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Abstract: Fresh fish is a perishable food in which chemical (namely oxidation) and microbiological
degradation result in undesirable odor. Non-processed fish (i.e., raw fish) is increasingly commer-
cialized in packaging systems which are convenient for its retailing and/or which can promote an
extension of its shelf-life. Compared to fish sent to its retail unpackaged, fish packaging results in
a modification of the gaseous composition of the atmosphere surrounding it. These modifications
of atmosphere composition may affect both chemical and microbiological degradation pathways of
fish constituents and thereby the volatile organic compounds produced. In addition to monitoring
Total Volatile Basic Nitrogen (TVB-N), which is a common indicator to estimate non-processed fish
freshness, analytical techniques such as gas chromatography coupled to mass spectrometry or tech-
niques referred to as “electronic nose” allow either the identification of the entire set of these volatile
compounds (the volatilome) and/or to selectively monitor some of them, respectively. Interestingly,
monitoring these volatile organic compounds along fish storage might allow the identification of
early-stage markers of fish alteration. In this context, to provide relevant information for the iden-
tification of volatile markers of non-processed packaged fish quality evolution during its storage,
the following items have been successively reviewed: (1) inner atmosphere gaseous composition
and evolution as a function of fish packaging systems; (2) fish constituents degradation pathways
and analytical methods to monitor fish degradation with a focus on volatilome analysis; and (3) the
effect of different factors affecting fish preservation (temperature, inner atmosphere composition,
application of hurdle technology) on volatilome composition.

Keywords: fish preservation; fish packaging; monitoring of fish quality; volatilome analysis

1. Introduction

Total fisheries and aquaculture production reached a record 214 million tons in 2020,
which corresponds to a significant increase in the world’s consumption of aquatic foods [1],
despite their rather high global warming potential or carbon footprint [2].

To avoid unnecessary waste, it is needed to prevent fish from premature spoilage
during fish processing from the time of capture of fish to its sale. Several and varied
technological routes can be listed such as chilling, freezing, or the ancient storage processes
such as salting, drying, smoking, or the rather new treatment of HHPP (HHPP: High Hy-
drostatic Pressure Processing), or the addition of chemical preservatives or new alternative
natural ones [3]. Moreover, appropriate multilayer packaging films with precise operational
specifications are now available for AP (Air Packaging), VP (Vacuum Packaging), or MAP
(Modified Atmosphere Packaging [4]) and are supposed to contribute to the preservation of
fish, but the effects of anaerobic or carbon dioxide conditions are still being investigated [5].

Indeed, fresh fish is a highly perishable food with a short shelf life (even under
refrigeration) compared to other animal protein foods, such as meat and eggs, because
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it has neutral pH, high moisture content, and larger quantities of non-protein nitrogen
molecules, all of which provide ideal conditions for microbial and biochemical spoilage [5].

Negative changes in fish odor, flavor, texture, and possible severe food safety con-
cerns are associated with three basic mechanisms: enzymatic autolysis, oxidation, and
microbial degradation [5–9]. Quality changes and the shelf life of chilled fish are thus well
documented and routinely achieved through time consuming analyses more often at the
end of the fish shelf life: (i) sensory methods (discriminative tests and descriptive tests);
(ii) biochemical and chemical methods (Total Volatile Basic Nitrogen (TVB-N), ammonia,
TriMethylAmine (TMA), DimethylAmine (DMA), biogenic amines, nucleotide catabolites,
and ethanol assays, measurements of oxidative rancidity; (iii) physical methods (pH, tex-
ture analysis); and (iv) microbiological methods (total viable counts, spoilage bacteria and
reactions, pathogenic bacteria detection and/or enumeration).

There is an abundant literature investigating the aging of the tryptic (fish product +
packaging + temperature): these studies were carried out with multi-criteria characteri-
zations under given environmental conditions, which could be assigned as “case study”,
in most cases in order to determine the shelf lives upon quality and standardized safety
criteria. For example, fish can be stored at a constant temperature (from chilled to super
chilled fish [10,11]) or at variable temperatures according to the shelf life evaluation proto-
col monitored by industrial plants [12], ionized and then inoculated by identified spoilage
microorganisms [13], etc.

More recently, the analysis of the composition of the volatilome [14–18] has also
become significant. After a first application in the field of food safety (adulteration), the
volatile organic compounds (VOCs) in food became important giving knowledge about the
quality of foods and their relationship to consumers’ choices. However, food aroma is a
mixture of varied molecules (alcohols, aldehydes, acids, esters, terpenes, etc.) for which
isolation, identification, and quantification can be challenging [19].

Additionally, fish volatile compounds evolution can be investigated in packed fish
storage. In this case, the packaging nature (in most cases polymeric multilayer materials
when authors used commercial packaging solutions) and conditioning techniques [20] may
also vary largely from air to vacuum packaging with or without modified atmosphere
packaging, with different initial atmosphere compositions, with high percentage of CO2 to
reduce microbial growth of common aerobic bacteria, while oxygen is required to inhibit
the growth of Clostridium botulinum type E [4,21,22].

In this context, this review aims to provide insights into:

(i) The packaging systems used to generate typical headspace gas composition evolu-
tion during packed fish shelf life and containment of VOCs according to packaging
materials barrier properties.

(ii) The fish spoilage mechanisms generating VOCs with emphasis on their chemical
structure, properties, and possible origin. VOCs are mainly generated via enzymatic
reactions, lipid oxidation, and microbial actions.

(iii) A comparison with the traditional methods to assess fish freshness (e.g., TVB-N or
TMA assay), which will be detailed thereafter.

(iv) The analytical methods allowing the isolation, identification, and assay of VOCs
present in the headspace of a packaging, listing for each method their advantages
and limits.

This review aims thus to draw up a state of the art on the research on VOCs evolution
during packaged fresh fish storage to identify other relevant fish spoilage markers, that
namely could detect fish spoilage at an earlier stage than following commonly used TVB-N
or TMA assays.

2. Headspace Atmosphere Composition as a Function of Packaging

The headspace atmosphere composition, namely O2 and CO2 percentages, is a rather
simple analysis implemented to study the fresh fish spoilage when packed under air (AP),
vacuum (VP) or modified atmosphere (MAP) [23]. MAP of fish generally relies upon an
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increased CO2 concentration, from 20 to 80% [4], this gas being reported as extending the
lag and generation times of aerobic bacteria, yeasts, and molds, thereby reducing their
metabolic activity and growth [24]. Indeed, it is well-known that VP and MAP extend
the shelf life of refrigerated fish (generally stored between 0 ◦C and 4 ◦C) from 2 days
to 2 weeks [25,26] or even longer if stored at super-chilling temperatures (−2 ◦C) [10].
The headspace atmosphere composition evolves more or less rapidly over time and in
a predictable but not very well controlled manner. It is not yet possible as for fruit or
vegetables [27] to control or predict the inner atmosphere composition versus time or to
reach an equilibrated (constant) carbon dioxide and/or oxygen concentration: only the
initial atmosphere composition, voluntarily added, is well-known. Figure 1 shows the
schematic evolution of the gaseous composition of the headspace as a function of time
starting from the initial composition for AP, VP, or MAP. As expected, for all conditions, the
oxygen concentration decreases as the CO2 concentration increases for packaging with gas
barrier properties. This behavior is well-known and has already been reported to be due to
the establishment of correlated complex phenomena, such as physico-chemical, biochemical,
and biological alterations of the fish matrix, rich in water, sensitive to oxidation, to light,
etc., and by the metabolism of the endogenous microbial flora. Indeed, aerobic microbial
respiration (consumption of O2, generation of CO2) is often presented as a determining
factor of the gaseous composition evolution for short storage times [28]. For example,
for VP, the initial composition is one of the entrapped residual airs but it turns rapidly to
anaerobic conditions [29] without possible extended oxidation as there is obviously quasi
no headspace.
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and MAP and for commercial gas barrier packaging (packaging with high gas barrier properties
currently used for fresh fish preservation for a storage time of about 8–12 days makes O2 and CO2

exchanges negligible, especially for oxygen).

In fact, these evolutions are not easy to model or predict, since they depend on nu-
merous parameters, such as the headspace to food volume ratio, the packaging intrinsic
gaseous permeability coefficients for O2 and CO2, O2 and CO2 solubilities in multiphasic
food matrices [30], the temperature, the geometry of the packaging (i.e., thicknesses, ex-
change surfaces), the initial composition of the atmosphere, as well as the instantaneous
partial pressures differences between external environment (air) and inside the packaging,
and the change of spoilage pattern of fish product from one dominated by aerobic bacteria
to one dominated by slower-growing facultative anaerobes [31]. Indeed, as the CO2 con-
centration in the headspace increases, the degree to which aerobic spoilage microorganisms
are inhibited increases [30,32].

In the literature, the analysis of the headspace composition of fresh packed fish is
mainly studied with destructive or non-destructive technologies [25,26,32–34], rarely un-
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der vacuum for obvious technical reasons related to the lack of headspace volume to be
analyzed. The packages selected are generally sealable commercial ones. Air packaging
limit is the absence of prevention of any microbial contamination during storage and will
thus not be described further here. The packaging materials used for VP and MAP are
selected in order to meet three major challenges: (i) strongly limit the inflow of oxygen,
(ii) retain a modified atmosphere, and (iii) limit the release of odorant VOCs. For this
purpose, multilayer and/or thick materials (trays) are selected [35] on the basis of their
intrinsic barrier properties to gases (mainly O2, CO2, and water vapor).

