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Abstract: As the demand for seafood increases, so does the incidence of seafood fraud. Confirming
provenance of seafood is important to combat fraudulent labelling but requires a database that
contains the isotopic and elemental “fingerprints” of authentic seafood samples. Local isotopic and
elemental databases can be scaled up or combined with other databases to increase the spatial and
species coverage to create a larger database. This study showcases the use of isotopic and elemental
fingerprints of the black tiger prawn (Penaeus monodon) to develop a database that can be used
to securely store the data necessary for determining provenance. The utility of this database was
tested through querying and building seven different datasets that were used to develop models to
determine the provenance of P. monodon. The models built using the data retrieved from the database
demonstrated that the provenance of P. monodon could be determined with >80% accuracy. As the
database was developed using MySQL, it can be scaled up to include additional regions, species,
or methodologies depending on the needs of the users. Combining the database with methods
of determining provenance will provide regulatory bodies and the seafood industry with another
provenance tool to combat fraudulent seafood labelling.

Keywords: seafood; provenance; MySQL database; authentication; tiger prawn; elemental analysis;
stable isotope analysis

1. Introduction

Fish, crustaceans, molluscs, and other aquatic animals are widely traded food com-
modities in the world, with a total farmgate sale value of USD 401 billion in 2018 and a
record 179 million tons caught in the same year [1] The demand for seafood has increased
globally at an average rate of 3.1% per annum from 1961 to 2017, driven by an increase
in production as well as developments in processing, shipping, and distribution [1]. This,
however, has increased the number of instances of seafood fraud across the globe [2–5]
most acts of fraud are associated with poor or no monitoring at sea and ports and ineffective
systems to determine provenance [6,7]. Cases of seafood fraud have been detected in coun-
tries such as Germany, Canada, the United States, the United Kingdom, Singapore, Taiwan,
Australia, and New Zealand [2–5,8]. Many of these cases consist of mislabelling, where
seafood is incorrectly labelled as a different species to raise the sale price and mislead the
consumer [2–5,8]. For instance, Cawthorn [8] examined mislabelling in snappers (Family:
Lutjanidae) in Canada, the United States, the United Kingdom, Singapore, Australia, and
New Zealand and found that around 32% out of 300 samples were incorrectly named,
and 40% were mislabelled. Similarly, an Oceana study examined 1215 samples collected
across the United States, where around 33% of the samples were mislabelled [5]. Therefore,
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reliable methods of determining seafood provenance are necessary to act as a deterrent
against seafood fraud.

Determining seafood provenance relies on DNA profiling, fatty acid profiling, various
methods of elemental profiling (Inductively Coupled Plasma-Mass Spectrometry (ICP-MS),
and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)), stable isotope
analysis (SIA), and micro-X-ray fluorescence (µXRF) through the Itrax XRF Core Scanner
from Cox Analytical Systems [9]. Due to the complex supply chains of seafood products in
the global market [10,11] recommended the use of multiple analytical methods to combat
seafood fraud. Among them, the combined use of stable isotopes and elemental analysis
discriminates between farmed and wild-caught samples and can separate geographic
origins [12–16]. Previous studies have demonstrated that the combination of SIA and
µXRF through Itrax provides >80% accuracy when determining seafood provenance [11,17].
The isotopic and elemental values from these analyses are used to test the provenance of
unknown seafood samples using various classification and decision tree models [11,17].

Several studies have examined the use of larger regional or global scale databases to
combat seafood fraud. For instance, Watson, Green [18] used global import and export
databases to virtually track seafood through the supply chain. However, they noted that
wild-caught or mariculture production was underestimated, and further work would be
required to “ground-truth” or verify the provenance of seafood. Furthermore, the existing
databases in countries like Europe focus on utilising DNA profiles of seafood [19,20].
Another database of note is the Barcode of Life Data System, which contains the DNA
barcodes of 244k animal species [21] and has been successfully used to detect species
mislabelling [22]. While DNA profiling is ideal for detecting species mislabelling, it has
limited capacity to discriminate between the geographic origins of the same species or the
production method [9]. Hence, a database of isotopic and elemental fingerprints would
allow the provenance and production method of seafood to be determined accurately and
reliably. However, unlike a DNA profile that does not change if a sample of the same
seafood species is collected from a different location, the isotopic and elemental fingerprints
can vary depending on location [11,17]. A realistic approach to development of a database
of isotopic and elemental fingerprints would be to create localised databases that contain
the isotopic and elemental values of commercially important species, and then combine
these with other similar localised databases to build a wider coverage area. This would
allow for flexibility in species and analytical methodology selection as researchers can
collaborate with the local seafood industry to develop the database. To ensure that the data
used for the databases are valid, the analyses should be conducted at certified laboratories.

