellahi et al. demonstrated the convenience of HSI
with PLS-DA to discriminate between cold-stored green peppers that can be impacted by
chilling injury and fresh ones [123]. Another example applied to fruits; peaches might
have chill damage during cold storage which Pan et al. associated HSI to Artificial Neural
Network (ANN) to differentiate normal peaches from chill-damaged ones [121]. Sun et al.
assessed the classification of peaches based on the chilling injury by PLS-DA, SVM, and
ANN with Spectral Angle Mapper (SAM) which achieved the best classification perfor-
mances [122]. Related to the application of HSI on peaches, Li et al. investigated and
compared Long-Wavelength-Near-Infrared (LW-NIR) and Short-Wavelength-Near-Infrared
(SW-NIR) hyperspectral imaging by associating them with PCA and the approach of wa-
tershed segmentation for discriminating bruised from healthy peaches [118]. This study
clearly proved the advantage of SW-NIR in detecting early bruises in peaches. Moreover,
bruises have also been identified in blueberries samples by SWIR hyperspectral image
and the developed models based on two approaches: considering Least Squares-Support
Vector Machine (LS-SVM) with full spectra and optimum selected wavelengths by (CARS)
(CARS-LS-SVM model) [126]. There are many factors that can lead to bruising food items.
For example, Hyperspectral imaging technology applied in the region 400–1000 nm, was
used with PLS-DA to classify bruised tomatoes that were caused by falling damage, de-
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tection times, falling heights or fruit sizes [127]. Besides fruits and vegetables, HSI with
chemometric tools has shown its convenience in the qualitative analysis of wheat. Zhao
et al. developed an approach based on a hybrid CNN model with hyperspectral imaging
technology to classify different varieties of wheat seed [129,176]. In addition to wheat
seeds, maize seeds were classified through the association of HSI with the chemometric
approach of Radial Basis Function Neural Network (RBFNN) [130]. Soares et al. also
presented a new strategy for fast and non-destructive classification of cotton, based mainly
on coupling NIR-HSI images to PLS-DA. The results of this method showed good accuracy
in the classification of test samples, with correct classification rates [125]. The endpoints of
this section are to emphasize the potential of hyperspectral and multispectral imaging in
providing continuous and high-resolution spectral data linked to physical and chemical
composition, their non-invasive and reagent-free nature, and their ability to analyze various
food samples.

Hyperspectral and multispectral imaging are valuable tools for food quality control
and analysis, with advantages and limitations to consider. These imaging techniques
offer non-destructive analysis and high spatial resolution for detailed surface analysis,
simultaneous detection of multiple analytes, and real-time analysis for efficient quality
control. However, hyperspectral, and multispectral imaging equipment can be expensive,
have limited penetration for internal composition analysis, may lack sensitivity for detecting
low analyte levels, and require complex image processing and specialized expertise for
data analysis.

3.3. Infrared Spectroscopy

Infrared including (NIR) and (MIR) are ones of the conventional spectroscopy that
have been usually used with many multivariate data analysis tools in food quantitative
analysis. The scope of the proposed paragraph is to discuss the application and benefits of
infrared spectroscopy with chemometrics, in quantitative and qualitative analysis of food
components, such as carbohydrates, proteins, fats, and moisture content, as well as the
determination of functional groups, carbon, and nitrogen.

MIR is responsible mainly for detecting functional groups as well as carbon and
nitrogen, whereas NIR is used for determining carbohydrates, proteins, fats, and moisture
content in various foods [177]. However, the method is not sensitive enough for samples
containing just small amounts of target components. The fundamental vibrations occur
when absorbed in the NIR [178]. Wang et al. combined NIR PLSR to estimate the content
of potato flour in steamed bread [67]. Recently, the same association of NIR with PLS
regression was applied to wheat flour samples to estimate the quantity of low-content
talcum. In this study, several chemometrics were applied with PLS together to select the
effective feature as genetic algorithm and elastic net, thus improving the capacity of the PLS
model [68]. In addition to talcum, zearalenone might have an impact on the quality and
safety of wheat grains. Recently, a study was carried out to determine zearalenone in wheat
by NIR spectroscopy and (SVM) model. The results were significantly improved after the
application of a variable selection approach called least absolute shrinkage and selection
operator (LASSO) to extract useful spectral regions of NIR. In contrast to the contents that
can have an impact on wheat, the determination of valuable contents has been featured
in many recent research works [73]. Kamboj et al. predicted quality parameters mainly
protein and carbohydrate of wheat content that has been stored at different temperatures
using NIR Spectroscopy (NIRS) with PLS, MLR, and SVM [70]. Additionally, the fatty acid
value is also considered an important indicator of the quality of wheat flour, particularly
during storage. Therefore, Jiang et al. demonstrated the feasibility of using portable NIR
spectroscopy in conjunction with appropriate chemometric methods to achieve quantitative
determination of fatty acid values in wheat flour during storage. Jiang et al. used a method
called variable combination population analysis (VCPA) in addition to PLS to improve
NIR spectral characteristic wavelengths [72]. In addition to the chemometric tools that
were cited and used for quantitative purposes, MCR-ALS is one of the chemometric tools
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that is combined with FT-NIR spectroscopy to estimate certain characteristics of food
samples. For instance, an assessment of the combination of multivariate tools, including
PLS regression and MCR-ALS, was used to predict antioxidant activity from clove and
pomegranate extracts. The results showed that MCR-ALS with FT-NIR stood out among
PLS with high R2 and low RMSEP [74]. Another application of PLS and MCR associated
with FT-NIR was used successfully to estimate peanut oil adulterants, [75]. Castro et al.
also proved the efficiency of coupling FT-NIR with MCR-ALS for the quantitative purpose
of four adulterants at low levels in a complex mixture of saffron, including onion, calendula,
pomegranate, and turmeric [76]. In terms of determining adulterants in saffron, PLS-R was
applied to FT-NIR data of saffron to estimate lotus stamens and corn stigmas. This study
proved the efficiency of combining PLS with the variable selection approach of competitive
adaptive reweighted sampling (CARS) showing good results [77]. Additionally, crocin I
and II were analyzed using near-infrared spectroscopy and chemometrics. Crocin I and
II are considered the most important indicators of the quality and commercial value of
saffron [179]. Le et al. used FT-NIR and PLS to determine these two contents in saffron
with low RMSECV [78].

Many studies have shown how MIR and NIR spectroscopy are efficient for the qualita-
tive analysis of different food varieties comprised for example identification, classification,
and authentication, based on, for example, country of origin. For instance, Liang et al. used
NIR spectroscopy appropriately for the detection of zebra chip disease using Canonical
Discriminant Analysis with a low classification error rate [71]. Discriminative analysis
was applied to durum wheat to determine if they were contaminated by ochratoxin by
combining FT-IR and FT-NIR with PLS-DA and PCA-LDA. In this study, FT-IR and FT-NIR
were convenient spectroscopic techniques for discrimination purposes [133]. PLS-DA was
compared to other classification tools such as HCA, SVM, and ANN to identify and clas-
sify Panax notoginseng with its adulterants. The classification purpose of this work was
achieved by both PLS-DA and SVM with 100% classification accuracy [79]. PLS-DA showed
its efficiency in detecting the freshness of rice based on storage time using FT-NIR with an
accuracy of 96%, whereas the application of KNN achieved an accuracy of 100% [136]. In
relation to the analysis of rice by NIR, L.-H. Xie et al. led a discrimination of two kinds of
rice, waxy, which contains very low apparent amylose content, and non-waxy rice. The
developed PLS-DA model allowed the recognition of these two types of rice with 100%
accuracy [139]. Detecting fake eggs from authentic ones is another example that proves
the efficiency of FT-IR and chemometrics in this field of food analysis. Joshi et al. showed
how PLS-DA and SVM achieved a good classification of 100% [81]. The authenticity of the
native was subjected to FT-NIR analysis by Chen et al. who proved the efficiency of using
Data-Driven Class Modeling (DD-SIMCA) as an alternative tool for this classification [134].
The end points of the paragraph are to emphasize the effectiveness of infrared spectroscopy
in estimating the content of target components in food samples, such as potato flour, talcum,
zearalenone, protein, carbohydrate, fatty acid values, and antioxidant activity. The para-
graph also mentioned the successful application of chemometric approaches in enhancing
the accuracy and reliability of quantitative analysis using NIR and MIR spectroscopy.