Fishes or fish fillets are usually packed (MAP and VP) into packaging systems made
of a sealed top and bottom films (or trays) previously flushed with selected modified
atmosphere (generally a CO2 enriched atmosphere) or under moderate vacuum by evac-
uating the air for a top film having the shape of the food product. As already stated, the
packaging acts as a gas barrier packaging limiting gas exchanges (and volatile compounds
loss). In general, considering the gas transport properties at steady state (permeability
coefficients), the tray is thick enough to act as a nearly total barrier (over 9–12 days),
whereas the upper film requires a high degree of technicity (generally 3 to 5 different
plastic layers) to reach the same barrier properties, while also ensuring other technical
functions such as peelability, mechanical strength, sealability, etc. Meanwhile, the barrier
properties achieved by multilayer materials were generally designed from the only intrin-
sic O2 permeability of the inner thin layer made of EVOH (copolymer of Ethylene vinyl
alcohol) or PA (PolyAmide) protected from water hydration by two polyolefin external
layers such as polyethylene, which play the additional role of sealable water barrier. PA
is sometimes selected for its excellent resistance to mechanical strains and is sufficient
enough for shorter shelf life or thicker packaging. Until now, EVOHs are considered to
be the best oxygen barrier on the market (acting as a solubility barrier) and by extension
or habits of the professionals, as a barrier to non-polar or semi-polar VOCs [36]. For ex-
ample, typical packaging compositions for VP and MAP are stated in Table 1. The given
gas transport properties are sometimes only indications of the barrier level, sometimes
with confusions between (for example for oxygen) the oxygen flux (cm3.m−2.day−1), the
oxygen transmission rate (OTR, cm3.m−2.day−1.atm−1), or oxygen permeability coefficient
(OPC, cm3.cm.m−2.day−1.atm−1), the units of each quantity allowing the precise identifica-
tion [37]. It should be noted, however, that the permeability values given in the literature
are most often taken from technical data sheets. They are often overestimated because they
are determined according to the current standards of measurement of OTR and WVTR
(water vapor transmission rate) (i.e., at 23 ◦C), sometimes far from the real conditions of
storage of refrigerated food products. As already presented in Figure 1, the headspace of
packed fish evolves to a gas composition rich in CO2 and anaerobic conditions before the
use-by date, since packaging with high gas barrier properties currently used for fresh fish
preservation for a storage time of about 8–12 days makes O2 and CO2 exchanges negligible
especially for oxygen.

Table 1. Examples of properties of flexible top multilayer films and of semi-rigid trays intended for
the vacuum (VP) or modified atmosphere (MAP) packaging of perishable foods.

Vacuum Packaging (VP) Modified Atmosphere Packaging
(MAP)

Flexible top film

polymer and main layer
thicknesses

OPA */PE **
(15 µm/50 µm)

PE/PA ***/EVOH ****/PA/PE
(global film thickness 24 µm)

WVTR less than 11 g/m2/day for 90%
RH at 38 ◦C, ASTM E96

18 g/m2/day
for 100% RH at 38 ◦C, ASTM F1249

OTR less than 40 cm3/(m2.day.bar)
for 0% RH at 23 ◦C, ASTM D3985

24 cm3/(m2.day.bar) (permeance)
for 0% RH at 23 ◦C, ASTM D3985
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Table 1. Cont.

Vacuum Packaging (VP) Modified Atmosphere Packaging
(MAP)

Semi-rigid tray

polymer and main layer
thicknesses PA/PE (80 µm/30 µm) PET *****/PE (300 µm/30 µm)

WVTR less than 5 g/m2/day for 90% RH
at 38 ◦C, ASTM F1249

data unavailable

OTR less than 50–55 cm3/m2/day
for 75% RH at 23 ◦C, ASTM D3985

less than 5 cm3/tray.day
(test conditions unavailable)

* OPA: Oriented PolyAmide, ** PE: PolyEthylene, *** PA: PolyAmide, **** EVOH: Ethylene Vinyl Alcohol,
***** PET: PolyEthylene Terephtalate.

3. Fishes Alteration Criteria

Due to their composition and their physico-chemical characteristics, fishes are highly
perishable [7,38]. Major fish spoilage can be attributed to microbial sources. However,
degradation processes imply various (bio)chemical modifications which lead to unaccept-
able organoleptic changes (color, odor, or texture) for consumers [10,39], particularly at
the end of their shelf life. Thus, various non-microbial parameters can be used as quality
indicators. Among these, TVB-N (resulting from proteins degradation by decarboxylases),
TMAO-N, and TMA-N (the two major volatile bases), TBARs (mainly used indicator for
lipid oxidation), pH, and sensory evaluation are considered as the main quality indicators
for fishes [38,39]. Fish spoilage is rapid: under tropical conditions and without any storage
precautions, spoilage begins within 12 h after the fishes were caught [18].

The production of metabolites during fish spoilage is dependent on the packaging
conditions during shelf-life. For example, sulfur compounds associated to putrefaction odor
(such as H2S) are characteristic of storage in the presence of oxygen, while TMA is increased
in MAP packaging [35] as well as under the conventional storage in air. Thereafter, we
propose an overview of the main fish degradation indicators during conventional storage
(without any MAP or vacuum packaging systems, such as storage in ice).

3.1. Quality Indicators of Fish Protein Degradation

Sensorial defects associated to fish spoilage are unpleasant odor (marine seaweed
odor is associated to fresh fish, while putrid or ammoniacal odors are correlated to a high
fish deterioration), color alteration, and decreasing cohesiveness of muscles during storage
(thus, the firmer the texture, the more the fish can be considered fresh) [39,40]. Concerning
fish muscle deterioration, although some studies suggested that these can be correlated to
myobrillar protein alteration, lipid deposition in muscles also seems to be an important
parameter [39]. In the same way, some studies have shown that water holding capacity
(WHC) decrease can be correlated to poorer muscle characteristics. It has also been reported
that an increase of TVB-N of fish leads to discoloration of muscles [39], especially on the
back section of fishes. pH can also be considered as a good indicator of fish quality (a pH
below 6.8 to 7 is considered as normal for fresh fish; pH higher than 7 is considered as a
sign of freshness) [39].

As stated in the previous section, during fish storage, nitrogen-based molecules
(mainly proteins) are deteriorating in volatile basic compounds. TVB-N value is the
result of fish proteins and TMAO degradation in ammonia, DMA, and TMA. Among these,
TMA is a biogenic amine generally associated to unpleasant fish odor (and considered
as non-fresh fish) generated by the degradation of TMAO of fish muscle by bacteria and
also by endogenous enzymes [18,35]. In fresh fish, TMA level is null or very low. TVB-N
and TMA values (which are running in parallel) are commonly used as fish deterioration
indicators. However, some studies revealed that the use of TMA and/or TVB-N as indi-
cators of fish freshness is not always relevant [18]. It has been shown that TMA is not a
great indicator of degradation during early stage of spoilage for certain fish species. In the
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same way, although TVB-N is considered a better marker than TMA, results can only be
considered after 10 days of storage. This parameter is thus only relevant for measurements
of advanced stages of spoilage [41]. Furthermore, it has been established that levels corre-
sponding to spoiled fishes are species-dependent; however, upper limits at 30–35 mg per
100 g and 10–15 mg per 100 g for TVB-N and TMA-N, respectively, can be considered as
good indicators for fish spoilage characterization [7,38]. Concerning regulations, maximum
values are determined by species. For example, the European Commission (European
Union law 95/149/EC, 1995) has fixed a TVB-N upper limit at 25 mg/100 g for Sebastes
and 35 mg/100 g for Salmo salar.

TMA is not the only biogenic amine which can be found in spoiled fish, we can notably
cite histamine, putrescine, and cadaverine. All these molecules are the result of amino acids
decarboxylation or amination and trans-amination of aldehydes and ketones [38]. Due to
the toxicity of histamine, regulations are stricter and a maximum limit has been established
at 5 mg/100 g by FDA and at a maximum 20 mg/100 g by European Union (with the mean
sample limit at 10 mg/100g) [18] (Official Journal L 268, 24/09/1991 P. 0015-0034, Council
Directive 91/493/EEC of 22 July 1991 laying down the health conditions for the production
and the placing on the market of fishery products).

3.2. Quality Indicators Markers of Fish Oxidation
3.2.1. Analytical Methods

Fish lipid oxidation is a marker of fish quality. As expected, this indicator is more
relevant for oily fishes than for whitefish. Indeed, oily fishes’ fillets may contain up to
30% oil/fat. They include species such as mackerel, anchovies, herring, salmon, sardine,
cod, swordfish, or trout. Because of the richness in polyunsaturated fatty acids of these fish
tissues, this quality indicator is also very important for fish nutritional value assessment, as
they are prone to oxidation, especially in processed fish fillets. For example, the catalysis of
hematin compounds (hemoglobin, myoglobin, and cytochrome) produces hydroperoxides
(non-enzymatic oxidation), as a part of the process of lipid oxidation that also occurs in fish
muscle when hemoglobin is deoxygenated or oxidized [18].

