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Abstract: Tartary buckwheat has attracted more attention than common buckwheat due to its unique
chemical composition and higher efficacy in the prevention of various diseases. The content of
flavonoids in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) is higher than that in common
buckwheat (Fagopyrum esculentum Moench). However, the processing process of Tartary buckwheat
is complex, and the cost is high, which leads to the frequent phenomenon of common buckwheat
counterfeiting and adulteration in Tartary buckwheat, which seriously damages the interests of
consumers and disrupts the market order. In order to explore a new and simple identification method
for Tartary buckwheat and common buckwheat, this article uses metabolomics technology based on
GC-MS to identify Tartary buckwheat and common buckwheat. The results show that the PLS-DA
model can identify Tartary buckwheat and common buckwheat, as well as Tartary buckwheat from
different regions, without an over-fitting phenomenon. It was also found that ascorbate and aldarate
metabolism was the main differential metabolic pathway between Tartary buckwheat and common
buckwheat, as well as the amino acids biosynthesis pathway. This study provides a new attempt for
the identification of Tartary buckwheat and common buckwheat for the quality control of related
agricultural products.
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1. Introduction

Buckwheat is widely planted all over the world, and its aliases are Black Wheat and
Triangle Wheat [1]. Buckwheat has long been a popular food ingredient, and it has a high
nutritional value. Compared with grains, such as wheat, rice, and corn, buckwheat has a
high protein content and is easy to digest. Similarly, it is famous for its high dietary fiber
content. Buckwheat is also rich in minerals, especially iron, manganese, and copper. In
terms of bioactive compounds, buckwheat contains flavonoids that are lacking in other
grains. Flavonoids participate in many biological functions and have important health
values, such as cholesterol-lowering, hypoglycemic, and antibacterial effects [2].

At present, two cultivated species are known, which are of agricultural importance;
these are common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat
(Fagopyrum tataricum (L.) Gaertn). Common buckwheat is native to Southwest China
and cultivated in Russia, Japan, Canada, and Europe. This species has been cultivated
in Italy in a limited area in the middle and north of the Alps and Apennines. This crop
is gradually being replaced by wheat and other grains with a higher yield [3]. Tartary
buckwheat has a strong ecological adaptability, meaning it can adapt to environments such
as shady, wet, and cold ones, and it is mostly planted in high mountain areas. Moreover,
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80% of Tartary buckwheat in China is planted in the Yunnan–Guizhou–Sichuan Plateau,
Qinghai–Tibet Plateau, Gansu Province, Wuling mountain area, and Qinba mountain area.
It is an indispensable food crop in local people’s life. The areas where Tartary buckwheat
is planted abroad are mainly distributed in Asian countries, such as Bhutan, Nepal, and
India. It is also cultivated in limited areas of Slovenia, Italy, and Northern Europe.

In general, the content of flavonoids in Tartary buckwheat (40 mg/g) is higher than that
in common buckwheat (10 mg/g) [4], and the content of rutin in Tartary buckwheat seeds
is about 100 times higher than that in common buckwheat seeds [5]. As a kind of flavonoid,
rutin has antioxidant, antihypertensive, and α-glucosidase inhibitory activities [6]. The
content and composition of flavonoids in buckwheat varieties are diverse. Furthermore,
the contents of 61 flavonoid metabolites and 94 non-flavonoid metabolites in Tartary
buckwheat are significantly higher than those in common buckwheat (≥2 times). Non-
flavonoid metabolites also give Tartary buckwheat have a higher health promotion value
than common buckwheat [7].