Overall, infrared spectroscopy is a powerful and versatile tool for food quality control
and analysis. However, limitations such as limited penetration, sample homogeneity
requirements, calibration requirements, complexity of data analysis, and interference from
other components should be taken into consideration when using this technique.

3.4. Raman Spectroscopy

Raman spectroscopy is a vibration spectroscopy technique that is based on monochro-
matic light diffusion. It involves the excitation of a sample by collisions with photons,
which causes the sample to reach an unstable state of virtual energy. The scope of the
proposed paragraph is to discuss the application of Raman spectroscopy in food analysis,
both qualitatively and quantitatively.
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Raman spectroscopy was carried out for the determination of fat content in various
food samples such as milk and meat. Heterogeneous foods have recently been detected
chemically with Raman microscopy [180]. This combination is used qualitatively and
quantitatively to evaluate food value. Many organic components are detected and identified
based on the absorption curves. Microscopic food species can be analyzed too. Raman
microscopy has been carried out to determine the main composition of wheat and to detect
protein content changes during milling [181,182]. Raman spectroscopy detects changes in
protein secondary structure, conformational changes in lipid-binding proteins.

Based on the Raman spectrum, it is possible to estimate the relative concentration
of food contents. For instance, a recent study aimed to determine starch using Raman
spectroscopy and a linear regression model for a specific band, and PLS regression for a
specific spectral region [183], which confirmed the efficiency of association of FT-Raman to
PLS for the estimation of gluten content in flour [184]. Carotenoids have been determined in
tomatoes by Raman spectroscopy and PLS regression and proved low prediction error [88].
The main characteristic of Raman spectroscopy is that it can directly measure aqueous
solutions because of the low effect of water, and even the sample preparation of liquids for
Raman analysis is simple, which can be considered an advantage to estimating the contents
in food liquids such as milk [185]. Whey is one of the contents that has been quantified
accurately in the milk [89]. In addition to whey, macronutrients such as fat, lactose, and
protein have been successfully quantified in commercial yoghurt samples using FT-Raman
spectroscopy and PLS models [90]. In a recent study, milk adulterants such as sodium
bicarbonate, maltodextrin, and whey were also analyzed using Raman spectroscopy and
the PLS chemometric tool, with a low detection limit [91]. A handheld Raman spectrometer
has also been applied to quantify lard in adulterated butter, another milk derivative,
through PLS [186]. Richardson et al. demonstrated how Raman spectroscopy is able with
PLS to detect coconut water adulteration [112]. In a recent study, various variable selection
approaches were tested on surface-enhanced Raman scattering spectra of rice, used with
PLS for quantifying the target residue analyte of chlorpyrifos [109].

As it has shown its relevance for quantitation, Raman spectroscopy has proven its
efficiency with chemometric tools in many recent studies. For example, Robert et al.
built a classification model using SVM and PLS-DA to discriminate lamb meat from beef
meat despite the similar chemical composition of these two species [147]. Hai Chao et al.
classified duck meat according to the residues of testosterone propionate and testosterone
nandrolone using Raman Spectroscopy and Support Vector Classification (SVC) which
shows a classification rate of 100% for the test set [86]. Other residues that have an impact
on duck meat and have been subjected to analysis by means of Raman spectroscopy and
chemometrics are sulfonamides, comprised of sulfadimidine and sulphapyridine [187]. A
recent research work used a support vector classification on Raman Spectroscopic data
to classify duck meat into four groups, which are as follows: samples free of residues,
samples containing one of the two residues, and samples containing both residues [87].
Another mode of Raman spectroscopy called Spatially Offset Raman Spectroscopy, which
allows to measure the chemical compounds under the surface of meat tissues [188]. Besides
that, a study has also proven that the use of Raman spectroscopy in combination with
the SVM method can discriminate rice samples according to their regions with high-rate
accuracy [148]. Raman was applied to differentiate four categories of milk species of cow,
buffalo, goat, and human. Thus, Principal Component Analysis (PCA) besides Random
Forest (RF) was applied on Raman data to highlight and characterize the Raman spectra
of different milk samples with high accuracy of 93.7% [144]. In addition to benchtop
Raman, Handheld Raman spectroscopic devices have shown their efficiency using SIMCA
to classify milk samples from adulterated ones [189]. In addition to milk and its derivative
samples, PLS-DA was employed with Raman to accurately classify a milk derivative
of cheese whether it was adulterated by starch or not [93]. Related to handheld Raman,
Aykas, et al. succeeded in seeking to characterize commercial honey by combining handheld
Raman equipment and SIMCA [190]. A recent research work monitors according to a new
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method the adulteration in cassava starch, by means of Raman spectroscopy and supervised
tool One-Class Modelling (OC-SVM) which proved its higher accuracy compared to the
SIMCA, allowing for the discrimination of samples [191]. Discriminant analysis by PLS-DA
of coffee genotypes by Raman spectroscopy based on two main contents, kahweol and
fatty acids, has shown how Raman with chemometrics was more effective compared to
sensorial analysis [192]. Sha et al. combined Raman with PCA, HCA, and SVM for feature
extraction to improve the efficiency of identification of rice varieties [176]. For oil samples,
Jiménez-Carvelo et al. used chemometrics for the classification and characterization of pure
olive oil from adulterated using Raman spectroscopy in addition to NIR by employing
classification models. While PCA was used to reduce the features, other supervised
techniques were applied to for the discrimination goal [193]. Raman analysis was also
employed to discriminate waste cooking oil from edible vegetable oil. Thanks to PCA,
signals at 869, 969, 1302, and 1080 cm−1 were found to be the most important features to
differentiate between these two types of oils. In addition, PCA demonstrated its ability
to separate adulterated from pure oils when the adulteration proportions reached 10%
and 20% [194]. The endpoints of this part include the successful application of Raman
spectroscopy in estimating the content of specific food components and the detection and
classification of various residues and adulterants in food samples.

Finally, Raman spectroscopy is a valuable method for analyzing and controlling
the quality of food, offering several advantages such as non-destructiveness, molecular
specificity, sensitivity, minimal sample preparation, and high spatial resolution. However,
when using this technique, some limitations must be considered, including its limited
penetration depth, susceptibility to fluorescence interference, equipment cost, complexity
of data analysis, and sensitivity to water.

3.5. NMR Analysis

Nuclear magnetic resonance (NMR) is a spectroscopic technique used to determine the
molecular structure and physical properties of substances, and efficiently used to ensure the
quality of different varieties of food samples [195]. The scope of the proposed paragraph is
to discuss the application of NMR spectroscopy in food analysis, both qualitatively and
quantitatively. It focuses on the use of NMR spectroscopy and chemometric tools for food
identification, discrimination, and characterization purposes.