Fish lipid oxidation is classically studied using the Thiobarbituric Acid Reactive
Substances (TBARs) assay (expressed in mg malondialdehyde (MDA) per kg of lipid) and
the Free Fatty Acid (FFA) value (expressed in milliequivalents (mEq) peroxide per kg of
lipid or percentage of oleic acid): an increase of these parameters is often associated with
fish rancidity [18]. Basically, TBARs assay consists in the spectrophotometric determination
of the pink, fluorescent MDA-thiobarbituric acid (MDA-TBA) complex produced after
reaction with 2-thiobarbituric acid (TBA) at low pH and high temperature [42]. FFAs
are obtained as a side product of triglyceride molecules breakdown and are considered
an indicator of lipolytic enzymes (triacyl lipase, phospholipase) presence [18]. FFA may
be evaluated by titration with a low concentrated potassium hydroxide solution after
fat extraction, colorimetric assays, or even thin-layer chromatography [43]. Some more
recent methods feature mass spectrometry: FFA increase and triacyl glycerol increase were
monitored during salmon storage for 10 days using these techniques [18].

The main drawback of these methods is that they evaluate the latest steps of the
oxidation process. Other methods such as peroxide value, conjugated dienes, p-anisidine
value, or Totox (Total Oxidation) value provide information on intermediate steps but are
more difficult to implement because the influence of the sample extraction steps is worsened
by the transiency of the measured compounds. Indeed, lipid oxidation is mainly a chain
reaction, divided into three main stages: initiation, propagation, and termination. During
initiation, free radicals are slowly formed from fatty acids under the effect of catalysts such
as heat or metal ions. Propagation is the second step, in which free radicals react quickly
with oxygen and lead to peroxyl radical, then to hydroperoxide formation, when reacting
with other lipid molecules. It is worth noting that fish processing may also lead to different
hydroperoxide formation, under lipoxygenase action liberated during tissue cutting [44].
Finally, termination is the final stage where non-radical products influencing taste, color,
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flavor, and odor (alcohols, aldehydes, acids, ketones, etc.) are formed [45]. These include
MDA, measured with a TBARs assay.

Depending on the food matrix on which it is used, a TBARs assay may often overesti-
mate oxidation, since TBA may also react with other compounds of food samples, such as
amino acids, carbohydrates, some pigments, etc., and more generally will react with any
carbonyl group. It is also often criticized for promoting auto-oxidation of samples because
of the strong acidic, long incubation time and high temperature conditions required. This
may be amplified by fish sample preparation: cutting and grinding, increasing tissue
exposure to oxygen, enzymes, and light (which causes additional peroxide formation by
photo-oxidation), even in the presence of added protective antioxidants [46].

To partially overcome these issues in fish samples, more sensitive assays using MDA
specific detection techniques, such as HPLC detection after derivatization of MDA with 2,4-
dinitrophenylhidrazine (DNPH) and conversion into pyrazole and hydrazone derivatives,
have been developed and adapted for fish TBARS determination [39].

3.2.2. Correlation between Volatilome Composition and Fish
Rancidity/Oxidation Indicators

Some studies tried to establish correlations between fish volatilome and rancidity
indicators, and Figure 2 shows the three most commonly encountered families of molecules.
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Cultured and wild sea bream (Sparus aurata) were compared for differences in their
volatile components over a 23-day storage period in ice (whole fishes in polystyrene
boxes with flaked ice) and the volatilome was investigated using Dynamic Headspace
Analysis/Gas Chromatography–Mass Spectrometry (GC-MS). Alcohols such as hexanol,
heptanol, and aldehydes (hexanal, heptanal, octanal, and nonanal), also known as flavoring
compounds, were cited as mainly coming from oxidation or autoxidation of lipids, or
enzymatic reactions in sea bream [47].

Chilled Atlantic horse mackerel (Trachurus trachurus) minced muscle volatilome oxida-
tion markers were investigated using solid phase extraction combined with GC-MS and
compared with peroxide value and TBARS. 1-octen-3-ol was described as one of the best
markers of lipid oxidation; its odor is described as rancid, plant-y, and earthy. 1-octen-3-ol
also increased during storage of sea bream fillet under air at 0 ◦C and 15 ◦C [48] and
during 23 days of storage of sea bream in ice [47]. The occurrence of this compound was
associated with the oxidation of polyunsaturated fatty acids (namely arachidonic acid)
into short-chain volatile compounds by 12-lipoxygenase from fish tissues [49,50], and is
also known as a degradation product of linoleic acid hydroperoxides [47]. Cis-4-heptenal
results from oxidation of unsaturated fatty acids [50], while heptanal and nonanal arise
from the oxidation of n-6 and n-9 polyunsaturated fatty acids, respectively [49,51].

Changes after 10 days storage at 4 ◦C in volatile compounds were monitored in
cod (Gadus morhua), whiting (Merlangius merlangus), and mackerel (Scomber scombrus) and
related to spoilage using headspace/mass spectrometric (HS/MS) analysis and solid-
phase microextraction/gas chromatographic/mass spectrometric (SPME/GC/MS) anal-
ysis. Trans-2,cis-6-nonadienal and trans-2-octenal were associated with the action of
12-lipoxygenase on eicosapentaenoic acid [49]. Trans-2-octenal was also described as re-
sponsible for part of the fishy and rancid off-flavors in fresh mayonnaises prepared with fish
oil [52]. Other compounds associated to fish rancidity were 1-penten-3-ol, 2,3-pentanedione,
propanal, and hexanal [50].

3.3. Microbial Spoilage of Fish

Microbial growth and activity are the main factors limiting the shelf life of seafood.
Indeed, fish spoilage generally results from off-odors and off-flavors resulting from bac-
terial metabolism [53]. Therefore, a total viable psychrotrophic count of 106 cfu (colony
forming units)/g is generally the upper limit accepted for fresh fish, while spoilage is
detectable when the psychrotrophic count exceeds 107–108 cfu/g [54]. Indeed, only a
limited fraction of bacteria is responsible for the generation of these off-odors and -flavors.
Therefore, the total number of bacteria does not always correlate with fish spoilage. Fish
spoilage is better correlated with the growth of specific spoilage organisms. However,
organisms producing off-odors and off-flavors are not always identified. Some specific
spoilage organisms are not able to produce off-odors and off-flavors in sterile fish, but only
following the action of other microorganisms on this substrate. This makes their identifi-
cation more complex. As reviewed by Gram and Huss [53], specific spoilage organisms
not only depend on fish origin (freshwater or marine fish from tropical waters to arctic
waters) but also on their refrigerated storage conditions: storage on ice in air, VP, or MAP.
Stamatis and Arkoudelos [55] monitored the quality of sardine fillets for 15 days storage at
3 ◦C in air, under vacuum, or in a 50% CO2/50% N2 initial atmosphere. The shelf life of
sardine fillets estimated based on sensory evaluation was 5, 7, and 9 days for air packaged,
VP, and MAP samples, respectively. Sardine bacteria by decreasing order of occurrence
were Shewanella putrefaciens, pseudomonads, Brochothrix thermosphacta, lactic acid bacteria,
and Enterobacteriaceae. Bacterial growth kinetics order was: air > VP > MAP. Shewanella
putrefaciens and Pseudomonas spp. are the specific spoilage bacteria of iced fresh fish and
of refrigerated fish stored in air, but their population decreases in the absence of oxygen,
Pseudomonas spp. being strictly aerobic bacteria. The higher growth rate of LAB under
MAP conditions compared to other species likely results from their tolerance of carbon
dioxide [55]. Modified atmosphere packed marine fish from temperate waters and from
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fresh or tropical waters have been reported to be spoiled by CO2-resistant Gram-negative
Photobacterium phosphoreum and by Gram-positive bacteria, respectively [53]. Interestingly,
differences regarding the nature of off-flavors and off-odors also depend on the origin of
the fish: when stored in air, spoilage of fishes from temperate waters results in offensive
fishy, rotten, H2S off-odors, while fruity and sulfhydryl off-odors are detected following
the spoilage of some tropical or freshwater fishes. Broekaert et al. [54] reported a correla-
tion between the formation of volatile compounds such as trimethylamine, ammonium,
and H2S and specific spoilage organisms such as Shewanella sp., Pseudomonas sp., and
Photobacterium phosphoreum. Trimethylamine results from the decomposition of trimethy-
lamine oxide (TMAO), which is present in all marine fishes. TMAO is part of non-protein
nitrogen (NPN), which is present in large amounts in fishes and promotes the growth of
microorganisms requiring NPN for their growth, such as lactic acid bacteria. In vacuum-
packed or modified atmosphere without oxygen packed fishes, trimethylamine oxide can
be used as the terminal electron acceptor in an anaerobic respiration by specific spoilage
organisms such as Shewanella putrefuciens, Photobacterium phosphoreum, and Vibrionaceae and
result in trimethylamine accumulation. Since Photobacterium phosphoreum requires sodium,
it does not play a significant role in the spoilage of vacuum-packed freshwater fishes.
Unlike for meats, unfortunately, packing fishes in a CO2-enriched atmosphere results in a
limited extension of shelf life compared to aerobic or vacuum-packed storage, because of
TMA accumulation, which is limited during aerobic storage and which is only delayed a
few days compared to VP.

Hydrogen sulfide and methyl mercaptan formation has been reported to result from
the decomposition of the sulfur-containing amino acids cysteine and methionine, respec-
tively. These volatile compounds are responsible for off-odors apparition. Among sulfide-
producing bacteria, Shewanella putrefaciens is mainly responsible for H2S off-odors formation
in aerobically and cold stored fish from arctic and temperate waters [56].