Accordingly, the main aim of this paper is to lay the foundation for developing a
localised database of isotopic and elemental fingerprints that can be expanded to include
additional species or methodologies. Black tiger prawns (Penaeus monodon) were used as
the test species for the proof of concept because the species is of commercial importance
and has high production in the Asia Pacific [6,23]. The database can be easily expanded to
include additional species or be created using a different species depending on a variety
of factors such as conservation or commercial importance. The generalised hypotheses
tested were:

(1) The isotopic and elemental values of P. monodon can be stored in a scalable database,
which can be augmented with additional species or methods and used to determine provenance.

(2) The isotopic and elemental values of P. monodon stored in the database can be used
to accurately determine provenance.

The completion of a localised Australian database of the isotopic and elemental values
of P. monodon will allow for provenance to be determined accurately, and act as a point of
comparison for unknown samples of P. monodon. Ensuring that the database is scalable will
also guarantee that it can be kept up to date and allow for additional species and analyses
to be included, thereby acting as a useful tool to combat seafood fraud and protect the local
seafood industry. There is also the potential for the database to be scaled regionally and
worldwide at a later stage.
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2. Materials and Methods
2.1. Sample Collection

To ensure that authentic black tiger prawn samples were collected from the market,
the sampling was undertaken with the assistance of Sydney Fish Market (SFM) staff with a
good knowledge of the supply chain; they were able to authenticate where seafood was
farmed or wild caught. The samples were collected from batches of black tiger prawns
sent to the market for sale from the Eastern Seaboard of Australia (ESA) over 2 years
(January–March 2020–2021). As the samples were collected from the same season in both
years, we did not control for seasonal variability. Nine individual P. monodon samples from
each of the 5 farms and 3 wild-catch locations from the ESA were collected over 2 years
(2020–2021) (Figure 1). Producers from these locations regularly shipped produce to the
SFM, and products were traceable back to their origins. Environmental interference was
not controlled for as it led to the differences between origins [11,17].
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Figure 1. Locations where P. monodon samples were collected from; red locations represent farms,
and blue represents wild−catchment areas. Location 2 and 6 are geographically close but represent
different production methods (wild-caught vs. farmed).

The length of each individual P. monodon sample was measured to ensure that samples
from each location were of similar size to minimise ontogenetic effects. The samples were
all roughly equal in length (~16–20 cm) and came from batches of seafood sent to the market
for sale. The samples were frozen (−20 ◦C) and transported to the Australian Nuclear
Science and Technology Organisation (ANSTO) for processing and analyses [11,17]. No
live P. monodon samples were used.

2.2. Sample Preparation

The samples were then thoroughly rinsed with de-ionised water to remove any surface
contaminants before the head, shell, and hindgut were removed. A 5 cm2 sample of
abdominal tissue was then removed and rinsed with de-ionised water again before being
oven-dried at 60 ◦C for 48 h. Once dry, the samples were ground into a fine powder for
homogeneity, which was used for all subsequent analyses [11,17].

2.3. Elemental Profiling

An Itrax micro-X-ray fluorescence (µXRF) core scanner with a molybdenum tube was
used to determine the relative elemental abundance (given as a percentage of the total



Foods 2023, 12, 2677 4 of 11

counts of elements) of the P. monodon samples. For a more detailed overview of the methods,
refer to Gadd [24]. XRF through Itrax was chosen, as it was used in previous studies and
produced accurate results when determining provenance [11,17].

To complement the use of Itrax, particle induced X-ray emission (PIXE) and particle
induced Gamma-ray emission (PIGE) ion beam analysis (IBA) techniques were used to
determine if utilising the elemental concentration of P. monodon would improve accuracy
when predicting provenance. These IBA techniques are commonly used in air pollution
studies [25–28] to determine the elemental source fingerprints and to apportion fine air-
borne particulate matter samples. IBA techniques are non-destructive and can measure
elemental concentrations down to 1 µg/g in a few minutes of accelerator beam-time. The
PIGE IBA technique was used to detect elements between lithium (Li) and aluminium (Al),
whereas the PIXE technique, performed simultaneously with PIGE, was used to detect
elements from aluminium (Al) to uranium (U).