Both types are generally mainly used as flour or coarse wheat for food consumption,
so the husking and grinding processes are essential. Tartary buckwheat is thick and firm in
skin, and the grinding process is more complex than that of common buckwheat. There-
fore, flour and processed foods containing Tartary buckwheat are more expensive than
those containing common buckwheat, resulting in food manufacturers replacing Tartary
buckwheat with cheaper common buckwheat to obtain economic profits [8]. At present,
Tartary buckwheat and its products are gradually receiving more public attention, and
the phenomenon of common buckwheat being disguised as Tartary buckwheat commonly
exists in the market. In addition, different grain flours are often used to blend into Tar-
tary buckwheat. Among them, common buckwheat used in combination with Tartary
buckwheat easily decreases its nutritional value, and even causes safety issues for patients
with hyperglycemia and celiac disease [9,10]. Therefore, identifying common buckwheat
from Tartary buckwheat is necessary and helpful to improve their quality control and
edibility safety.

The relevant theories for distinguishing common buckwheat from Tartary buckwheat
are still lacking. The existing identification methods are few and complex, mostly focusing
on the identification of dietary fiber, protein, amino acid, and other nutrients or flavonoids,
and include multiple real-time PCR detection methods. Metabolomics technology is simple
and effective in sample processing and is flexible in data analysis. It can accurately reflect
various biological functions of organisms through metabolic pathways and describe the
effects of various factors on the metabolic network of organisms [11]. Therefore, it is feasible
and advantageous for identifying Tartary buckwheat and common buckwheat.

At present, the techniques for studying volatile substances mainly include thin-layer
chromatography (TLC), gas chromatography–mass spectroscopy (GC-MS), Fourier trans-
form infrared spectroscopy (FTIR), two-dimensional infrared spectroscopy, and ultraviolet
spectroscopy. As a mature detection method, GC-MS is widely used for the identification
of volatile substances, such as honey, tea, fruit, and wine, due to its small sample size, low
detection limit, and high sensitivity. GC-MS combined with orthogonal partial least-squares
discriminant analysis (OPLS-DA) models showed excellent japonica rice geographic dis-
crimination, and hexanal, 3,5-octadien-2-one, and 2-butyl-2-octenal were selected both
in raw and cooked rice [12]. The untargeted metabolomics combined with partial least
squares regression (PLSR) was a feasible tool used to measure the volatile metabolites in
Chinese rice wine for the identification of rice age [13]. In comparison with other techniques
(i.e., image processing), GC-MS combined with chemometrics is more cost-effective and
easy to model.

As reported, chemometrics methods can be used for the analysis of the metabolites for
a better understanding of the results. Principal component analysis (PCA), as a multivariate
statistical analysis method for the dimensionality reduction in multidimensional data
through data compression, possesses a simple operation, no parameter limitations, and
a wide application range. It can be useful to distinguish food varieties and determine
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the contribution components of different varieties’ metabolite differences. Partial least
squares discriminant analysis (PLS-DA), or OPLS-DA, can be used for the differential
analysis of metabolites among varieties [14,15]. In comparison with other techniques (i.e.,
image processing), GC-MS combined with chemometrics is more cost-effectivene and easy
to model.

In this study, the metabolites of common buckwheat, Sichuan Tartary buckwheat, and
Yunnan Tartary buckwheat were extracted via distillation and analyzed using untargeted
metabolomics based on the GC–MS technique. PCA and PLS-DA were both employed to
identify the differential metabolites of common buckwheat and Tartary buckwheat. This
study provides basic data and new insights for the identification and quality evaluation of
common buckwheat and Tartary buckwheat.

2. Materials and Methods
2.1. Materials

Common buckwheat was obtained from various places in the Chinese provinces of
Yunnan, Guizhou, Heilongjiang, and Shandong. Tartary buckwheat was purchased from
different regions in the Chinese provinces of Yunnan and Sichuan. The samples were
collected from the local regions during the same harvest season in 2022. Samples from
different regions were collected in order to increase the quantity. Meanwhile, the samples
from different regions were also involved in the identification of differences between
the same variety samples, which was helpful to clarify the different properties between
common buckwheat and Tartary buckwheat. Both types of buckwheat were split into
groups A, B, and C, with six samples in each group (Table 1).

Table 1. Samples of common buckwheat and Tartary buckwheat.