Interestingly, Lopez-Caballero et al. [57] investigated the effect of O2 and CO2 concen-
trations in atmosphere on the growth and the metabolic activity of a Shewanella putrefaciens
strain isolated from spoiled hake (Merluccius merluccius L.) for 3 weeks at 1 ◦C following
its inoculation (104 cfu/mL) in sterile fish juice. Air storage resulted both in the highest
Shewanella putrefaciens population (>109 cfu/mL) and TMA concentration (45 mg/100 mL)
after 3 weeks and in strong putrid off-odors after 2 weeks. Contrarily, all modified atmo-
spheres reduced bacterial growth, TMA, off-odor and biogenic amines formation, and a
40% CO2 and 60% O2 mixture had the highest inhibitory effect on bacterial growth.

Dalgaard [58] reported that while sulfidy off-odors were detected in refrigerated
whole cod stored aerobically, which was not the case for VP and MAP chilled spoiled
cod fillets. Off-odors of VP and MAP cod fillets were due to TMA and ammonia-like
off-odors. They compared TMA-production of Shewanella putrefaciens and Photobacterium
phosphoreum cells in fish juice: P. phosphoreum cells produced 30 times more TMA than
S. putrefaciens cells. Since TMA concentration in spoiled packed cod fillets (30 mg/100 g)
is consistent with P. phosphoreum population enumerated (107 cfu/g) and since only low
levels of S. putrefaciens were found, they concluded that P. phosphoreum was responsible for
TMA formation. Moreover, the high CO2-tolerance of P. phosphoreum might promote their
viability in packed fishes.

Several authors recently inoculated sterile fish fillets with different strains of specific
spoilage bacteria and monitored the degradation pathways of fish flesh constituents (e.g.,
glucose, total sugars (including glycogen), proteins, non-protein nitrogen fraction) during
refrigerated storage (e.g., [59,60]). For instance, Yi and Xie [59] inoculated bigeye tuna fish
blocks with two S. putrefaciens strains before 10 days storage at 4 ◦C. While the growth
patterns of the two strains, from which population reached ~109 cfu/g after 10 days, were
similar, TVB-N and TMA increased far more rapidly following inoculation with one of the
two strains. Interestingly, a comparative proteomic analysis of intracellular and extracellular
proteins between both strains and biochemical analyses allowed to propose that the strain
inducing a more rapid spoilage of tuna fish flesh also had a higher extracellular protease



Foods 2023, 12, 2657 10 of 27

activity and that its upregulated proteins were mainly involved in amino acid, sulfur,
and carbohydrate metabolisms. Differences in deamination and decarboxylation activities
between the two strains were also pointed out by the same authors in a more recent
study [59]: they suggested that it also contributed to the higher ammonia and cadaverine
or putrescine production, respectively. Nevertheless, while this kind of study provides
relevant information for a better understanding of fish spoilage mechanisms by different
bacterial strains, the effect of packaging atmosphere, which affects both microbial growth
and metabolism, has rarely been considered to date. Zhuang et al. [60] inoculated grass
carp flesh with Pseudomonas putida, Aeromonas rivipollensis, or Shewanella putrefaciens strains.
While the growth pattern over 15 days storage under aerobic conditions of the three
strains was similar, S. putrefaciens enhanced putrescine and cadaverine production unlike
A. rivipollensis. As expected, P. putida had the highest proteolytic activity but also the highest
deamination activity, which would explain the highest ammonia production following
its inoculation.

For more details regarding correlations between storage conditions (including temper-
ature and packaging conditions), specific spoilage microorganisms, and volatile organic
compounds, the interested reader can refer to Odeyemi et al.’s [61] review.

4. Volatilome Analysis
4.1. TVB-N and TMA

Two conventional analysis methods related to volatile compounds: TMA (AOAC.
(1990). Official methods of analysis of the AOAC, 15th ed. Methods 932.06, 925.09, 985.29,
923.03. Association of Official Analytical Chemists. Arlington, VA, USA.) and TVB-N [62]
(a global indicator) are used as a common index of spoilage [48,63,64]. A recent review [18]
focused on analysis methods used to determine fish freshness. However, considering TMA
and TVB-N as the major volatile compounds formed in stored fish is very reductive.

Various limits of acceptability of TVB-N to estimate fish freshness can be found, levels
above 35 mg N/100 g always signifying that the fish is spoiled. Examples of levels fixed by
the European Commission are stated in Table 2.

Table 2. Examples of TVB-N limits fixed by the European Commission for various fish species
(adapted from European Union law 95/149/EC, 1995) [18].

Fish Species TVB-N Limit (mg/100 g)

Sebastes spp. (Helicolenus dactylopterus, Sebastichthys capensis) 25

Pleuronectidae family (except for halibut: Hippoglossus spp.) 30

Salmo salar 35

Taliadourou et al. (2003) proposed 26.88 mg TVB-N per 100 g flesh as limit of ac-
ceptability for filleted fish, 26.77 mg per 100 g for whole ungutted sea bass [63], and
Ozogul et al. [65] proposed 10 mg per 100 g for European eel (Anguilla anguilla). Thus, it
appears that defining a limit for TVB-N value is not so simple. Furthermore, as reported
in Section 3, TVB-N level cannot be used as an early stage of fish degradation indicator
since values are not relevant before at least 10 days of storage. It has also been shown that
environmental conditions are important for TVB-N values evolution during long storage
periods. Castro et al. [66] monitored the changes of TVB-N level along fish storage and
indicated that there were no significant changes during the edible storage life before 21 days
and increasing changes after 21 days of storage. Sivertsvik et al. [35] reported that TVB-N
was decreasing when fishes were stored under CO2 atmosphere, even in the case of bad
sensory evaluation. This suggests thus that TVB-N assay is not always relevant to qualify
spoilage of modified atmosphere packaged fish.

There is no regulation concerning the TMA level but beyond 12 mg-N TMA per 100 g,
the product quality is generally considered damaged [12]. Nevertheless, while TMA is
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an interesting indicator under aerobic conditions, TMA is a reaction intermediate under
anaerobic conditions, which prevents it from being a marker in these conditions.

These methods are informative, but do not precisely characterize freshness and are
not effective for all species. There is thus a necessity to find more specific methods for fish
freshness/spoilage monitoring. Volatile compounds (contained in packaging headspace
or extracted by techniques such as SPME) are good indicators of fish freshness. More
precisely, while some of them (TMA, acetic acid, etc.) are increasing during storage and can
be connected to food decomposition and/or microbial development others, such as carbon
disulfide, which can be associated to specific aroma of fresh fishes, are decreasing [39].
Thus, a global analysis of volatilome will be more informative than a simple TMA analysis
by conventional techniques.

4.2. Volatilome Analysis and Identification of Specific Markers

The non-targeted identification of VOCs along packed fish refrigerated storage can
result in the identification of new specific markers of its quality. However, specific markers
of fish quality such as compounds responsible for off-odors may result from compounds
at trace levels with a low odor threshold necessitating highly sensitive methods for their
detection [14].

Since VOCs are diluted in the headspace atmosphere of packed fish, direct analysis
of headspace atmosphere (static headspace) is often not sensitive enough and a VOCs
preconcentration step is often needed prior to their analysis. Several methods using
solvents, such as solvent-assisted flavor evaporation (SAFE) [67] or liquid–liquid extraction
(LLE) [68], are used to recover VOCs. However, these are not commonly used methods.
Generally, the VOCs are adsorbed on a solid phase like for solid phase micro-extraction
(SPME), which is a static method with limited adsorption capacity of the adsorbing fiber
due to the thickness of the coating materials and the short length (~1 cm) and diameter
(~100 µm) of the fibers used [69]. That is why other methods with a higher adsorption
capacity, such as monolithic material sorptive extraction (MMSE) [69], stir bar sorptive
extraction (SBSE), or SPME arrow, were developed. The advantage of SPME arrow is that
the analyses can be automated, while MMSE and SBSE are manual.

Another strategy to improve the sensitivity is to entrain the volatile molecules of
interest using a flow, it is the dynamic headspace (DHS) sometimes called “purge and trap”.
The temperature of extraction using SPME or DHS is often relatively high, 40 ◦C [48,70,71],
50 ◦C [47,49,51,72], 60 ◦C, or more [73,74] and the time of extraction ranges from 15 min
to 2 h. To our knowledge, only Olafsdottir et al. (2005) and El Barbi (2007) [75,76] did the
extraction at 23 ◦C or room temperature. To reduce the temperature and time of extraction
some authors suggest using vacuum [77–79]. It has not been tested on fish, as far as we
know. Zhang et al. (2022) [71] proposed a comparison of extraction methods, SPME,
SAFE, DHS, SBSE, and LLE. The OPLS-DA (Orthogonal Projections to Latent Structures
Discriminant Analysis) analysis showed that the number of odors extracted was higher
following SPME. A higher level of 1-octen-ol was detected, which is why the final choice
was SPME [68]. It is possible to inject directly the headspace into a gas chromatograph, in
this case there is no concentration of molecules and the risk of losing information, notably
for molecules in small concentration.