2.4. Stable Isotope Analysis

The stable carbon and nitrogen isotopic analyses were conducted at ANSTO in New
South Wales, Australia, using a continuous-flow isotope ratio mass spectrometer (CF-IRMS)
model Delta V Plus (Thermo Scientific Corporation, Waltham, MA, USA), interfaced with
an elemental analyser (Thermo Fisher Flash 2000 HT EA, Thermo Electron Corporation,
Waltham, MA, USA). The obtained isotopic values were relative to the International Atomic
Energy Agency (IAEA) secondary standards and were certified relative to Vienna-PeeDee
Belemnite (VPDB) for carbon and air for nitrogen. The data were normalised and quality
controlled using the standards Chitin and Caesin Sodium Salt from Bovine Mil, which
bracketed the analysed samples. The results were accurate to 1% for both C% and N% and
±0.3 parts per thousand (‰) for δ13C and δ15N. They were reported in delta (δ) units in
parts per thousand (‰) determined by the formula:

X(‰) =

(
Rsample

Rstandard
− 1

)
× 1000

While the lipid contents in muscles could affect the δ13C values of crustaceans [29,30],
all the C:N ratios of the samples used in this study were below 3.5, and, therefore, the δ13C
values did not need to be mathematically corrected.

2.5. Data Management and Statistical Analyses
2.5.1. Database Development

To store the large dataset obtained from µXRF through Itrax, IBA, and SIA, a database
was created using MySQL [31]. MySQL is an open-source database management sys-
tem based on Structured Query Language (SQL). A database built using MySQL can be
encrypted, contain many different types of data that can be queried and joined using state-
ments, and can be scaled to include up to 50 million records [32]. MySQL is effectively used
by companies like Facebook and Netflix to manage large databases [32]. As the aim of the
study is to lay the foundation for developing a localised database of isotopic and elemental
fingerprints that can be expanded, the database should be built up using software that can
efficiently store and retrieve data from large databases. Users can efficiently query specific
entries, filter using keywords, and link the database with programming software, such as
R, for analysis.

Having an open-source database management system ensures that the methodology
could be made accessible to all researchers and end users. The database served as the
basis for all subsequent analyses and was used to compare the values when predicting
provenance. As the values were specific to each farm, the dataset will currently only be
made available to the commercial entities and researchers involved in this project to protect
their confidentiality.



Foods 2023, 12, 2677 5 of 11

2.5.2. Mapping the Sampling Locations

To allow the end user to easily examine the values of the different farms, a map
of the locations included in the database was created using raster, ggplot2, rgdal, and
rgeos [33–36] in R v4.1.1 [37].

2.5.3. Determining Provenance

To test the ability of the database to predict provenance, the database was separated
into training and test datasets. Due to the available sample size, the test dataset took a
subset of one sample from every location, and the training dataset was made up of the
remaining samples. The test and training datasets were then used to train and test the
accuracy of random forest and linear discriminant analysis. Two different models were
tested, random forest and LDA, to ensure that the database could be retrieved and analysed
in R. The differences between the models were not the major focus of this study. Users of
the database could utilise any of the models available to determine provenance.

Random Forest

Random forest is an ensemble learning method [38] in R [37], where many different
decision trees are generated from the data. These trees use the isotopic and elemental
fingerprints of each “testing” or unknown provenance sample and uses multiple decision
trees to determine provenance. The trees generated by random forest are by default
randomised, and a seed must be set to ensure that results are reproducible. We used a seed
of 1234 and random forest models with 500 trees. This model has been used in previous
studies and has typically provided >80% accuracy when predicting provenance [11,17].

Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a dimensionless model that is commonly used
in provenance studies [11,17,39] and finds a combination of the variables in the dataset to
obtain the best separation between different groups. The isotopic and elemental values
of the samples in each group is examined and grouped in a way to reduce the separation
within each origin while maximising the distance between different groups. The LDA
function from the MASS package in R was used to discriminate between the farmed and
wild-catch locations [40].

3. Results
3.1. Developing the Database

The isotopic and elemental values of the P. monodon samples from five farms and
three wild-catch locations were stored in comma-separated values (CSV) files by the three
laboratories that conducted the analyses. In total, from nine replicates from each location,
there were 4128 values made up of the C:N ratio and δ13C and δ15N values from stable
isotope analysis, the PPM values of F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, As, Br, Rb, Sr, Y, and Zr from IBA, and the counts of Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr,
Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Cd, Sn, Sb, Nd, Hf, Pb, Bi, At, and U from µXRF
through Itrax. These values, along with additional metadata, were stored in a relational
database built using MySQL, which consisted of linked tables (Figure 2). The database
allowed for data to be filtered and retrieved using queries, which becomes more important
as the database grows.
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3.2. Determining the Provenance Using the Database

The isotopic and elemental fingerprints stored in the database were extracted using
various queries to build seven different datasets (Table 1). These datasets were then used
to train the random forest and LDA models. The model accuracy was calculated from the
number of incorrect classifications by the model from the training dataset. Higher model
accuracy meant that more samples were correctly classified to their origin by the model.
The accuracy of the random forest model was further tested by using a testing subset. These
samples were withheld from the training dataset, and then the model was asked to predict
the origin. Figure 3 demonstrates the process used by the trained random forest model to
determine the provenance of prawn samples from unknown origins.