For example, the combination of low and high-field NMR and chemometrics, including
PLS-R and SVR, has proved its ability to accurately estimate essential quality parameters of
edible oils, especially to detect potential adulteration. The results summarized in statistical
parameters indicate that all developed models, whether of PLS-R or SVR on the three
different fields of NMR, were similar. In addition to oil applications, Haddad et al. have
carried out a quantitative analysis of fatty acids based on 1H-NMR variables as predictors
and relative mass percentages of fatty acids as targets, including caproic, caprylic, capric,
oleic, palmitic, and margaric [110]. Fatty acids have been accurately estimated in hen
egg samples by 1H-NMR and PLS regression [108]. Proton nuclear magnetic resonance
(1H-NMR) associated with chemometrics were combined to investigate the camellia oil
adulterants with other vegetable oils [170]. In addition to 1H-NMR, 1H TD-NMR was
combined efficiently with PLS regression to detect the percentage of adulterants such as
water and whey in milk products varied from 5% to 50% through milk package and without
sample preparation [105]. Besides PLS regression, Sun et al. successfully set up a model
to detect moisture content through the association of low-field NMR and ANN with a
low RMSE [107].

As previously shown, NMR spectroscopy supported by multivariate data analysis
tools has been applied for various qualitative purposes in different foods. For example,
Milani et al. successfully explored the versatility of 1H NMR with pattern recognition
of PCA and SIMCA for identification and discrimination of pure Brazilian coffee from
adulterated ones by corn, barley, or even coffee husks. The built SIMCA model ensured its
high classification accuracy [168]. In relation to these quality analysis of coffee, 1H NMR
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data of roasted coffee samples were analyzed qualitatively by OPLS-DA to characterize
organic roasted coffee from conventional coffee. The orthogonal signal correction (OSC)
allowed for the extraction of the main features of each coffee category and thus improved
the PLS-DA model discrimination. While fatty acids, β-(1-3)-d-galactopyranose, quinic
acid, and its cyclic ester were the major metabolites characterizing organic roasted cof-
fee, conventional coffee was characterized mainly by trigonelline and chlorogenic acid
isomers [163]. The OSC filter was used with PCA (OSC-PCA) and applied to HR MAS 1H
NMR data of cocoa beans to discriminate them based on their origin, whether they were
American or African, based on the fatty acids, acetate, and saccharides components [167].
In another research work, both 1H NMR and 13C NMR were employed to analyze refined
edible oils from different sources. By applying PCA on the 1H NMR or on 13C NMR,
it was possible to identify and characterize these plants based on their fatty acids [171].
Amino acids were analyzed by NMR and explored by chemometric tools in fruits, since
they are considered essential metabolites in cell function and enable distinction between
plants of the same fruit. For example, Botoran et al. identified ten kinds of amino acids that
allowed for the observation of differences and distinctions of different varieties of juice
using PCA and LDA, which accurately classified juices from different plant sources [162].
In the honey adulteration problem, Rachineni et.al analyzed successfully honey by associ-
ating 1H NMR with supervised machine learning (neural network) for the characterization
purpose of authentic honey from the adulterated whether by sugar, brown rice syrup or
jaggery syrup [169]. The endpoints of the paragraph include the successful application
of NMR spectroscopy combined with chemometrics, and machine learning, in accurately
estimating and detecting various quality parameters and adulterants in food samples.

Overall, NMR spectroscopy is a valuable tool for food quality control and analysis,
offering numerous advantages such as non-destructiveness, molecular specificity, sensitiv-
ity, and versatility. Additionally, it allows for quantitative analysis, making it particularly
useful for determining the concentration of specific compounds in food products. However,
the technique also has limitations that should be considered, including equipment cost,
limited penetration, sample preparation requirements, and sensitivity to sample properties.

3.6. UV-Visible

UV-visible spectroscopy is known as one of the most sensitive techniques for determin-
ing less concentrated contents in food samples. Its association with multivariate tools offers
an added advantage for such quantitative analysis. This technique uses electromagnetic
radiation between 200 and 800 nm and detects two different aspects: color and fat oxida-
tion [104]. The scope of the proposed paragraph is to discuss the application of UV-visible
spectroscopy in food analysis, particularly for quantitative and qualitative purposes.

In addition to other analytical techniques, a recent research work for the same food
product employed UV-Vis with PLS regression to accurately determine squalene in Extra
virgin olive oils (EVOO) [100]. Wu et al. integrated empirical mode decomposition with
SVR (EMD-SVR) to evaluate the quality of edible blend oils samples, concluding that
EMD-SVR was more accurate for the quantitative analysis of ternary edible blend oil [101].
Zhang et al. developed models by coupling UV-Vis to Partial least squares regression (PLS)
and principal component regression (PCR) for the quantitation of acid value in various oils.
The PLS models performed well compared to PCR models [102]. In addition to different
oil analyses, UV-Vis spectroscopy was proved to be more efficient as a method associated
with PLS instead of univariate tools for the quantitation of grape-must caramel in Balsamic
vinegars of different varieties of wine vinegars [103].

The UV-Vis spectroscopy has been combined with multivariate techniques for various
qualitative purposes in food analysis. For instance, UV-Vis combined with MCR-ALS is
a suitable tool to pursue the autoxidation of edible oils and to monitor the quality of
extra virgin olive oil (EVOO) in different packaging systems [157]. In addition to olive
oil samples, multivariate discrimination tools using UV-Vis spectroscopy, such as PLS-
DA and SVM, have been used to distinguish between two specific mint species, such as
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spearmint and peppermint, while SIMCA has been used to detect outlier samples other
than the two species [161]. Similarly, coffee has been analyzed by UV-Vis spectroscopy and
SIMCA to accurately classify and discriminate between Peaberry and normal coffee [158].
In addition to SIMCA and PLS-DA, artificial neural networks (ANN) have been applied
to UV-Vis spectroscopy to discriminate between vinegars produced from different raw
materials, showing the discrimination efficiency compared to PLS-DA [159]. Another study
used UV-Vis spectroscopy and ANN to discriminate between vinegars adulterated with
spirit vinegar or acetic acid [160]. The end points of the paragraph include the successful
application of UV-visible spectroscopy combined with multivariate techniques for food
analysis adulteration, improved discrimination, and classification purposes.

Generally, UV-Visible spectroscopy is a valuable tool for food quality control and
analysis, with several advantages such as simplicity, non-destructiveness, versatility, and
cost-effectiveness. However, it has limitations in sensitivity, interference, and surface
analysis that should be considered while using this technique.

3.7. Fluorescence Spectroscopy

Fluorescence spectroscopy is a technique that focuses mainly on the molecular level.
It refers to the process in which a specific wavelength of light is irradiated in a solution,
and the fluorescent substance in the solution absorbs the released energy. The scope of
the proposed paragraph is to discuss the application of fluorescence spectroscopy in food
analysis, both for quantitative and qualitative purposes. It highlights the molecular-level
focus of fluorescence spectroscopy and its ability to detect and analyze various elements in
food samples.