As recently reviewed by Epping and Koch [80], VOCs identification and quantifica-
tion are also challenging namely due to their chemical diversity in addition to their low
concentration. The most common measuring method for VOCs is gas chromatographic
(GC) separation followed by different kinds/types of detection, mass spectrometry being
the gold standard. Other methods used to separate the VOCs are: Selected Ion Flow Tube
(SIFT) and Secondary ElectroSpray Ionization (SESI) (more complex but with a higher sen-
sitivity compared to SIFT [81]). Several isomeric compounds may have the same SIFT-MS
analyte ions, (e.g., 3-ethyl-1-butanol/pentanol, 3-methyl butanoic acid/pentanoic acid,
and 3-methylbutanal/pentanal) [81], which constitutes a bias. Moreover, after separation,
Olfactometric (O) analyses can also be performed [68]. There is only one publication
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with quantification spiked with analytical standards solutions [72], others compared peak
area or area ratio with internal standards. This illustrates the difficulty of quantifying
volatile molecules with repeatability issues, saturation of the trap, etc. Authors such
as Olafsdottir et al. (2005) reported that the variation following GC analysis of duplicate
samples was high especially for the very volatile compounds, such as acetaldehyde and
ethanol [75].

Major VOCs identified during fish refrigerated storage in the literature following
suitable extraction and identification methods are listed in Table 3. Some VOCs have been
identified as a key in sensory rejection by GC-Olfactometry. Especially ketones, mainly
3-hydroxy-2-butanone, TMA, and some alcohols [67,75]. Acetoin and 2- and 3-methyl-1-
butanol were proposed as potential fish quality markers: l [82]. Indeed, levels of acetoin
increased earlier than TMA; therefore, it is more relevant to monitor the loss of freshness
as an early indicator of spoilage [75] by monitoring such VOCs. Some authors suggest
that species-specific markers of spoilage will need to be defined [49], or different markers
depending on the storage conditions [32,83].

To be an adequate indicator of spoilage, the molecule must be produced early and
in sufficient quantity to be assayed. This is why some authors ruled out some molecules:
in the condition studied by Emborg et al. (2002) [84], methyl mercaptan and dimethyl
trisulfide aldehydes accumulated when the products were already spoiled [75], while
3-methyl-1-butanol, 3- and 2-methylbutanal, and ethyl esters of short chain fatty acids
(C4—C10) were produced (if any) at very low levels during storage.

Tanimoto et al. (2020) developed a method for the rapid screening of the effect of
plant extracts on the quality deterioration of dark muscle fish flesh after 3 days storage at
4 ◦C. Their method was based on the monitoring of color change (browning) and of four
volatile compounds (propanal, 2,3-pentanedione, hexanal, and 1-penten-3-ol). A total of
11 out of 24 plant extracts significantly reduced color browning as well as the production
of these four compounds. Interestingly, the five most efficient plant extracts regarding
inhibition of the four volatile compounds production were confirmed by sensory evaluation
to effectively reduce dark muscle fish flesh deterioration [85].

Other molecules, such as 1-hexanol-2-ethyl [49,71], piperidine [47,75], heptanone [49,74]
heptenal [48,74], and 2-methyl 1-propanol [49,75] have also been studied but less often
cited than those listed in Table 3.

Table 3. Major VOCs in packed refrigerated fish identified in the scientific literature.

Class VOC Extraction and Analytical Method References

Acids Acetic acid
SPME/GC/MS [13,48,51,70,73]
Dynamic headspace/GC/MS [47,75]
Static headspace/SIFT/MS [81,86]

Alcohols

Ethanol
SPME/GC/MS [46,48,49,70]
Dynamic headspace/GC/MS [75]
Static headspace/SIFT/MS [32,81,86]

3-methyl-1-butanol
SPME/GC/MS [49,51,72,76]
Dynamic headspace/GC/MS [47,75]
Static headspace/SIFT/MS [32]

2,3-butanediol
SPME/GC/MS [49,70]
Dynamic headspace/GC/MS [75]
Static headspace/SIFT/MS [68,86]

1-penten-3-ol SPME/GC/MS [48]
Dynamic headspace/GC/MS [47,74,75]

Aldehydes 2 or 3 methyl-butanal
SPME/GC/MS [48,49,51]
Dynamic headspace/GC/MS [75]
Static headspace/SIFT/MS [32]

Amines TMA
SPME/GC/MS [49,72,76]
Dynamic headspace/GC/MS [47,75]
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Table 3. Cont.

Class VOC Extraction and Analytical Method References

Esters Ethyl acetate
SPME/GC/MS [49,71]
Dynamic headspace/GC/MS [75]
Static headspace/SIFT/MS [32,86]

Ketones 3-hydroxy-2-butanone (=acetoin)
SPME/GC/MS [49,51,70,72,73]
Dynamic headspace/GC/MS [82]
Static headspace/SIFT/MS [32,86]

Sulfur compounds
Hydrogen sulfide, carbon
disulfide and dimethyl disulfide,
methanethiol (methyl mercaptan)

SPME/GC/MS [76]
Dynamic headspace/GC/MS [47,75]
Static headspace/SIFT/MS [32,81,86]

4.3. Electronic Nose

The electronic nose (EN) technique has also been used to monitor the spoilage of
fish, to detect changes in signal patterns during storage [87–89]. Hindle et al. used THz
waves to monitor the production of H2S during refrigerated storage of Atlantic salmon
under 100% N2 [90]. Olafsdottir et al. (2005) suggested including selective sensors in
the electronic nose for the detection of ketones and acids to monitor the spoilage of cod
fillets in addition to a more sensitive sensor for the detection of TMA [75]. Natale (2001)
combined 2 EN to get good classification performances regarding fish freshness: only
4% of 72 fish samples stored at 10 ◦C for up to 17 days were misclassified, but the errors
are not negligible because days 7–9 were classified as day 1 [91]. Some authors built
EN using metal oxide gas sensors [76,92,93]. This technique provides interesting results
with a 94% success rate of correct fish freshness evaluation, EN, as the NeOse Pro sensor
(Aryballe technologies, Grenoble, France) [75,87,88,91,94], may provide a viable approach to
determine fish freshness, which could be used for quality control and inspection purposes.
EN must be simple instruments for real applications in the food sector [88].

5. Effect of Different Factors Affecting Fish Quality on Volatilome Composition
5.1. Effect of Temperature

In their study, Du et al. [87] showed that salmon fillet spoilage by bacteria (estimated
to correspond to a total aerobic viable count (TVC) exceeding 7 log CFU/g) was reached in
only 4 days at 10 ◦C compared to 12 days at 4 ◦C (initial TVC was around 2 log CFU/g).
Moreover, after 7 days of storage, histamine was detected in 25% and 50% of samples
placed at 4 ◦C and 10 ◦C, respectively. After 10 days, histamine was found in all samples
stored at 10 ◦C. These samples were also submitted to a sensorial panel, which qualified
salmons as unacceptable after 3 days and 14 days for samples stored at 10 ◦C and 4 ◦C,
respectively. For fish samples stored in air, sensory analysis was thus a better criterion of
fish spoilage than histamine determination.

Miks-Krajnik et al. [72] also investigated raw salmon fillet deterioration under aerobic
conditions for up to 14 days at 4, 10 ◦C and up to 3 days at 21 ◦C. Maximum TVC was
around 9.2–9.4 log CFU/g at 4 and 10 ◦C and 8.8 log CFU/g at 21 ◦C. The lower TVC
at 21 ◦C was assigned to a lower growth of psychotropic bacteria. Predicted shelf life,
defined by a TVC upper limit of 7 log CFU/g, was achieved in 3.02, 1.82, and 0.6 days at
4, 10, or 21 ◦C, respectively. Differences compared to Du et al.’s [87] experiment can be
ascribed to a higher initial TVC (5.1 log CFU/g). Therefore, even if storage temperature is
an important factor for fish spoilage prevention, initial microbial load is a predominant
parameter. Miks-Krajnik et al. [72] also observed that specific spoilage bacteria enumeration,
such as Pseudomonas or H2S-producing bacteria, did not result in a better prediction of
shelf life than the values derived from TVC. In addition to microbial counts, these authors
also measured the sensory acceptance of samples stored at 4 ◦C by untrained panelists
considering color, odor, and texture. Consistently with Du et al. [87], they also observed
that sensory rejection can be correlated with microbial growth. To complete these data,
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they measured the volatile content of salmon samples headspace: they observed that the
main compounds which may be used as spoilage indicators are acetoin, ethanol, acid acetic,
TMA, and 2,3 butanediol and that the indicators profiles are temperature-dependent.

Alfaro et al. [40] studied the quality changes of MAP (48% CO2, 50% N2, 2% O2) horse
mackerel fillets stored at temperatures from 2 to 10 ◦C. The higher the temperature, the
more rapidly the sensory indicators (odor, color, muscle firmness) were affected (from
within 7 days at 2 ◦C to within 3 days at 10 ◦C). Sensory analysis was correlated with
TVC and psychrotrophic bacteria count (bacterial load correlated with sensory alteration
was 106 CFU/g). Specific volatile compounds (acetaldehyde and butyraldehyde) were
detected in the packaging atmosphere only at 10 ◦C. No lipid oxidation was observed.
Moreover, TVB-N values indicated food spoilage except at 2 ◦C. Concerning TMA, no
production was observed at low temperatures (i.e., 2 and 4 ◦C) even after 11 days of storage.
In addition, these authors observed a significant increase of three aldehydes (acetaldehyde,
2-butanone, and butyraldehyde) during fish storage at 10 ◦C. It is noteworthy that butanone
and butyraldehyde accumulations were correlated with advanced spoilage state.