Table 1. Summary of the percent accuracies of random forest and LDA models created using various
datasets, and the percent of incorrect predictions when the models were tested.

Random Forest LDA

Number of Variables Model Accuracy Prediction
Accuracy Model Accuracy

Dataset 1: IBA 24 73.33% 74.07% 49.37%
Dataset 2: Itrax 31 77.78% 78.57% 43.98%
Dataset 3: SIA 3 63.74% 82.14% 50.20%
Dataset 4: IBA + Itrax 55 77.53% 88.89% 36.44%
Dataset 5: IBA + SIA 27 87.78% 81.48% 49.94%
Dataset 6: Itrax + SIA 34 88.89% 89.29% 68.54%
Dataset 7: IBA + Itrax + SIA 58 87.64% 92.59% 47.55%
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Figure 3. An example of a decision tree that is used by a random forest model to determine prove-
nance. A yes or no decision is made at each branch of the tree until the sample is sorted into an origin.
For instance, the first element it looks at is Zinc detected by Itrax; if the value is below 0.03, then the
sample is assigned to “Source A”. If the value is greater than 0.03, then it branches over to look at
Neodymium detected by Itrax, and so on until it reaches an origin. This process is repeated with
500 different trees to determine the origin of the test sample.

There are some geographic overlaps between sampling locations in the map (Figure 1),
but these overlaps did not affect the provenance models because random forest and LDA
could distinguish between the overlapping origins using their isotopic and elemental
profiles. There are some differences between the accuracies of random forest and LDA used
in this study. The full set of results from random forest and LDA are provided in Table 1.
Datasets 1 through to 5 performed well but had quite a few incorrect predictions when
determining the origins of the testing dataset. Although Dataset 6 had the highest accuracy
for both random forest and LDA (~89% and ~69%, respectively), Dataset 7 had a fewer
number of incorrect predictions (Table 1). The accuracy of LDA models, apart from Dataset
6, dropped once the number of variables increased.

4. Discussion

The analytical techniques used to determine the isotopic and elemental fingerprints of
tiger prawn (P. monodon) samples from operational farms and wild-catch fisheries along the
ESA resulted in the acquisition of large and comprehensive datasets (Section 3). Therefore, a
relational database management system using MySQL Server was developed to collectively
manage (store and update) the data efficiently, along with the capabilities to retrieve and
analyse the data using a variety of analysis software like R, Python, Julia, or Matlab. The
ability to link the database with software like R allows users to quickly apply models, such
as random forest, to determine seafood provenance. As the database is designed to enable
end-users to authenticate samples from a particular origin, representative black tiger prawn
samples authenticated by the Sydney Fish Market provided a solid starting point for the
database. As distinct fingerprints are created for authentic P. monodon samples from other
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farms along the Eastern seaboard of Australia, the database will be updated (Figure 2) and
serve as a national databank of P. monodon for provenance evaluation. Due to commercial
sensitivity, the fingerprint data will currently only be released to commercial entities and
researchers involved in this phase of the research effort. However, in the future, the data
may also be released to academic researchers and industry for scientific collaboration,
where data access will be initiated through application, and access will be granted based on
data usage requirements. This strategy can be extended to develop an extensive national
reference database for commonly traded seafood species (e.g., snapper, barramundi, bluefin
tuna), thereby providing the Australian seafood industry with authenticated data to reliably
verify the provenance of seafood products and ensure the correct labelling of tiger prawn
products. The foundation laid out here can be applied to other regions and species of
seafood with relative ease. The MySQL 8.0 Reference Manual provides the documentation
necessary to get started with MySQL, and users are welcome to set up databases in a
manner that benefits them [32]. If databases are structured well, structured query language
can be used to manipulate and combine different databases together.