In recent years, fluorescence spectroscopy has been applied for the analysis of various
elements of food. For example, a recent research study exhibited the application of front-
face fluorescence mode spectroscopy and supervised PLS to estimate cow milk adulteration
with other milk kind [196]. Another study used excitation-emission matrix (EEM) fluo-
rescence spectroscopy and second-order calibration ways, like (PARAFAC) and (U-PLS),
to detect and estimate the content of melamine in milk [98]. Additionally, fluorescence
spectroscopy has been used to detect and quantify adulteration in olive oils [156]. Three-
dimensional fluorescence spectra were subjected to analyze the same analysis purpose
using the supervised approach of GA-SVR [99].

Many studies have shown the potential of fluorescence spectroscopy combined with
multivariate data analysis tools for the qualitative analysis of various food samples. For
example, Yuan et al. [155] conducted a comparative study using excitation-emission matrix
fluorescence, FTIR, and vis-NIR on different types of vegetable oils for discrimination
purposes using advanced chemometric tools (PCA, multiway-PCA, PLS-DA, and unfold-
PLS-DA). The study found that FTIR and Vis-NIR, were more suitable compared to EEM
for the identification of vegetable oil species. This is because most chemical components
in vegetable oil produce FTIR and NIR absorption, while only a small number of fluo-
rophores produce fluorescence [155]. Another study proved the same classification results
of these techniques for detecting olive oil adulteration. This highlights the importance
of combining analytical techniques with the appropriate chemometric tool [154]. Fluores-
cence spectroscopy has been combined with chemometrics to distinguish pure Aroeira
honey from adulterated. The advanced chemometric methods (PARAFAC, PLS-DA, un-
folded PLS-DA (UPLS-DA), and N-way PLS-DA (NPLS-DA)) were used to decompose
the spectral data and build classification models. This qualitative analysis has proven the
convenience of fluorescence spectroscopy with UPLS-DA for this kind of honey analy-
sis [151]. It can be noted from previous research that multi-way chemometric techniques are
often applied conveniently to EEMs data, whether on edible oils, honey, or beverages, as
demonstrated by Fang et al. for the classification of Chinese lager beers made by different
manufacturers [152]. The end points of the paragraph include the successful application of
fluorescence spectroscopy combined with multivariate data analysis tools for quantitative
and qualitative analysis of various food samples.
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Fluorescence spectroscopy is a powerful tool for food quality control and analysis,
offering advantages such as high sensitivity, specificity, non-destructiveness, and rapid
analysis. However, there are certain limitations that should be considered when using this
technique, including the complexity of sample preparation, potential interference from
other compounds, limited penetration depth, and high instrumentation costs.

3.8. Fusion of Spectroscopic Techniques

In recent years, the strategy of data fusion combined with multivariate statistical
analysis, that has been widely used to ensure the safety of food and to extract more
information for both qualitative and quantitative purposes. The scope of the proposed
paragraph is to discuss the application of data fusion combined with multivariate statistical
analysis in food analysis for both qualitative and quantitative purposes. It highlights the
use of various spectroscopic techniques such as UV-VIS, NIR, Raman, FT-IR, FT-Raman,
and MID, and their fusion with multivariate statistical models for food analysis.

A recent research work developed PLS and ANN models for the quantification of
adulteration in honey, using data fusion of non-pre-processed UV-VIS and NIR spectra [96].
Vis-NIR and Raman have also been merged and applied to predict the storage time of infant
formula between 0–12 months [95]. UV-Vis-NIR was combined with PLS to accurately quan-
tify cholesterol in egg yolk, whether in the shell or in pasteurized form [94]. Additionally,
the combination of PLS regression with the data fusion of FT-IR with Raman spectroscopy
allowed the determination of peroxide values and acid values in oils [197]. A study was
elaborated to test merging mid-infrared (MIR) with Raman spectroscopy for the fructose
syrup determination in honey samples. The PLS model was used to estimate the adulterant,
and the results were improved after the data fusion compared to the results obtained by
each of the two spectroscopic techniques [198]. The same conclusion was achieved by a
recent research work that evaluated the data fusion of NIR and MIR, combined with the
sequential orthogonalized partial least square regression (SOPLS), to estimate different
quality traits of tubers and root flours. These traits included different chemical compounds
including for example amylose and protein [69].

The efficiency of data fusion methodology for qualitative purposes has been proved
by Yao et al., who established a method based mainly on Fourier transform infrared (FT-IR)
and ultraviolet (UV) spectroscopies associated with data fusion to distinguish different
regions of mushroom samples [150]. A synergistic strategy of FT-Raman and NIR for the
classification of two classes of hazelnut: unadulterated and adulterated with almonds
using SIMCA was also demonstrated. The obtained results proved that merging the two
techniques can be more effective than using each technique alone, based on sensitivity and
specificity [142]. NIR and MID were also used with the SVM model to discriminate natural
honey from syrup-adulterated one. In this case study, Huang et al. showed two levels of
data fusion. A low level, in which redundant and irrelevant variables were introduced,
and an intermediate level, where PCA was applied to extract the feature variables. The
results acquired from this study had a significant increase in SVM model parameters of
accuracy, precision, and sensitivity using the intermediate-level data fusion [132]. The
endpoints of this section include the successful application of data fusion methodologies
with chemometrics for quantification of adulteration, for estimating different chemicals,
as well as for qualitative purposes and classifying unadulterated and adulterated food
samples. However, there are limitations to consider when using data fusion methodologies
in food analysis. The success of data fusion relies on the compatibility and complementarity
of the combined techniques and the availability of appropriate statistical models. Proper
calibration and validation procedures are necessary to ensure the reliability and robustness
of the fused data. Furthermore, data fusion may introduce additional complexity and
computational requirements, requiring careful data preprocessing and analysis. It is also
important to consider the specific requirements and limitations of each spectroscopic
technique and statistical model being used for data fusion.
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The fusion of spectroscopic techniques provides an advanced tool for food quality
control and analysis, offering advantages such as enhanced accuracy, complementary infor-
mation, improved sensitivity, and non-destructiveness. However, it should be noted that
this technique has some limitations, such as complexity, high equipment cost, sample prepa-
ration requirements, and limited penetration depth. These factors should be considered
before implementing this technique for food analysis.

3.9. Portable Spectroscopic Techniques

The food industry is constantly seeking faster, more accurate ways to assess the
safety and quality of their products while also detecting possible adulteration. Portable
spectroscopic equipment, such as Raman, NIR and HSI among other techniques, have
become increasingly popular due to their portability, accuracy, and ability to control food
products [199]. The scope of the proposed paragraph is to discuss the application of portable
spectroscopy techniques in the food industry for assessing food safety and quality, detecting
adulteration, and enabling in-process monitoring. It highlights the advantages of portable
spectroscopy equipment, such as Raman, NIR, and HSI, including their portability, accuracy,
low sample preparation requirements, and cost-effectiveness.

Portable spectroscopies equipment in general requires less sample preparation and
less hazardous consumption than traditional laboratory-based processes, granting fast
results on food quality and safety. Furthermore, these technologies provide the food in-
dustry the low cost-effective analysis and product safety [200,201]. Portable spectroscopy
techniques are highly effective in detecting food fraud and contaminants, such as pesticides,
heavy metals, and pathogens. Previous developments in portable fluorescence and Raman
spectroscopy have enabled water detection in milk and honey products with less expen-
sive syrups, respectively [202,203]. Moreover, they are involved to analyze food quality
attributes, for instance, mid-infrared spectroscopy used for fatty acid profile and fat content
in lamb meat [202], and the amount of fat in meat and its degree of tenderness [204]. The
NIR-HSI as a portable technique coupled with chemometric tools was showed excellent
application in different food products [205,206].