These three studies pointed out that fish storage at low temperatures leads to an
extended shelf life, but that it is difficult to determine a simple biochemical indicator for
fish deterioration. Due to differences in fish species, packaging systems (aerobic, VP, MAP),
and storage conditions (mainly temperature and duration), it is not easy to determine the
main tendencies of fish quality evolution during MAP storage [7]. As expected, the rate
of deterioration of fish is highly temperature-dependent and can be inhibited using low
storage temperatures [35].

5.2. Effect of Atmosphere Composition

VP or MAP result in a limited shelf life extension of seafood products compared to
meat, due to CO2-resistant bacteria (namely P. phophoreum as previously stated) growth
and metabolism [84,95]. As a result, studies focused on the identification of chemical
indicators to characterize fish spoilage [82], when packed under anaerobic and/or modified
atmosphere with CO2 conditions. As already described in Figure 1, the initial headspace
composition of packaged (AP, VP, and MAP) fish evolves by oxygen depletion and CO2
production. For example, Narasimha Rao et al. [96] considered VP as a type of MAP since
the consumption of the residual oxygen of the packs by microorganisms results in the
production of carbon dioxide within the package.

For fish matrices, MAP composition evolves over time [26,97] and to our knowledge,
no Equilibrium Modified Atmosphere Packaging (EMAP) was reported to date, unlike
for respiring products such as fresh vegetables and fruits. Usual modified atmospheres
(or MAP) are called CO2-MAP for MAP enriched in CO2 (N2 + CO2 blends) or CO2-O2
MAP for ternary blends (CO2 + O2 + N2). Nitrogen is a filling gas, used to modulate the
proportions of the other gases present in the packaging. Its low solubility in water and fat
prevents package collapse and deformation caused by the comparatively far higher CO2
dissolving into the food tissues [98,99].

By replacing O2, CO2-MAP plays an important role in delaying oxidative rancidity
apparition and inhibits the growth of strictly aerobic pathogenic and spoilage microorgan-
isms. Many articles reported the extension of the shelf life of seafood products resulting
from CO2-MAP [23,100]; Garcia-Gonzalez et al. (2007) and Yu and Chen (2019) [101,102]
reviewed the mechanisms of carbon dioxide bactericidal action, introducing the use of car-
bon dioxide as an alternative cold pasteurization technique for foods, reported to inactivate
both microorganisms and enzymes [103]. In contrast, the organoleptic properties of fish
can be altered: lower firmness and changes in color were observed when filleted Atlantic
salmon was packed using a CO2 emitter, or traditional MAP [34,35]. Indeed, the CO2
dissolution in the aqueous phase of fish flesh tends to decrease the pH up to a 0.2–0.3 lower
value depending on the CO2 concentration in the surrounding atmosphere. For example,
Emborg et al. [84] considered that the slightly longer shelf life of salmon could be partly
explained by the lower pH (~6.3) in salmon compared to white-flesh fish (~6.6). Differences
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in spoilage microflora and pH are thus primarily responsible for the shelf life of packaged
foods and therefore volatile chemical indicators.

It is difficult to identify degradation indicators induced by anaerobic conditions (VP)
and atmospheres enriched in CO2 or O2 and CO2 (MAP). For CO2 for example, the con-
centration in the package is not always controlled because of the dissolution of CO2 in the
fish flesh and concomitant temporary CO2 depletion [32] before its accumulation resulting
from microbial respiration: the outflow of CO2 from packaging is then variable, depending
on the instantaneous pressure gradient, established between the inside and the outside of
the package. Comparatively to CO2, monitoring oxygen concentration evolution is easier:
oxygen depletion results from microbial respiration (and from oxidation to a lesser extent).
The oxygen flux entering in the packaging depends on its permeability. These permeability
data are, however, sometimes missing or partially described (as well as the packaging
geometry), the packages being sometimes described only by their commercial names.

Nevertheless, Kuuliala et al. [32] monitored the evolution for 14 days of the headspace
gas concentrations (CO2/O2) throughout storage time for different initial atmosphere
conditions, in order to try to evaluate the spoilage of raw Atlantic salmon based on the
VOC profile. This allowed them to identify the main spoilage indicators. Under anaerobic
conditions, ethanol, dimethyl sulfide, and H2S were found to be characteristic irrespective
of the applied CO2 levels, varying from 0 to 50% (v/v). Under air, most of the identified
VOCs were alcohols and ketones. Fewer compounds were identified under high-CO2 MAP
(50%) when compared to low-CO2 conditions (10–20%) and 3-methylbutanal was the only
identified VOC under aerobic MAP (40–50% O2). In conclusion, ethanol, dimethyl sulfide,
H2S, methyl mercaptan, and acetoin were found abundant under several conditions and
often identified as main spoilage indicators, suggesting that monitoring these VOCs in the
package headspace could lead to significant benefits in the seafood industry.

In another study, Oluwole [104] identified 16 volatile compounds in the headspace
of Cape hake fillets when packed in a 40% CO2, 30% O2, 30% N2 atmosphere, despite a
systematic higher drip loss: the authors concluded the necessity of using an absorbent
pad in addition to MAP refrigerated storage to maintain the firmness of fillets. The VOCs
associated with spoilage include trimethylamine (TMA), esters, and sulfur groups. MAP
had a significant influence on volatile composition and concentration. For example, TMA
concentration was only 0.85% on day 12 compared to 7.22% on day 6 at 0 ◦C under air (the
authors named this condition a passive MAP). However, other authors considered TMA
an irrelevant indicator for salmonids because of the low amount of endogenous OTMA in
these fishes [84,105].

Nevertheless, Gokoglu [100], in his review dedicated to seafood packaging, reported
the upcoming use of ternary MAP (i.e., CO2-O2 MAP with low O2 levels) to prevent both
the reduction of TMAO to TMA and anaerobic bacteria growth. Erickson et al. [24] also
discussed the use of O2 semi-permeable packaging to ensure a progressive O2 ingress in
the headspace of packaging. If packed fish is exposed to temperature abuse, O2 presence
could prevent the growth and toxin production by C. botulinum, monitored before spoilage
and possibly detected by the analysis of headspace volatile compounds (increase in a peak
on GC-chromatogram coincided with the formation of toxin).

Acetoin and 2- and 3-methyl-1-butanol have often been reported as relevant and
reliable fish spoilage markers [13,49,73,106], Erickson et al. [82] underlined that ideal
spoilage indicators should demonstrate clearly increasing or decreasing concentrations
with storage time. However, for some volatile microbial metabolites, concentrations may
increase temporarily, reach a plateau, and then decrease as the dominant species of spoilage
bacteria changes over time. Several authors found these tendencies for most of volatile
compound peaks detected during the storage of salmon with different packaging films and
atmospheres at different temperatures. This phenomenon is due to (i) the solubilities of
CO2 and volatile compounds in food matrices, which are temperature dependent as well
as microbial and enzymatic activities [107], and (ii) the instantaneous flux of O2 and CO2
(and volatile compounds) across the film that is a function of the permeabilities of the film
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to these gaseous molecules and their concentration gradients, which also depend on their
interaction with foods through a reaction diffusion mechanism difficult to predict in such
dynamic systems [30].

Taken together, the results of the different studies demonstrated that changes in volatile
compounds were significantly influenced by storage duration, temperature, and MAP, but
also by the initial microbial ecosystem and microflora loads present onto the food and
materials packaging which are not always precisely described.

5.3. Hurdle Technology

Leistner (1985) [108] proposed that each factor/technology used to control microor-
ganisms to extend shelf life and/or improve safety of foods can be seen as a “hurdle”
to be overcome by unwanted microorganisms. Hurdle technology derives from the un-
derstanding of this “hurdle effect” by considering that when different food preservation
technologies are combined, the level of preservation activity provided by one technol-
ogy can be increased additively or synergistically. As reviewed by Leistner (2000) [109],
progress in understanding of the mechanisms by which each technology acts on unwanted
microorganisms offers the possibility to apply an intelligent mix of hurdles acting simul-
taneously on different targets within the microbial cells, thereby favoring a synergistic
preservation effect. This multi-target preservation strategy is particularly promising for
the preservation of fresh or minimally processed fish and seafood, which are prone to
rapid deterioration of their quality. Indeed, combining modified atmosphere packaging
and refrigeration already results from hurdle technology principles application, since for
instance low temperature and reduced oxygen content, resulting also in a modified redox
potential (Eh), are factors that can have different effects on microorganisms. Neverthe-
less, in the context of this review, where seafood packaging technologies effect on the
volatilome has already been examined, this part of the review is focused on the effect on
volatilome of the combination of packaging technologies, including MAP and VP, with
technologies such as (i) non-thermal treatments, (ii) the application of antimicrobial and
antioxidant compounds, or (iii) the use of bioprotective microorganisms. While there is an
ever-increasing number of studies regarding the combination of these technologies with
refrigeration and MAP, studies considering the effect of these combinations on volatilome
composition and evolution are scarce and less specific indicators of fish quality such as
TVB-N or trimethylamine assay were monitored in a limited number of studies listed in
Table 4. In addition, the application of non-thermal treatments and of alternative chemical
compounds including essential oils and bacteriocins to the preservation of fish and meat
has been recently reviewed by Rosario et al. (2021) [110].