Here, it is demonstrated that this database is a vital tool for provenance model applica-
tions. A sample of P. monodon that is of unknown origin can be compared to this database
using random forest or LDA to determine its production method and geographic origin
from the locations included in the database. The random forest models are more robust
and typically have better accuracy than the LDA models, for which too many variables
were attached to a relatively small sample size (see dataset 2, 4 and 7; Table 1). Given that
the model training accuracy was less than 50% in most cases for LDA, random forest is the
preferred model for this dataset. A larger dataset that is more representative of the source
regions would be expected to perform better on test samples. Oliveri [41] mentioned that
data for each modelled class needs to be “sampled in a fully representative way”. This
would require extensive sampling, additional testing of the models using validation, and
thus ensuring a representative model. The incorrect predictions in this study could well be
due to the training data not being fully representative. Hence, when the withheld samples
are tested against the model, it cannot predict their origins accurately. We are currently
testing the efficacy of various models in determining seafood provenance using a larger
dataset. Researchers have used various models to determine provenance, and the models
used here are only to demonstrate the utility of having an easily accessible and scalable
database. In previous studies, combining SIA and µXRF through Itrax gave the best results
when predicting provenance [11,17]. While the combination of SIA and Itrax had the
highest accuracy in this study, it also had more incorrect predictions than a combination of
all three analytical techniques. Datasets 4, 5, 6, and 7, built using random forest, show the
most promise, as they have high accuracy with minimal incorrect predictions. However,
as the number of locations increase, dataset 7, with further calibration, such as using only
selected variables or different parameters, is likely to have less incorrect predictions when
testing provenance.

There have been several studies that demonstrated the utility of elemental profiling to
trace seafood back to its origin. The majority of these studies use laser-ablation inductively
coupled mass spectrometry (LA-ICP-MS) and have focused on testing whether this can
be used to determine seafood provenance on a number of different species [14–16]. These
studies had an accuracy of between 68–85% when determining the origin of blue mussels
(Mytilus edulis), green-lipped mussels (Perna canaliculus), and Southern Keeled Octopi
(Octopus berrima). Similarly, isotopic fingerprinting has been used extensively in seafood
provenance research, with varying degrees of success [9,12,13]. Using stable isotopes alone
to determine the provenance of finfish and prawns leads to around 50–100% accuracy.
However, studies typically combine stable isotopes with other analytical methods such as
DNA or elemental profiling to ensure minimal incorrect provenance predictions [9].

While random forest and LDA can accurately determine the provenance of P. monodon,
they heavily depend on an accurate and reliable reference database of isotopic and elemental
values for comparison. Ideally, the isotopic and elemental values of seafood from all
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major origins would be catalogued in an open-access database that can be accessed by
researchers, regulatory bodies, the seafood industry, and consumers across the globe.
However, this would be a difficult task, as research is currently scattered across multiple
analytical techniques and species. Therefore, the ideal solution to tackle the issue of seafood
provenance is to create localised databases that focus on commercially valuable species of
seafood. This is still a significant undertaking but will have the potential to link with other
localised databases to cover a wider geographical area and multiple species. This study was
aimed at laying the foundation for creating such a database of the major production areas
of P. monodon along the ESA. The database contains the data gathered using SIA, µXRF
through Itrax and IBA, making it unique, as it contains data from multiple analyses and
from locations that typically supply consumers along the ESA. The database created using
MySQL also has the potential to be scaled up alongside the database to handle additional
species or analyses as required [42]. Trusted parties can be given secure access to the
database to contribute the fingerprints from other species or analyses. Ensuring that the
database is updated regularly will allow for it to be a vital tool to combat the growing threat
of seafood fraud. Furthermore, this concept can be applied to samples from any region,
and, in the future, it can also be combined with emerging methodologies like blockchain to
securely store and transmit data to end users [9]. This would also allow for contributions
from other localised databases to overcome the issue of creating a centralised database of
isotopic and elemental values of seafood to combat seafood fraud.

Isotopic and elemental data can be used to determine seafood provenance with a
relatively high degree of accuracy. However, this approach relies on having a database
of accurate values from known origins to compare unknown samples against. Dataset 7
(SIA, IBA and µXRF through Itrax) has high accuracy with minimal incorrect predictions
and is likely to be more robust than dataset 5 (IBA and SIA), as the number of locations in
the database increase. The newly developed localised database from this study, created
using MySQL, digitises information on provenance and elemental signatures determined
from authentic black tiger prawns (P. monodon) from the Eastern Seaboard of Australia. The
database can be expanded to incorporate databases from additional geographic origins and
species. Future studies can also explore the use of other database management systems if
MySQL is not fit for purpose. Combining both the database and methods of determining
provenance will provide regulatory bodies and the industry with the scientific tools needed
to verify seafood provenance.
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