Portable spectroscopy techniques were demonstrated to be a valuable solution for
food manufacturers and processors, as they can be used for in-process monitoring of food
quality and safety. The technology can also be used for post-harvest processing, such as
the detection of mold and fungal infections in food products [207]. In addition, they have
demonstrated to be versatile in identifying various food tampering and contaminants, in-
cluding pesticides, heavy metals, and biological contaminants. They are also beneficial with
chemometrics for quality control testing and authentication for rapid food chain analysis
aimed at a perfect digital traceability system [201]. For a deep understanding, a recent
review article provides an overview of how miniaturized NIR spectroscopy can be applied
to address a range of issues in food-related settings [208]. They provide a comprehensive
summary of the latest research trends, highlighting key factors driving the development of
the micro-NIR analytical framework for modern food analysis, quality control, and safety
risk monitoring. Emphasis is placed on the significance of combining complementary tools
with the NIR analytical method, which enhances its precision, dependability, and versatility
for food applicability. The endpoints of this section include the successful use of portable
spectroscopy techniques and the use of chemometric tools for detecting food fraud and
contaminants, analyzing food quality attributes, monitoring in-process food quality, safety,
and rapid food chain analysis.

Finally, to highlight portable spectroscopy tools have several advantages in food
applications, including non-destructive sample analysis, rapid analysis where timely deci-
sions are needed, in situ analysis which is particularly useful in food-based applications.
However, there are also some limitations to the use of portable spectroscopy techniques
in food applications, such as limited accuracy particularly for complex samples, limited
range of wavelengths which may not be suitable for all applications, regular calibration
requirements which can be time-consuming, sensitivity to environmental conditions such
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as temperature and humidity, and often more cost-effective than traditional laboratory-
based techniques [201]. These limitations should be taken into account when implementing
portable spectroscopy in food analysis and quality control processes.

4. Importance of Integrating Advanced Spectroscopy Techniques in Food Analysis

The use of advanced spectroscopy techniques in food analysis is crucial for several
reasons. The scope of the proposed paragraph is to discuss the significance of advanced
spectroscopy techniques in food analysis, including their non-destructive nature, ability
to provide detailed information about food composition, and the use of chemometric
tools for data analysis. Firstly, techniques such as NIR, Raman, FTIR, and UV-Vis offer
a non-destructive and non-intrusive way of analyzing food samples, making them ideal
for large-scale analysis in the food industry without affecting the quality or safety of the
samples. Secondly, they provide detailed information about the chemical composition
and structure of food, which can be used to classify and identify different food types,
detect contamination, and monitor food quality changes. Lastly, the implementation of
advanced chemometric tools enables effective analysis of complex spectral data for food
quality assessment. The food industry faces a significant challenge in ensuring consistent
quality and overall food safety information throughout the entire supply chain, from
production to distribution, to meet consumer demands and expand the market. To address
this challenge, advanced non-invasive technologies are increasingly being used to monitor
the nutritional and hygienic properties of raw and end food products. The initial perception
of a food’s quality is often based on its texture, while the nanostructures in food play a role
in determining its color, shape, and sensory appeal (Figure 3).
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Spectroscopy techniques can help to determine the presence and quantity of key
components like flavonoids and antioxidants in food, which play a vital role in assessing
its quality. The effectiveness of using anthocyanin profile, color image analysis, and NIR-
HSI to differentiate between different grape varieties, with the aid of Stepwise Linear
Discriminant Analysis (SLDA) that was created for each dataset to differentiate grapes
based on their variety.
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Spectroscopic methods provide a valuable means to assess the quality of food by
determining the presence and quantity of important components such as flavonoids and
antioxidants. The combination of anthocyanin profiling, color image analysis, and near-
infrared hyperspectral imaging (NIR-HSI), along with the aid of dataset-specific Stepwise
Linear Discriminant Analysis (SLDA), proves effective in distinguishing between different
grape varieties based on their specific characteristics. In addition, it can be concluded that
NIR spectroscopy holds substantial promise for the non-destructive determination of total
phenolics and flavonoids [209]. The content of flavonoids in food can be influenced by
various factors, including seasonality, food maturity, and preparation methods employed.
In this sense, the spectroscopy methods such as Visible/NIR were used to determine the
levels of flavonoids in food [210]. These techniques are employed by various industries
including the milk, meat, coffee, and wine sectors to analyze the composition of food [211].
Assessing the quality of food based solely on sensory evaluation may not suffice, partic-
ularly for intricate evaluations. Advanced spectroscopy equipment with chemometrics
is highly recommended in such scenarios as it offers advantages that are not attainable
through manual inspection alone.

Traditional methods of food quality detection can be cumbersome, repetitive, destruc-
tive, and take up a lot of time. Non-destructive methods, on the other hand, offer a more
efficient way of gaining both quantitative and qualitative data without destroying the
sample. The recent developments in non-destructive food quality assessment techniques
include imaging, spectroscopy, and cutting-edge approaches such as electronic nose, elec-
tronic tongue, dielectric, and acoustic methods [212]. For instance, conventional methods
of analysis and detection, for instance, thin-layer chromatography and high-performance
liquid chromatography (HPLC) are yet largely used in the basic food industry to detect food
quality. Nevertheless, these procedures are damaging, laborious, and time-consuming. Con-
sequently, spectroscopic techniques were demonstrated their use and importance for food
quality control including visible/infrared (VIS/IR) [212,213], Raman spectroscopy [214],
NMR [215], and HSI [216].

In contrast, the field of food authentication poses a major challenge that can be ad-
dressed using advanced spectroscopic tools. Adulteration in food is often accomplished by
substituting ingredients with cheaper options that are not easily distinguishable by either
consumers or conventional analytical techniques [217]. To confirm the geographical origin,
storage conditions, and processing methods listed on food labels, it is necessary to analyze
specific components in samples. Hence, the development of trustworthy and effective
analytical methods is vital for creating new policies, programs, and techniques to verify
food authentication.

The scope of the proposed paragraph is to emphasize the importance of advanced
spectroscopy techniques in food analysis, including their non-destructive nature, ability
to provide detailed chemical information, and the role of chemometric tools in analyzing
complex spectral data. The endpoints are to highlight the use of spectroscopy techniques for
assessing food quality, detecting adulteration, and verifying food authentication. However,
it should be noted that the paragraph does not delve into the specific methodologies
or algorithms associated with spectroscopy techniques and chemometric data analysis.
However, there are limitations to consider when using spectroscopy techniques in food
analysis. These limitations include the influence of various factors on the content of
flavonoids in food, the need for dataset-specific analysis methods, and the challenges
associated with distinguishing food adulteration using conventional analytical techniques.

In summary, the integration of different spectroscopy techniques either separately or
in a combination or fusion can also enhance the overall performance of food analysis. This
can be achieved by using chemometric data analysis approaches.

5. Food Application and Aspects

Spectroscopic methods involve the use of electromagnetic radiation through absorp-
tion, transmission, and emission, and are based on the wavelength of the radiation. Unlike
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traditional techniques, spectroscopic methods have become essential tools for determin-
ing food properties through real-time monitoring and non-invasive techniques. Recently,
advanced spectroscopic techniques combined with chemometric approaches have been
developed and applied in various food applications and areas such as sensory analysis,
adulteration detection, chemical analysis, mycotoxin detection, parasitic infection detection,
internal physiological analysis, and others.