5.3.1. Modified Atmosphere or Vacuum Packaging in Combination with Non-Thermal
Treatments (High Hydrostatic Pressure, Irradiation, UV-C Treatment, Treatment with
Ozonated Water, etc.)

The application of non-thermal treatments to seafood preservation, such as HHP, ioniz-
ing radiation, cold plasma, ultraviolet light, and pulsed electric fields, have been reviewed
by Olatunde and Benjakul (2018) [111]. Before combining non-thermal treatments with
modified atmosphere or vacuum packaging, the effect of various non-thermal treatments
applied alone on the evolution of fish quality during post-treatment refrigerated storage
was monitored in several studies [38].

HHP-treated (200–600 MPa) vacuum-packed fish fillets with an extended shelf life
have already been launched by several companies in the world including Delpierre (Nantes,
France). Günlü et al. (2014) [112] also reported an extended shelf life of vacuum-packed
rainbow trout fillets treated for 5 min at 220 MPa at 15 ◦C. However, HHP treatment had
less of an effect on both shelf-life extension and TVB-N increase reduction than coating of
the same fillets in chitosan-based films. This might be related to the fact that a 220 MPa
HHP is not very high: indeed, the pressures required to achieve microbial inactivation are
usually in the 300–700 MPa range.
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Reale et al. (2008) [113] monitored the quality of seabasses packed in polyethylene film
bags directly in a normal atmosphere (control) or following a 3 kGy γ-irradiation treatment
to reduce or eliminate unwanted microorganisms, packed in a 40:40:20 CO2/N2/O2 gas
mixture, or packed in a 60:35:5 CO2/N2/O2 gas mixture. Interestingly, the monitoring of
fish quality evolution during refrigerated storage at 2 ◦C for up to 10 days comprised a
sensory evaluation including evaluation of gills and internal odors of seabasses. While
fillets stored in a MAP still had seaweed and shellfish odors after 4 days, this odor was less
sharp for control fillets and only just detectable for ionized fillets. Estimation of freshness
considering only odor evolution thus leads to the following ranking: MAP > ionization
treatment > control. It would have been interesting to examine the combination of an
ionization treatment followed by MAP.

Lazaro et al. (2020) [114] compared the effects of MAP in a 50% CO2, 50% N2 atmo-
sphere preceded or not by UV-C treatment of Tilapia fillets with air-packed or VP fillets
on pathogens reduction and on their shelf life. Interestingly, ammonia concentration in
fillets after 10 days storage at 4 ◦C was lower following UV-C treatment and MAP alone or
combined than when fillets were air- or vacuum-packed.

Non-thermal plasma treatment results in the formation of reactive species including
reactive oxygen radicals, positive and chemical ions, excited molecules, and electrons.
Unfortunately, these reactive species not only result in microbial inactivation, but also
promote lipid oxidation in fish. Therefore, Tagrida et al. (2021) [115] combined non-
thermal plasma treatment of Nile tilapia fillets with betel leaf extract addition. Antioxidant
compounds of betel leaf extract thus limited lipid oxidation.

5.3.2. Modified Atmosphere or Vacuum Packaging in Combination with Antimicrobial
and/or Antioxidant Compounds

Fresh seafood being prone to microbial spoilage and to oxidation of its lipids because
of its high content of highly polyunsaturated fatty acids, addition of antimicrobial, and/or
antioxidant compounds to extend its shelf life has been investigated by many authors.
Antioxidants such as ascorbic acid and its salts or preservatives such as potassium sorbate,
which are food additives, can be used. Nevertheless, concerns regarding the innocuity of
some synthetic food additives has stimulated the search for alternative natural sources of
antimicrobial and/or antioxidant molecules, which could be used for seafood preserva-
tion [116]. In this context, some edible plants extracts containing volatile (e.g., essential oils)
and/or non-volatile antioxidant and/or antimicrobial molecules (e.g., phenolics, alkaloids)
are promising. When volatile antimicrobial molecules are used, they can be added in the
headspace of packaging system. Their respective concentrations in the headspace of food
packaging and in the food matrix will namely depend on their vapor phase-food matrix
partition coefficient. Solubility of volatile molecules in food matrices will namely depend
on their composition (e.g., fat content). Moreover, the permeability to each active volatile
molecule of packaging system will have to be determined. The necessity to consider these
parameters for the design of effective packaging systems containing antimicrobial volatile
molecules has been recently illustrated by Bahmid et al. [117], who determined the effective
mustard seeds quantity to release a sufficient allyl isothiocyanate quantity to effectively
inhibit Pseudomonas fragi growth in a liquid medium placed in a closed packaging system.
The capacity of plant extracts to inhibit bacterial growth and biogenic amines formation
during refrigerated storage of seafood has been reviewed by Houicher et al. [118]. As re-
cently reviewed by Rathod et al. [119], microbial metabolites such as bacteriocins, reuterin,
or organic acids can also exert an interesting preservative action on seafood.

The possibility of using animal origin antimicrobial molecules such as proteins (e.g.,
hen egg white lysozyme, [120]), peptide fragments resulting from their hydrolysis [121] or
chitosan [122] to extend shelf life of seafood has also been investigated by several authors.
Interestingly, chitosan is produced commercially by alkaline deacetylation of chitin from
crustaceans, such as crabs and shrimps. Chitosan which possesses interesting film-forming
properties and antimicrobial activity is thus a byproduct of some seafood.



Foods 2023, 12, 2657 18 of 27

Solutions/suspensions of antimicrobial and/or antioxidant molecules can be sprayed
on the surface or seafood can be immersed in such solutions/suspensions before vacuum
or modified atmosphere packaging. Similarly, treatment of seafood with film-forming
solutions or suspensions can result in their coating. Such coatings can favor a controlled
release of antimicrobial or antioxidant molecules to the surface of seafood. Interestingly,
Zhang et al. [68] recently reported that grass carp fillets packed in PLA films grafted with
lysozyme or chitosan had a 1 day and 3 days longer shelf life, respectively, than fillets
packed in control PLA films. Such non-migrating active antibacterial packaging prepared
by covalently immobilizing lysozyme or chitosan on the surface of plasma treated PLA
films could provide long term antimicrobial activity. Application of such films to carp fillets
packaging was also shown to delay accumulation of TVB-N, which is a common indicator
of fish freshness.

5.3.3. Modified Atmosphere or Vacuum Packaging in Combination with Bioprotective
Lactic Acid Bacteria

As already stated by Calo-Mata et al. [123] in their review, the use of protective cultures
of lactic acid bacteria to extend the shelf life and/or enhance the microbial safety of aquatic
food products is promising. Indeed, lactic acid bacteria inhibit the growth of unwanted
microorganisms by different mechanisms including competition for nutrients, lowering
of pH by producing lactic acid, and production of other antimicrobial metabolites, such
as bacteriocins. Due to their presence in many fermented foods, many lactic acid bacteria
are Generally Recognized As Safe (GRAS) by the US Food and Drug Administration
(FDA) and are in the list of microorganisms with a Qualified Presumption of Safety (QPS)
in the European Union. However, unlike in fermented foods, bioprotective lactic acid
bacteria should not alter the sensory properties of foods. Interestingly, some lactic acid
bacteria can grow at low temperatures and they tolerate different atmosphere compositions.
Nevertheless, as can be seen in Table 3, despite the promises of this approach, the number of
investigations regarding the combination of bioprotective lactic acid bacteria with modified
atmosphere or vacuum packaging for the preservation of fresh fish or seafood is still limited.
Some authors also reported that combining bioprotective lactic acid bacteria with modified
atmosphere packaging prolonged the refrigerated shelf life of cooked shrimps [124,125] or
tuna burgers [126].

Hurdle technology principles application by combining refrigeration and MAP or
VP of fresh fish or seafood with non-thermal processes inactivating microorganisms or
addition of ingredients such as antimicrobial or antioxidant molecules or even bioprotective
lactic acid bacteria has been shown by many authors to significantly extend their shelf life
and/or enhance their safety. The existence of an operational window for applying non-
thermal treatments, such as HHP treatments not inactivating lactic acid bacteria [127,128],
or for adding plant extracts at sub-inhibitory concentrations for bioprotective lactic acid
bacteria [129,130] opens the perspective to identify synergistic combinations of treatments
that could be combined with refrigeration and MAP to further extend the shelf life or
enhance the safety of fresh fish or seafood. Despite its promises, such combinations have
not been tested so far for seafood preservation to our knowledge.
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Table 4. Examples of treatments combined with VP or MAP to extend the shelf life of fish or seafood
according to hurdle technology principles and listing of quality parameters related to volatile organic
compounds which were monitored.

Combined Treatment Seafood/Fish Type Quality Parameter Related to Volatile
Organic Compounds Monitored Reference

Non-thermal treatments

HHP treatment after VP of fish
fillets or of fish fillets coated in
chitosan-based edible films

Rainbow trout (Oncorhynchus
mykiss Walbaum) fillets

-TVB-N assay every 4 days up to 44 days
storage at 4 ◦C.
-The acceptable limit value of 30 mg
TVB-N/100 g has been exceeded in the VP,
VP HHP-treated, coated in chitosan-based
film VP, and coated in chitosan-based film
VP HHP-treated fillets on the 12th, 20th, 24th,
and 44th days storage at 4 ◦C, respectively.
Coating in chitosan-based films and to a
lesser extent HHP-treatment decreased
TVB-N increase during storage.
Combination of coating in chitosan-based
film and subsequent HHP-treatment have a
synergistic effect on the decrease of TVB-N
increase during refrigerated storage of
trout fillets.