Sample
Number

Group
Name Buckwheat Type Region

1

A

Common buckwheat Kunming, Yunnan
2 Common buckwheat Bijie, Guizhou
3 Common buckwheat Bijie, Guizhou
4 Common buckwheat Yilan County, Harbin, Heilongjiang
5 Common buckwheat Zhaodong City, Suihua, Heilongjiang
6 Common buckwheat Jining, Shandong

7

B

Tartary buckwheat Zhaojue County, Liangshan, Sichuan
8 Tartary buckwheat Zhaojue County, Liangshan, Sichuan
9 Tartary buckwheat Zhaojue County, Liangshan, Sichuan
10 Tartary buckwheat Zhaojue County, Liangshan, Sichuan
11 Tartary buckwheat Xichang County, Liangshan, Sichuan
12 Tartary buckwheat Xichang County, Liangshan, Sichuan

13

C

Tartary buckwheat Qujing, Yunnan
14 Tartary buckwheat Qujing, Yunnan
15 Tartary buckwheat Qujing, Yunnan
16 Tartary buckwheat Qujing, Yunnan
17 Tartary buckwheat Zhaotong, Yunnan
18 Tartary buckwheat Zhaotong, Yunnan

2.2. Extraction Methods

First, 50.0 g of common buckwheat and 50.00 g of Tartary buckwheat sample powder
were weighed and placed in two 1000 mL flasks separately. Then, 500 mL of distilled water
was measured and poured into the flasks. Glass beads were subsequently added, and the
flasks were heated and slowly distilled for 4 h. Afterwards, the heat source was turned off
and cooled to room temperature. The volume of volatile oil was accurately read as 0.05 mL.
The distillate was continuously extracted via ethyl acetate three times and then dried via
anhydrous Na2SO4 overnight. Next, the ethyl acetate was evaporated in a water bath to
obtain volatile oil with a delicate fragrance [15].
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2.3. GC-MS Analysis

An HP-5 capillary column (30 m, 0.25 mm, and 0.25 µm) with 0.1 µL sample inlet was
used. The partial flow ratio was 30:1, the gasification chamber temperature was 250 ◦C,
and the carrier gas used was high-purity He (99.999%). The temperature was programmed
as follows: initial column temperature of 100 ◦C, ramped up at a rate of 3 ◦C per min−1 to
130 ◦C, held for 10 min, and then ramped up at a rate of 6 ◦C per min−1 to 250 ◦C [15].

For the EI ion source, the ion source temperature was 230 ◦C; the quad pole tempera-
ture was 150 ◦C, the interface temperature was 280 ◦C, the ionization energy was 70 eV, the
EM voltage was 2165 V, the solvent delay was 3 min, and the scanning quality ranged from
m/z 40 to m/z 550 [14]. The mixture of common buckwheat and Tartary buckwheat was
used as QC samples (N = 3) to verify the detection performance using the same extraction
and analysis methods. The NIST mass spectrometry library was used for statistical analysis.
The volatile compounds were qualitatively studied by referring to the linear retention index
and aroma attributes in references. Various chemical components were quantified using
peak area normalization method [15,16].

2.4. PCA Analysis

PCA is an unsupervised data dimension reduction analysis method [17], and it is one
of the widely used data analysis methods. The data obtained via GC-MS were organized
and imported into SIMCA-P 14 software for statistical analysis, with PCA as the first
step, to provide an overview of all observations and samples and identify and evaluate
groupings, trends, and strong outliers for the intuitive analysis of the classification of
common buckwheat and Tartary buckwheat [18].

2.5. PLS-DA Analysis

PLS-DA was applied to classify common buckwheat and Tartary buckwheat to obtain
different components [15]. PLS-DA is a supervised multivariate statistical analysis method
used for discriminant analysis. A linear regression model is found by projecting the
predictor and the observed variables into a new space. As a supervised modeling method,
the prediction of the sample category is realized by establishing the relationship model
between the omics data and the sample category. Variable importance for the projection
(VIP) was calculated to measure the influence of the expression mode of each indicator on
the classification and discrimination of samples and the explanatory ability. VIP value >1.0
was selected in this study as an important indicator [14,19].