5.1. Sensory Attributes

The sensory characteristics of basic foods, such as structure, color, toughness, texture,
and outside defects, are crucial elements of food quality. The color of a food is generated
by the reflection of distinct wavelengths in the visible light section. The structure of a
product, which is often determined by its size, weight, or volume, can influence consumer
preferences and final consumption. Hardness is a primary indicator of food property,
indicating the texture and moisture content of food. External defects, which occur during
or after harvest, are another common sensory attribute that greatly impacts food quality.
Consequently, precise, and timely forecasting of these sensory characteristics is a primary
concern for the farming and food industry. The scope of the proposed paragraph is to
discuss the importance of sensory characteristics in food quality and the role of spectroscopy
techniques combined with chemometrics in evaluating these characteristics. It highlights
the significance of texture, color, hardness, and external defects in determining food quality
and consumer preferences.

The sensory characteristics of texture and color were established using VIS and NIR
spectroscopy. The VIS/NIR spectroscopy was shown to be a reliable method for evalu-
ating the quality of dry beans during the canning process [218]. A discriminatory linear
model was applied to classify the canned beans into two categories: “acceptable” and
“unacceptable”. The model achieved an ordinary classification accuracy of 72.60%. As
sensors and instruments improve, it is expected that VIS/NIR spectroscopy will meet the
necessary requirements for its use. The evaluation of basic foods using HSI systems mainly
focuses on color, hardness, and external defects. In a recent study [219], the color of fresh
soybeans was determined using an active contour model to segment the spectral images.
This HSI technique was found to be more effective in acquiring the mean reflectance and
entropy parameters of the image. A PLSR model was established to detect the color of
processed soybeans with a good R2 of 0.74 and used HSI in the range of 400–1000 nm
to discriminate rice samples based on color and shape. Five shape features (minor axis
length, major axis length, perimeter, length-width ratio, and eccentricity) and one-color
feature (degree of chalkiness) were utilized as inputs for a back propagation neural network
(BPNN) model, resulting in a high classification accuracy of 94.45%. The performance of
PLSR and PCR in evaluating the hardness of wheat samples using HSI in the wavelength
range of 960–1700 nm and found that PLSR outperformed PCR. Additionally, hyperspectral
imaging was also significantly used to determine the surface defects of potatoes [220]. The
effectiveness of the proposed method in identifying kernels where the germination process
has begun was demonstrated through experiments involving three wheat cultivars. The
results achieved 100% accuracy for the samples utilized in this study [221]. The surface
defects of potatoes were also determined using the HSI technique. Moreover, the results
were combined with the SVM classification tool to achieve a high-accuracy performance in
determining the surface defects of potatoes [222]. The endpoints of the paragraph include
the effectiveness of spectroscopy techniques, such as VIS/NIR and HSI, in determining
the color, hardness, and external defects of food samples. It also highlights the successful
application of discriminatory models and neural networks in classifying and predicting
sensory characteristics based on spectroscopic data.

Spectroscopic techniques are useful in food sensory analysis to measure properties
such as color, texture, and flavor. The advantages of these techniques include objective
measurement, non-destructiveness, and rapid results. They can provide a detailed analysis
of food chemical composition, helping to identify changes due to processing or storage.
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However, limitations include the need for calibration and reference materials, the possibility
of interference from other compounds, and the complexity of data analysis. The cost of
equipment and expertise required may also be a barrier for smaller food businesses.

5.2. Adulteration Attributes

Adulteration refers to the practice of mixing inferior quality substances with superior
original substances and or/by adding ingredients of lower quality, which can negatively
impact the completeness and nutritional value of food products [217]. Often, the presence
of contaminated materials is very comparable to that of the initial products, making it
complicated to differentiate them when blended. Additionally, establishing the species
and source of staple foods is important in protecting consumers from potential fraud, as
food geographical indications cannot be confirmed solely from food labels. Thus, reliable
analysis of adulteration is required to confirm the quality of the product. The scope of
the proposed paragraph is to discuss the problem of food adulteration and the role of
spectroscopic techniques with chemometrics in detecting and differentiating adulterated
food samples. It highlights the challenges posed by adulteration, including the difficulty in
differentiating contaminated materials from the original products and the importance of
confirming the species and source of staple foods.

Spectroscopic techniques, such as Transmission Raman spectroscopy, have been used
to achieve this goal. In a recent study, Transmission Raman spectroscopy was used to
differentiate rice samples based on their geographic origin using PCA and LDA [223].
Similarly, Feng et al. (2013) used a combination of Raman spectroscopy and multivariate
data analysis techniques to differentiate rice samples from various regions of China, with
an overall accuracy of over 90% [224]. Different types of rice samples and their geograph-
ical origin were effectively discriminated using 1H-NMR spectroscopy and multivariate
data analysis. The accuracy of wheat flour sample discrimination using a simple linear
model was 80% [225]. The study by Esteve Agelet et al. (2012) tested the feasibility of
NIR spectroscopy to discriminate viable-germinating corn and soybeans from dead seeds
and found that dead corn kernels could be discriminated with an accuracy of 99% using
partial least squares discriminant analysis (PLS-DA) [226], Haughey et al. (2013) used
NIR spectroscopy (833–2632 nm) to detect adulteration of soybeans with melamine and
achieved R2 values ranging from 0.89 to 0.99 using PLSR and PCR algorithms [227]. The use
of Fourier transform mid-infrared (FT-MIR) spectroscopy and discriminant analysis was
successful in detecting adulterated potato and sweet potato starch by Liu et al. (2013) [228].
Similarly, FT-IR spectroscopy and discriminant analysis were combined for the geographi-
cal differentiation of dried lentil seeds [229]. For imaging spectroscopy, it was examined
to identify different types of wheat kernels, and found that better results were obtained
by selecting three specific wavelength intervals. The ability of NIR spectroscopy to detect
adulteration of soybeans by melamine was demonstrated, with R2 values of 0.89 to 0.99
using PLSR and PCR algorithms [230]. NIR spectroscopy was also used to distinguish
viable-germinating corn and soybeans from dead seeds, with perfect accuracy based on
PCA and PLS-DA [231]. The NIR and HSI in combination with PCA to detect residues of
0.10% peanuts in wheat flour, with an R2 of 0.95 [232]. All these spectroscopic techniques
demonstrated very great accomplishments in detecting different forms of food fraud and
authentication. The end points of the paragraph include the effectiveness of spectroscopic
techniques in detecting and differentiating adulterated food samples based on their chem-
ical composition. It mentions the advantages of spectroscopic techniques, such as high
sensitivity, specificity, and non-destructiveness, which allow for the identification of small
changes in the food samples.