[112]

UV-C treatment before MAP
(50% CO2-50% N2)

Nile tilapia (Oreochromis
niloticus) fillets

-Ammonia concentration in fillets after 10
days storage (AP, VP, MAP, UV-C treated and
AP, UV-C treated and MAP).
-Ammonia concentration after 10 days
storage at 4 ◦C was lower in MAP and UV-C
treated fillets or fillets UV-C treated before
being packed in a MAP.

[114]

Ozonated water (0.3 mg.L−1) and
MAP (50% CO2-50% N2)

Striped red mullet (Mullus
surmuletus)

-Assay of TVB-N, TMA-N and odor of raw
fish at regular intervals.
-TVB-N and TMA-N limit values were
reached later when raw fish samples were
treated with ozonated water prior to MAP.
Nevertheless, the limit of acceptability based
on sensory analysis was reached after 10
days storage at 4 ◦C on both cases (vs. after
7 days for control samples stored in air).

[131]

Treatment by cold plasma
generated using the mixed gases
(oxygen, carbon dioxide argon: 10:
60:30) for 5 min in combination
with ethanolic coconut husk
extract in either free or liposomal
encapsulated form followed by
MAP (60% CO2, 30% Ar2, 10% O2)

Asian sea bass slices

-TVB-N and TMA assays every 3 days for
21 days storage at 4 ◦C
-The combination of cold plasma treatment
with ethanolic coconut extract extended the
shelf life to more than 18 days at 4 ◦C and
reduced both TVB-N and TMA accumulation.

[132]
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Table 4. Cont.

Combined Treatment Seafood/Fish Type Quality Parameter Related to Volatile
Organic Compounds Monitored Reference

Encapsulated or non
encapsulated betel leaf extract
and/or in-bag dielectric discharge
(80 kV, 300 s) (nonthermal plasma)
and/or MAP

Nile tilapia fillets

-TVB-N and TMA assays every 3 days for
15 days storage at 4 ◦C.
Untreated control fillets and nonthermal
plasma-treated fillets subsequently stored
under a CO2/Ar/O2 (60%/30%/10% v/v)
MAP reached the maximal acceptable TVB-N
limit (35 mg/100 g according to EU
regulation) within 6 days and 9 days,
respectively. Addition of 400 ppm unlike
addition of 200 ppm of encapsulated or
non-encapsulated betel leaf extract combined
with non-thermal plasma treatment and
MAP allowed to delay to over 12 days this
duration of storage. The same trends were
observed following TMA assay.

[115]

Antimicrobial and/or antioxidant
compounds

Dipping in 1% (w/w) cinnamon
essential oil in water emulsion or
in marinade containing 1% (w/w)
cinnamon essential oil followed
by either MAP (60% CO2-40% N2)
or VP

Salmon (Salmo salar)

-Evaluation of off-odors by sensory analysis.
-Cinnamon essential oil addition did not
extend microbial shelf life of salmon.
-No significant effects on odor relative
hedonic score evolution of salmon during
14 days refrigerated storage of VP or MAP
and dipping with cinnamon essential oil or
not were observed.

[133]

Dipping for 30 min in 0.3% or
0.5% (w/v) Capparis spinosa root
extract followed by MAP (5% O2,
20% CO2, 75% N2)

Rainbow trout (Oncorhynchus
mykiss) fillets

-TMA assay and sensory evaluation
(including odor) after cooking at 98 ◦C for
20 min every 7 days up to 28 days of
refrigerated storage.
-Dipping in Capparis spinosa root extract prior
to MAP significantly delayed TMA
accumulation and cooked fish odor alteration
and increased rainbow trout fillets shelf life.

[134]

Oregano essential oil and/or nisin
combined with MAP
(75% CO2-25% N2)

Grass carp
(Ctenopharyngodon idellus)

-Assay of TVB-N and monitoring of odor
every 4 days during storage at 4 ◦C.
-Shelf life of nisin-treated and oregano
essential-oil treated grass carp fillets
increased from 16 days to 20 days, while it
increased to 28 days following a nisin and
oregano essential oil treatment.
-TVB-N values evolution during storage was
not modified by treatments with nisin
and/or oregano essential oil. Nevertheless,
TVB-N values always remained below the
25 mg/100 g upper acceptable limit.

[17]

Addition of 0.1% (w/v) thyme
essential oil prior to MAP (5% O2,
50% CO2, 45% N2)

Fresh Mediterranean
swordfish fillets

-TVB-N and TMA assays and odor sensory
evaluation for 16 days storage at 4 ◦C.
-Extension of shelf life from approximately
13 days for MAP fillets to 15.5 days for fillets
added with thyme essential oil before MAP.

[135]
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Table 4. Cont.

Combined Treatment Seafood/Fish Type Quality Parameter Related to Volatile
Organic Compounds Monitored Reference

Addition of 2% (v/w) or 4% (v/w)
sage essential oil prior to VP Fresh rainbow trout fillets

-TVB-N and odor sensory evaluation for
34 days storage at 4 ◦C.
-Shelf life extension by 5 and 15 days of VP
fillets added with 2% (v/w) and 4% (v/w)
sage essential oil, respectively (compared to
VP fillets without essential oil).

[136]

Grafting of in silico designed
antimicrobial peptide 1018K6 on
polypropylene (PP)
packaging films

Salmon (Salmo salar) fillets

-TVB-N and TMA assays and odor sensory
evaluation for 7 days storage at 4 ◦C.
-TVB-N and TMA accumulation as well as
odor alteration of salmon fillets were lower
when salmon fillets were stored in films
grafted with peptide 1018K6 than in
control films.

[137]

Cellulose acetate films
incorporated with bifidocin A

Mackerel (Scomberomorus
niphonius) fillets

-TVB-N assay and odor sensory evaluation
over 15 days storage at 4 ◦C.
-Addition of bifidocin A in films significantly
delayed TVB-N accumulation and
odor alteration.

[138]

Bioprotective lactic acid bacteria

Dipping of gutted fishes in a
107 cfu/g Latilactobacillus sakei
suspension with or without 0.1%
(w/v) glucose for 10 min prior
to VP

Fresh gutted sea bass
(Dicentrarchus labrax) and sea
bream (Sparus aurata)

-TVB-N assay and sensory evaluation after
cooking over 14 days storage at 6 ◦C.
-Dipping in Latilactobacillus sakei suspension
with or without glucose resulted in an
extension of shelf life of both gutted fishes
from 12 to 14 days and fishes dipped in
Latilactobacillus sakei suspension with glucose
had a better sensory score.

[139]

Dipping of fresh plaice fillets in a
7 log cfu.mL−1 suspension of
Bifidobacterium bifidium with 400
ppm thymol for 2 min prior to air,
MAP (65% N2, 30% CO2, 5% O2)
or VP and subsequent storage at
4 ◦C or 12 ◦C

Plaices (Pleuronectes platessa)
fillets

-Sensory analysis including odor evaluation
up to 17 days of storage.
-Calculated sensory shelf life appeared longer
than that estimated based on monitoring of
total viable count of microorganisms.
-Bifidobacterium bifidium and thymol
performed an efficient synergy in controlling
hygiene indicator microorganisms.

[140]

6. Conclusions

Except TMA assay, the analyses of known VOCs to evaluate the freshness of fish
are still scarce, despite the increased accessibility to GC-MS for VOCs identification and
assay. VOCs analysis can rely upon headspace analysis but more frequently relies upon a
pre-concentration of VOCs by techniques such as SPME to increase analytical sensitivity.
Besides GC-MS, an increasing number of electronic noses based on an array of different
selective sensors have been developed. This review also pointed out that packaging
conditions and corresponding atmosphere composition evolutions during packed fish
storage strongly influence the type of microorganisms contaminating fish, their growth,
and their metabolic activity; this ultimately also greatly affects volatilome composition.
This is well illustrated by TMA level evolution, which is not the same under aerobic or
anaerobic conditions prevailing during the storage of VP products as well as of most MAP
products. Nevertheless, monitoring of the volatilome of packed fishes under well-defined
and controlled conditions (i.e., defined packaging system for a given fish prepared under
standard hygienic conditions) allowed several authors to identify some VOCs, which are
good candidates to anticipate fish spoilage and/or determine practical shelf life. A difficulty
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lies in the fact that individual volatilome constituents or their combinations which could be
promising markers depend on the type of fish, on its origin, and on its storage conditions.
Therefore, future research directions for potential spoilage volatile markers identification
should include the development of a large database with the volatilome evolution of each
fish species under well-defined storage conditions, which can subsequently be exploited by
multivariate data analysis. The use of standard analytical techniques and conditions is also
necessary to allow comparison between different studies to build a common database.

Another practical difficulty is related to the necessity to open fish packaging to sample
the inner atmosphere to analyze volatilome constituents. In this context, non-invasive
techniques, such as high-resolution rotational Terahertz (THz) spectroscopy are promising
although its access is restricted to specialized laboratories at present [90].
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