2.6. Volcano Diagram Analysis

Volcanic maps were established for the analysis of different metabolites [20,21]. Vol-
canic maps allow for the visual analysis of differential metabolites (up-regulated or down-
regulated) in common buckwheat and Tartary buckwheat samples. The y-coordinate is
|log2(fold change)|, and the x-coordinate is −log10(p-value). Moreover, red dots are the
significantly up-regulated metabolites and green dots are down-regulated metabolites.
Black spots are the metabolites with no significant difference.

2.7. Heatmap Analysis

Heatmap is used to visualize the data with color via a logarithmic mapping of each
value in the data matrix. This method can display the changes of multiple metabolites in
common buckwheat and Tartary buckwheat samples, and also show the clustering rela-
tionships of metabolites. Generally, the redder color represents the higher value. Different
heatmaps (pairwise comparison) between the common buckwheat and Tartary buckwheat
samples and different Tartary buckwheat samples were prepared in this study.

2.8. Differential Metabolite Annotation and Pathway Analysis

The HMDB database, Lipidmaps database, and KEGG database were used to annotate
differential metabolites. The HMDB database contains detailed information about the
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human metabolome. It is the largest and most comprehensive bio-specific metabolome
database in the world. It contains detailed information on small molecule metabolites in the
human body and their biological effects, disease associations, physiological concentrations,
chemical reactions, and metabolic pathways [22]. Lipidmaps is the largest public lipid
database, including molecular formulas of lipid elements and their lipid classes [23], and it
can annotate eight major lipid classes and their subclasses [24,25]. KEGG is a comprehensive
database comprising multiple databases [26], among which the KEGG pathway database
is a collection of metabolic pathways. It divides biological metabolic pathways into the
following seven categories: metabolism, environmental information processing, genetic
information processing, organismal systems, cellular processes, human diseases, and drug
development [27].

3. Results and Discussion
3.1. PCA

PCA is an unsupervised data dimension reduction analysis method [18], and it is one
of the widely used data analysis methods. In the present study, PCA was performed on
the differential metabolites of samples a–c, and the results are shown in Figure 1. The total
score of the three principal components was available for covering most of the effective
information of the original data. Moreover, the samples of Tartary buckwheat and common
buckwheat could be distinguished. The QC samples presented a high correlation, indicat-
ing that the stability of the detection system was excellent, and the system is reliable for
obtaining results of the generated data. However, the distribution areas of the Tartary buck-
wheat samples from different regions overlapped, making it difficult to distinguish them
well. Therefore, a more prominent method should be used for analyzing and identifying
intergroup differences.
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The PCA model was used to analyze samples A and B, A and C, and B and C, and
the results are shown in Figure 2. The total contribution rates of the principal components
shown in Figure 2a are all greater than 80, and the total contribution rate in Figure 2c is
greater than 70. The cumulative contribution rate of the three graphs is relatively high,
and the analysis results are more reliable. As shown in Figure 2a,b, the sample points
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of common buckwheat and Tartary buckwheat are clustered in the same area, and the
aggregation areas of the different sample points differ, indicating that the PCA model can be
used to distinguish samples of common buckwheat and Tartary buckwheat. In the analysis
of Tartary buckwheat samples from different producing areas (Figure 2c), the distribution
of sample points in the same group is relatively scattered, and the distribution of sample
points in the different groups overlap, making the discrimination effect non-satisfactory.
The results show that the PCA model can be used to identify common buckwheat and
Tartary buckwheat, but identifying Tartary buckwheat from different areas is difficult. In
previous research, metabolomics was also used to discriminate four rice samples from
different regions without excellent performance [14]. More models, like the PLS-DA model,
should be employed to show the discrimination accuracy for satisfactory performance.