Spectroscopic techniques detect food adulteration by analyzing the chemical com-
position of food samples. Advantages include high sensitivity, specificity, and non-
destructiveness, which can identify small changes in the food sample. Limitations in-
clude the need for calibration and reference materials, interference from other compounds,
limited applicability, and cost of equipment and expertise.
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5.3. Chemical Attributes

The chemical composition of food plays a crucial role in determining its nutritional
value and consumer acceptance. The scope of the proposed paragraph is to discuss the
chemical composition of food, focusing on cereals and legumes, and highlight the impor-
tance of accurate measurement and control of their chemical components for determining
nutritional value and food quality. The main chemical components in cereals and legumes
are carbohydrates, protein, moisture, fiber, fat, and ash. Starch, a type of carbohydrate,
is composed of helical amylose and branched amylopectin. The nutritional value and
consumer acceptance of food are significantly influenced by its chemical composition.
Cereals and legumes primarily consist of carbohydrates, protein, moisture, fibre, fat, and
ash. For instance, maize can range from 20% to 36%, sorghum from 21% to 35%, wheat
from 17% to 29%, barley from 11% to 26%, rice from 8% to 37%, pea from 34% to 37%,
and potatoes from 18% to 23% [233]. Among these components, starch, a type of carbo-
hydrate, is composed of amylose and amylopectin. The relative proportions of amylose
and amylopectin in starch have a notable influence on the quality of food products such
as bread and noodles [234]. The content of those chemicals can vary greatly which can
influence the food quality properties and high-performance techniques needed to control
their concentrations. Staple foods are primarily composed of proteins, which contribute to
their structural and functional properties, affecting their quality and taste. Moisture content
is a major factor that influences the shelf life and germination success of staple foods. The
fiber in these foods, made up of cellulose, hemicellulose, lignin, pectin, and gums, can help
lower cholesterol levels but does not provide energy. Lipids are the most energy-dense
component, providing more energy per gram than carbohydrates and proteins. Ash con-
tent, which is the inorganic residue after organic matter is burned, indicates the presence
of minerals in the food sample. Moisture content is commonly measured through drying
with an oven or Karl Fisher titration, both of which have low efficiency [235]. The content
of crude fat in staple foods can be measured by extracting the dried material using ether
or petroleum ether. The crude protein content is typically determined using Kjeldahl
or Dumas methods, which quantify the organic nitrogen content [236]. However, these
traditional methods are destructive, time-consuming, and require a long preparation time.
To overcome these limitations, the use of non-destructive and rapid detection methods
is desired. The VIS/IR spectroscopy techniques hold the potential for determining the
chemical components in staple foods. Nie et al., demonstrated that VIS/NIR spectroscopy
in the range of 400 to 1000 nm can be used non-destructively to determine the presence of
the poisonous phytohemagglutinin in beans by monitoring the boiling time of yard-long
beans [237]. Both NIR and MIR techniques were used to verify the chemical characteristics,
as well as protein, lipid, moisture, and ash amounts in soybean, while PLSR models showed
good performance [238]. The preparation and determination of staple food samples using
VIS/IR spectroscopy techniques take less than five minutes, compared to the 10–16 h
required by traditional methods. FT-NIR spectroscopy has been shown to estimate the
concentration of moisture, protein, lipid, ash, and carbohydrate in Brazilian soybeans with
high accuracy [239]. The protein and moisture content had the best results with correlation
coefficients of 0.81 and 0.80, respectively. NIR spectroscopy has also been used to accurately
predict the crude protein content in potatoes, with high correlation coefficients ranging
from 0.86 to 0.95 using PLSR for calibration [240]. The VIS/NIR (446–1125 nm) was ap-
plied for chemical components in two varieties of potato tubers [241]. The chemical and
enzymatic compositions of staple foods, including phenolics, flavonoids, anthocyanins,
carotenoids, dioscin, and catalase, have been screened using NIR or MIR spectroscopy and
analyzed using chemometric methods namely HCA, PCA, SVM and PLS-DA, producing
good predictive ability [241–243]. The endpoints of this section include the advantages of
spectroscopic techniques in offering high sensitivity, specificity, and non-destructiveness
for food chemical analysis. It mentions their ability to quickly identify small changes in
food composition and measure parameters such as acidity, pH, and moisture content.
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Spectroscopic techniques offer high sensitivity, specificity, and non-destructiveness
for food chemical analysis. They can quickly identify small changes in food composition
and measure parameters such as acidity, pH, and moisture content. However, limitations
include the need for calibration and reference materials, interference from other compounds,
and the complexity of data analysis. The cost of equipment and expertise required may
also be a barrier for smaller food businesses.

5.4. Mycotoxin Attributes

The presence of mold and its associated toxins during post-harvest storage can result
in a decrease in food quality, leading to losses in nutrients and market value, as well as
pose serious food safety risks. The scope of the proposed paragraph is to discuss the
presence of mold and mycotoxins in post-harvest storage and their negative impact on
food quality, safety, and market value. It emphasizes the harmful effects of mycotoxins,
such as aflatoxins and Fusarium toxins, which are known to be carcinogenic and linked to
liver and lung cancer in humans.

Mycotoxins, like aflatoxins and Fusarium toxins, are harmful byproducts produced
by mold and are recognized as carcinogenic, linked to liver and lung cancer in humans.
According to estimates, as much as 25% of crops grown for both animal feed and human
consumption globally may be contaminated with mycotoxins [244]. Mycotoxin amounts
for essential food products have been specifically restricted by the EU [245]. In the USA,
20 ppb (parts per billion) of aflatoxin amounts in food and 100 ppb in feed are permitted
for the administrative market [246]. Giving to the FAO, one billion metric tons of food are
rotten worldwide yearly caused by mycotoxins [247]. Hence, the ability to accurately detect
various levels of fungal contamination can greatly aid in controlling plant diseases and
reducing food safety hazards. Currently, the methods for identifying and measuring toxins
consist primarily of thin-layer chromatography and high-performance liquid chromatogra-
phy, but these methods are both expensive and time-consuming and involve the destruction
of samples [248]. The detection of mycotoxins in staple foods can be performed quickly
and easily using IR spectroscopy. The NIR spectroscopy in the range of 950–1650 nm was
used in conjunction with PLSR to detect total fungal and yellow-green Aspergillus flavus
infections in rice [249]. However, the accuracy levels for both total fungi and yellow-green
A. flavus infections were not high. The PLS was based on full cross-validation to detect
fumonisin contamination in maize through NIR spectroscopy, achieving a high R2 of 0.91.
This demonstrates that NIR spectroscopy is a viable alternative tool for detecting fumonisin
infections [250]. The FT-MIR spectroscopy in the range of 2500–16,000 nm with an attenu-
ated total reflectance unit to differentiate peanut kernels contaminated with aflatoxin and
non-aflatoxin strains. The “Acceptable” stream (aflatoxin ≤ 20 ppb) was separated from
“Mildly” (20 < aflatoxin < 300 ppb), “Highly Toxic” (300 < aflatoxin < 1200 ppb), and
“Highly Moldy” (aflatoxin > 1200 ppb) through classification. The fingerprint region
(5556–12,500 nm) was utilized to predict the A. flavus and A. parasiticus species with vary-
ing levels of contamination based on PLS regression, achieving an R2 of 99.98% [251]. The
utilization of the Raman technique in combination with PCA allows for the non-invasive
detection of deoxynivalenol (commonly known as vomitoxin) in contaminated wheat and
barley [252]. The benefits of this approach consist of the utilization of a NIR laser excitation
(1064 nm), which minimized disruption from the fluorescence of biological substances.
The endpoints of the paragraph highlight the advantages of spectroscopic techniques in
food mycotoxin analysis, including high sensitivity, specificity, and non-destructiveness.
It emphasizes the ability of these techniques with chemometric models to detect even
small amounts of mycotoxins in food samples and provide rapid measurements of various
chemical parameters.

Spectroscopic techniques offer advantages in food mycotoxin analysis such as high
sensitivity, specificity, and non-destructiveness. These techniques can detect even small
amounts of mycotoxins in food samples and provide rapid measurements of various
chemical parameters. However, limitations include the need for calibration and reference
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materials, the interference of other compounds in the sample, and the limited applicability
of certain techniques to specific mycotoxins.