Foods 2023, 12, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 2. PCA results of (a) A versus B, (b) A versus C, and (c) B versus C. A—common buckwheat, 
B—Tartary buckwheat in Sichuan, C—Tartary buckwheat in Yunnan. 

3.2. PLS-DA Analysis 
Compared with PCA, as a supervised multivariate statistical analysis method [19], 

PLS-DA could further enhance the difference between the groups. In the present study, 
the PLS-DA model was used to analyze the differential metabolites of common buck-
wheat, Tartary buckwheat, and Tartary buckwheat from different regions (Figure 3a–c). 
R2X and R2Y represent the percentage of the X and Y matrix information that the PLS-DA 
model can explain, respectively. The R2Y of each PLS-DA graph is greater than 0.9, indi-
cating that the model retained more original information, and the results are accurate. The 
Q2Y of Figure 3a–c is greater than 0.5, indicating that the model had a good predictive 
ability. In the PLS-DA model, common buckwheat and Tartary buckwheat are located on 
the left and right sides of the map, far away from each other, and the distribution between 
the same sample is compact. The distribution area of the different samples obviously dif-
fer, and the distribution of the Tartary buckwheat samples from different producing areas 
exhibit a certain boundary. Therefore, the PLS-DA model can be used to distinguish Tar-
tary buckwheat, common buckwheat, and Tartary buckwheat from different producing 
areas. 

A permutation test was carried out to verify whether the PLS-DA model was overfit-
ted. Overfitting indicates that the results are not accurate, and that the model is not suita-
ble for subsequent experimental analysis. The order of variable Y was randomly changed, 
and the corresponding PLS-DA model was re-established to obtain new R2 and Q2. The 
results are shown in Figure 3d–f. The Q2 in the map is less than R2, and the intercept of 
Q2 on the Y axis is negative, indicating that the PLS-DA model was not overfitted, and the 
results are accurate. 

Although the classification accuracy for common buckwheat and Tartary buckwheat 
has reached 100%, the real challenge arises when the classification needs to be performed 
in more complex scenarios, such as the identification of adulteration with different ratios 
of common buckwheat and Tartary buckwheat. As reported, in complex scenarios of aged 
rice adulteration with different ratios, partial least squares regression (PLSR) and support 

Figure 2. PCA results of (a) A versus B, (b) A versus C, and (c) B versus C. A—common buckwheat,
B—Tartary buckwheat in Sichuan, C—Tartary buckwheat in Yunnan.

3.2. PLS-DA Analysis

Compared with PCA, as a supervised multivariate statistical analysis method [19],
PLS-DA could further enhance the difference between the groups. In the present study, the
PLS-DA model was used to analyze the differential metabolites of common buckwheat,
Tartary buckwheat, and Tartary buckwheat from different regions (Figure 3a–c). R2X and
R2Y represent the percentage of the X and Y matrix information that the PLS-DA model
can explain, respectively. The R2Y of each PLS-DA graph is greater than 0.9, indicating
that the model retained more original information, and the results are accurate. The Q2Y
of Figure 3a–c is greater than 0.5, indicating that the model had a good predictive ability.
In the PLS-DA model, common buckwheat and Tartary buckwheat are located on the left
and right sides of the map, far away from each other, and the distribution between the
same sample is compact. The distribution area of the different samples obviously differ,
and the distribution of the Tartary buckwheat samples from different producing areas
exhibit a certain boundary. Therefore, the PLS-DA model can be used to distinguish Tartary
buckwheat, common buckwheat, and Tartary buckwheat from different producing areas.
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A permutation test was carried out to verify whether the PLS-DA model was overfitted.
Overfitting indicates that the results are not accurate, and that the model is not suitable for
subsequent experimental analysis. The order of variable Y was randomly changed, and the
corresponding PLS-DA model was re-established to obtain new R2 and Q2. The results are
shown in Figure 3d–f. The Q2 in the map is less than R2, and the intercept of Q2 on the
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Y axis is negative, indicating that the PLS-DA model was not overfitted, and the results
are accurate.

Although the classification accuracy for common buckwheat and Tartary buckwheat
has reached 100%, the real challenge arises when the classification needs to be performed
in more complex scenarios, such as the identification of adulteration with different ratios of
common buckwheat and Tartary buckwheat. As reported, in complex scenarios of aged rice
adulteration with different ratios, partial least squares regression (PLSR) and support vector
machine regression (SVR) combined with spectral data preprocessing and characteristic
wavelength variable screening were employed to achieve the identification [28], indicating
that complex models should be developed for complex samples.

3.3. Volcano Diagram Analysis

The number of differential metabolites between the different samples was screened in
accordance with VIP, fold change (FC), and p-value parameters. The VIP value represents
the contribution of metabolites to the sample grouping [15], the FC refers to the presence of
multiple differences, and the p-value indicates a significant difference. On the basis of the
criteria of VIP > 1, FC > 2, or FC < 0.5 and a p-value < 0.05 [20], the differential metabolites
were screened, and the results are shown in Table 2. The differential metabolite compounds
in the three groups are presented in Tables S1–S3.

Table 2. Quantitative identification of differential metabolites.

Group Number of Differential Metabolites Up Down

A vs. B 63 25 38
A vs. C 61 37 24
B vs. C 37 36 1

The volcanic diagram (Figure 4) intuitively shows the distribution of the different
metabolites between the two samples. The red point is the up-regulated point, and the
green point is the down-regulated point. The abscissa is represented by log2(FC). The points
on both sides of the distribution have larger differences, and the ordinate is represented
by -log10 (p-value). The points with greater differences are distributed upwards [21],
so the points in the upper left and upper right corners are generally more biologically
significant. The figure clearly shows that compared with the common buckwheat, the
number of differential metabolites in the Tartary buckwheat from different regions was
significantly reduced.

3.4. Heatmap Analysis

The various metabolites of the three groups of buckwheat samples are presented
by heatmap, a popular data visualization method that uses color to map data for the
data to become more intuitive and for the contrast to become more obvious. The rows
and columns were reordered according to the relationship of the data expression, so that
the differential metabolites with similar expression levels could be tightly grouped, and
the global expression levels of multiple differential metabolites among multiple samples
could be visually presented. In the clustering heatmap, vertical represents the grouping of
samples, and level represents the clustering of metabolites; the briefer the cluster branch,
the greater the similarity. The color in the heatmap changes from blue to red, where red
indicates that the content of metabolites is high, and blue indicates that the content of
metabolites is low. Figure 5 shows that different sample groups demonstrated different
expressions of differential metabolites through the display of color. The comparison
between the samples in group A and the samples in groups B and C could be used to
identify common buckwheat and Tartary buckwheat, and the comparison of the samples in
groups B and C could be used to identify the habitat of Tartary buckwheat. The tree-like
branches at the top of the heatmap also indicate information about the similarities and
differences among the samples.
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Figure 4. Venn analysis of differential metabolites in different groups (a); volcano diagram results of
(b) A versus B, (c) A versus C, and (d) B versus C. A—common buckwheat, B—Tartary buckwheat in
Sichuan, C—Tartary buckwheat in Yunnan.

The content of metabolites, such as 2,4-diaminobutyric acid 1, methyl phosphate,
creatine degr, and epicatechin, in the group A samples was much higher than that in
the Tartary buckwheat samples, and the difference in distribution was obvious (red or
blue color at the bottom position). In the Tartary buckwheat samples of group B, the
contents of galactonic acid, dehydroshikimic acid 1, isoleucine, L-allothreonine 1, and
other metabolites were well distributed and significantly higher than those in the common
buckwheat samples (blue at the bottom and red at the top). In the Tartary buckwheat
samples of group C, the ribulose-5-phosphate 1 content was substantially higher than that in
the other two groups, as shown in Figure 5. These findings show that the differences among
the Tartary buckwheat samples may be caused by changes or differences in the processes
of cultivation, drying, picking time, and storage. The metabolomics analysis performed in
this paper presents the different characteristics of common buckwheat samples and Tartary
buckwheat samples by supporting the information of the related metabolites.