5.5. Parasitic Contamination

Staple foods can be degraded and lose market value due to contamination from
parasitic insects. The scope here is to discuss the contamination of staple foods by parasitic
insects and the detrimental effects they have on food quality and market value. The
activities of parasitic insects, both external and internal, and their impact are highlighted.

The insects not only feed directly on the food, but also create heat and moisture through
their metabolic activity, leading to localized hotspots and spoilage. This results in weight
loss, nutrient depletion, reduced germination ability, and increased risk of contamination
during storage. External insects like the Oryzaephilus surinamensis and internal insects
such as Sitophilus granarius can both harm stored products. Some insects like the sweet
potato weevil (Cylas formicarius elegantulus) do most of the damage inside the food
without significant external changes. Others, like the rice weevil (Sitophilus oryzae) and
lesser grain borer (Rhyzopertha dominica), lay eggs, larvae, or pupae in seeds, continuing
their destructive activity for up to 7 weeks, until the adult insects emerge and leave an exit
hole, making the damage visible [253].

The detection of parasitic insect infestations in staple foods is crucial for the food indus-
try. Such infestations can decrease the quality and value of the food. Internal infestations
are more challenging to detect and require effective methods for inspection. HSI, a spectral
information technique, has the potential to provide information about internal infestations
through reflectance or absorbance measurements. A study by Singh et al. (2009) used LW-
NIR HSI (900–1700 nm) to differentiate between insect-infested and healthy wheat kernels,
achieving an accuracy of over 85% with LDA and QDA classifiers [254]. The endpoints of
the paragraph emphasize the importance of detecting parasitic insect infestations in staple
foods to mitigate the negative effects on food quality and value. Internal infestations are
highlighted as being more challenging to detect and requiring effective inspection methods.

Spectroscopic techniques detect parasitic contamination in food with high sensitivity,
specificity, and non-destructiveness. These techniques rapidly and precisely measure
various chemical parameters, but limitations include the need for calibration and reference
materials, the possibility of inaccurate results due to other compounds in the sample, and
limitations in detectability for certain parasites. The cost and expertise required may also
be a barrier for smaller food applications.

5.6. Internal Functional Characteristics

Functional disturbances within staple crop plants are linked to irregular growth
patterns brought on by less-than-ideal environmental factors. The scope here is to discuss
briefly some examples of the internal functional characteristics disturbances within staple
crop plants such as those caused by environmental factors.

The functional disturbances include variations in temperature, moisture, oxygen, nu-
trients, the presence of toxic gases, and a deficiency in growth regulators. The symptoms
of these internal conditions appear to be root tuber disorders such as hollow heart, black
heart, and internal brown spot. Overuse of nitrogen fertilizer during the growth phase
can cause hollow heart in tubers, a condition where the tuber’s core dies or splits, creating
a cavity [255]. This disorder is commonly triggered by the rapid growth of the tuber
and results in reduced storage life, poorer quality chips, and an unattractive appearance.
Blackheart is a condition that arises when there’s insufficient oxygen during the tuber’s
growth or storage period. Tubers cultivated in excessively damp areas or those exposed
to severe temperatures are more prone to this condition. Internal brown spot refers to
the internal death of the tuber’s central tissue, which significantly diminishes its culinary
worth. Other physiological damage, such as freezing or chilling injuries, occurs due to
extended exposure to freezing temperatures post-harvest. The symptoms of these injuries
manifest as grey or black patches, or a brown discoloration around the tuber’s vascular
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ring. Even though these internal physiological disorders may not be immediately visible,
they greatly affect the quality and value of root and tuber crops. X-ray examination has
been reported to successfully detect hollow hearts in potatoes but attempts to use acoustic
methods for detection have been unsuccessful [256], although unsuccessful using an acous-
tics method [257]. Traditional methods are also heavily dependent on the orientation of the
potato. However, spectroscopic techniques have been shown to be effective for the non-
destructive prediction of internal physiological disorders, including black heart, hollow
heart, and internal brown spot in root tubers. The VIS/NIR transmission spectroscopy
(513–850 nm) used to compare three different morphological correction methods combined
with PLS-DA and PCA to detect black hearts in potatoes. The best performance was found
with height-corrected transmittance. Using six wavelengths (839, 817, 741, 711, 698 and
678 nm), the overall validation classification rate for the black heart was 96.53% [258]. The
HSI in the 1000–1700 nm range was applied to distinguish hollow heart and internal brown
spots in tubers. Specifically, the HSI technique was applied to detect the presence of hollow
hearts in potato tubers [259]. An accurate recognition rate of 89.10% was achieved by
combining support vector machine (SVM) with various image processing techniques. Simi-
larly, time-resolved reflectance spectroscopy (540–900 nm) was used for non-destructive
external measurement of internal brown spots in potato tubers [260]. By internal detection
of healthy tissue and black spots, the most sensitive wavelength for detection was found to
be 690 nm. The endpoints of the paragraph emphasize the negative effects of these internal
physiological disorders on the quality and value of root and tuber crops.

Spectroscopic techniques offer insights into food’s internal functional characteristics,
such as composition, structure, and functional properties, with high sensitivity, specificity,
and non-destructiveness. They allow for rapid and precise measurements of various
chemical and physical parameters. However, challenges arise from the need for calibration
and reference materials, potential interference from other compounds, and limitations in
the applicability of certain techniques. Moreover, the cost of equipment and expertise
required may be an obstacle.

6. Conclusions

In conclusion, advancing spectroscopy techniques offer a game-changing solution
for food composition analysis, presenting a non-destructive, rapid, cost-effective, and eco-
friendly alternative to traditional methods. These techniques provide valuable insights into
food quality, chemical components, composition, structure-function relationships, and sen-
sory attributes, eliminating the need for extensive sample preparation in many cases, thus
saving time and resources. Coupled with appropriate chemometric multivariate methods,
spectroscopy enables comprehensive and accurate analyses of various food materials.

This review has highlighted recent studies showcasing the effectiveness of spec-
troscopy techniques, such as hyperspectral and multispectral imaging, NMR, IR, Raman,
X-ray-based methods, fluorescence, and UV-visible, in conjunction with chemometric
approaches for diverse food analysis applications. From determining the chemical composi-
tion and identifying geographical origin to ensuring food safety and traceability, monitoring
storage and preservation, assessing sensory characteristics, evaluating microbial quality,
and detecting food spoilage, these techniques have shown immense potential and versatility
in the food industry.

Looking ahead, the future of spectroscopic techniques in food analysis appears highly
promising. As technology continues to advance, these techniques are expected to be-
come even more powerful, accurate, and efficient, opening new avenues of research and
application. It is strongly recommended that food businesses and researchers embrace
spectroscopy in their analyses and consider integrating these techniques into their standard
practices to enhance the overall efficiency and quality of food analysis.

However, it is crucial to acknowledge the challenges and limitations that may arise
with spectroscopic methods, such as issues related to sample heterogeneity, sensitivity, ac-
curacy, and the need for proper calibration and reference materials. Chemometric methods,
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while invaluable, require careful handling to avoid issues like overfitting and to ensure
reliable results, potential drawbacks of chemometric methods, such as overfitting or the
need for extensive data processing and model optimization should be also considered.

As the field progresses, further research and development are essential to optimize
and expand the capabilities of spectroscopic techniques in food analysis. By addressing
these challenges and pushing the boundaries of innovation, spectroscopy can revolutionize
the food industry, bolstering food safety, quality control, and product innovation in a
sustainable and impactful manner.
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