The correlation analysis of the differential metabolites among different groups can
help us understand the expression relationship between these metabolites. If the expression
trend tends to converge, it can be preliminarily judged that the differential metabolites
have a functional correlation, that is, they participate in the same or synergistic biological
processes. If the expression levels of two different differential metabolites increase or
decrease together, they can be considered to have a positive correlation. If one of the
differential metabolites increases and the expression of the other differential metabolites
decreases, this can be considered as a negative correlation.
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The Pearson correlation analysis was used to analyze differential metabolites (Figure 6).
A positive correlation is represented by warm color dots, and the greater the correlation
is, the closer it is to red. A negative correlation is represented by cool color dots, and
the greater the correlation is, the closer it is to blue. According to the cool and warm
colors of the three maps, the differential metabolites in the Tartary buckwheat samples
from different producing areas have a strong functional correlation. In comparison with
the results between the Tartary buckwheat samples, the cool color between the common
buckwheat samples and Tartary buckwheat samples present a weak correlation.
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As a data standardization method, the Z-score chart can eliminate the influence of
dimension and order of magnitude on the data analysis, which makes it possible to compare
the variables of different magnitude and dimensions vertically [29]. It can help to survey
the variables to distinguish samples of different groups. As shown, the difference of
the distribution between the common buckwheat and Tartary buckwheat (Figure 6d,e) is
obviously different in comparison with the distribution between the Tartary buckwheat
from different regions (Figure 6f).

3.5. Differential Metabolite Annotation and Pathway Analysis

A total of 111, 19, and 112 metabolites were annotated in the HMDB database,
Lipidmaps database, and KEGG database, respectively. The differential metabolites in the
present study were annotated via HMDB (Figure 7a). A total of 10 categories of lignans,
neolignans and related compounds, homogeneous non-metallic compounds, nucleosides,
nucleotides and analogues, organic nitrogen compounds, phenylpropanoids and polyke-
tides, benzenoids, organoheterocyclic compounds, lipids and lipid-like molecules, organic
oxygen compounds, and organic acids and derivatives were found. Among them, organic
oxygen compounds and organic acids and derivatives accounted for the largest proportion.
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By using the Lipidmaps database for lipid analysis (Figure 7b), the differential metabo-
lites were classified into the following four categories: fatty acyls, polyketides, prenol lipids,
and sterols. Fat acyl was divided into fatty alcohols and fatty acids and conjugates, and
the differential metabolites belonging to them accounted for the highest proportion. The
KEGG database was used to analyze the metabolic pathways of differential metabolites
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in the present study. The metabolic pathways involved (Figure 7c) were environmental
information processing and metabolism.

KEGG was used for the Pearson correlation analysis of differential metabolites (Figure 8),
which is helpful to determine the main pathways involving differential metabolites. As
shown, the ordinate is the metabolic pathway, and the abscissa is x/y (the number of
differential metabolites in the corresponding metabolic pathway/the number of total
metabolites identified in the pathway), indicating the enrichment of differential metabolites
in the pathway. The greater the abscissa value, the higher the enrichment of the differential
metabolites. The color of the point in the figure represents the p-value. The smaller the
p-value is, the more the color of the point tends to be cool, indicating that the reliability of
the test is greater. The size of the point represents the number of differential metabolites in
the corresponding pathway. The larger the point is, the greater the number of differential
metabolites in the pathway.

Foods 2023, 12, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 8. Bubble diagram of enriched KEGG pathway for (a) A versus B, (b) A versus C, and (c) B 
versus C. A—common buckwheat, B—Tartary buckwheat in Sichuan, C—Tartary buckwheat in 
Yunnan. 

4. Conclusions 
Untargeted metabolomics technology based on GC-MS was used to identify Tartary 

buckwheat and common buckwheat successfully. The results show that the PLS-DA 
model can identify Tartary buckwheat and common buckwheat without an overfitting 
phenomenon. Differential metabolites were obtained, and the number of differential me-
tabolites in the Tartary buckwheat from different regions (37 compounds) was signifi-
cantly smaller than that of the Tartary buckwheat and common buckwheat (63 or 61 com-
pounds). Significant differences were presented in the metabolites among different sam-
ples using visualization analysis, including PLS-DA, volcanic map, heatmap, and Z-score. 
It was also found that the ascorbate and aldarate metabolism was the main differential 

Figure 8. Bubble diagram of enriched KEGG pathway for (a) A versus B, (b) A versus C, and
(c) B versus C. A—common buckwheat, B—Tartary buckwheat in Sichuan, C—Tartary buckwheat
in Yunnan.
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In the analysis map of the Tartary buckwheat and common buckwheat (Figure 8a,b),
the enrichment degree of differential metabolites in ascorbate and aldarate metabolism
is high. This finding shows that the ascorbate and aldarate metabolism was the main
differential metabolic pathway of the Tartary buckwheat and common buckwheat. A
previous study found that the proper processing treatment can effectively improve the
antioxidant enzyme activity of Tartary buckwheat sprouts, which is possibly associated
with the ascorbate and aldarate metabolism [30]. Drought stress decreased the growth
and biomass of the Tartary buckwheat, which may also be involved in the ascorbate and
aldarate metabolism [31].

For the biosynthesis of amino acids, the high enrichment degree of differential metabo-
lites indicated that the biosynthesis of amino acids was also greatly different between the
Tartary buckwheat and common buckwheat, which was similar to the findings of previ-
ous research. As reported, the changing contents of various amino acids during Tartary
buckwheat seed germination can be caused by many factors [32]. It was also presented that
genes involved in secondary metabolite biosynthesis including amino-acid-related genes
were responsive to salt stress with a significant change [33].

As stated above, the main differential metabolic pathways clarified by the analysis of
metabolites showed the different characteristics of common buckwheat samples and Tartary
buckwheat samples. Untargeted metabolomics is an alternative method to determine
the differences and average characteristics of common buckwheat samples and Tartary
buckwheat samples using the different identified metabolites.

4. Conclusions

Untargeted metabolomics technology based on GC-MS was used to identify Tar-
tary buckwheat and common buckwheat successfully. The results show that the PLS-DA
model can identify Tartary buckwheat and common buckwheat without an overfitting phe-
nomenon. Differential metabolites were obtained, and the number of differential metabo-
lites in the Tartary buckwheat from different regions (37 compounds) was significantly
smaller than that of the Tartary buckwheat and common buckwheat (63 or 61 compounds).
Significant differences were presented in the metabolites among different samples using
visualization analysis, including PLS-DA, volcanic map, heatmap, and Z-score. It was
also found that the ascorbate and aldarate metabolism was the main differential metabolic
pathway of the Tartary buckwheat and common buckwheat. The biosynthesis of amino
acids was also greatly different between the Tartary buckwheat and common buckwheat.
In summary, metabolomics based on GC-MS technology can be used to identify Tartary
buckwheat and common buckwheat. This study provides a new method for identifying
Tartary buckwheat and common buckwheat, which helps to further promote food safety.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/foods12132578/s1, Table S1: The identified differential
metabolites (VIP > 1) between group A vs. group B. A-common buckwheat, B-Tartary buckwheat
in Sichuan. Table S2: The identified differential metabolites (VIP > 1) between group A vs. group
C. A-common buckwheat, C-Tartary buckwheat in Yunnan. Table S3: The identified differential
metabolites (VIP > 1) between group B vs. group C. B-Tartary buckwheat in Sichuan, C-Tartary
buckwheat in Yunnan.
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