

Article Check Your Shopping Cart: DNA Barcoding and Mini-Barcoding for Food Authentication

Tommaso Gorini ¹, Valerio Mezzasalma ¹, Marta Deligia ², Fabrizio De Mattia ¹, Luca Campone ³, Massimo Labra ³, and Jessica Frigerio ^{3,*}

- ¹ FEM2-Ambiente, Piazza della Scienza 2, 20126 Milano, Italy; tommaso.gorini@fem2ambiente.com (T.G.); valerio.mezzasalma@fem2ambiente.com (V.M.); fabrizio.demattia@fem2ambiente.com (F.D.M.)
- ² Department of Scienze Agrarie, Forestali e Alimentari, University of Turin, Via Verdi 8, 10124 Torino, Italy; marta.deligia@tiscali.it
- ³ Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; luca.campone@unimib.it (L.C.); massimo.labra@unimib.it (M.L.)
- * Correspondence: jessica.frigerio@unimib.it

Abstract: The molecular approach of DNA barcoding for the characterization and traceability of food products has come into common use in many European countries. However, it is important to address and solve technical and scientific issues such as the efficiency of the barcode sequences and DNA extraction methods to be able to analyze all the products that the food sector offers. The goal of this study is to collect the most defrauded and common food products and identify better workflows for species identification. A total of 212 specimens were collected in collaboration with 38 companies belonging to 5 different fields: seafood, botanicals, agrifood, spices, and probiotics. For all the typologies of specimens, the most suitable workflow was defined, and three species-specific primer pairs for fish were also designed. Results showed that 21.2% of the analyzed products were defrauded. A total of 88.2% of specimens were correctly identified by DNA barcoding analysis. Botanicals (28.8%) have the highest number of non-conformances, followed by spices (28.5%), agrifood (23.5%), seafood (11.4%), and probiotics (7.7%). DNA barcoding and mini-barcoding are confirmed as fast and reliable methods for ensuring quality and safety in the food field.

Keywords: DNA barcoding; food fraud; species identification; food quality; food safety; food supply chain

1. Introduction

The complexity of the food supply network, including disruption due to COVID-19 and climate change, can make food products more vulnerable to fraud and substitution. It is difficult to quantify the impact of fraud on the whole food field because not all fraud is detected. However, food safety experts interviewed by Spielman estimated the impact of fraud on the food industry to be in excess of USD 50 billion annually [1]. Food fraud can occur anywhere in the food supply chain, from the seed supply to food packaging. Mislabelling (20.7%), artificial enhancement (17.2%), and substitution (16.4%) were the most commonly reported types of fraud [2]. Mislabelling has been frequently reported in the literature: up to 57% in processed meat products [3,4], up to 80% in fish filets [5,6], and up to 80% in dairy products [7]. Concerning the herbal supplements field, a global survey showed that 27% of herbal products commercialized in the global marketplace are adulterated. The most defrauded regions are Australia (79% mislabelled products) followed by South America (67% mislabelled products) [8]. Undeclared species substitution in food products might also represent an important health threat to allergic consumers because of the introduction of food allergens, such as different kinds of nuts and mollusks [9] or poisonous plants [10]. Even though it is a current problem, agribusiness has not paid sufficient attention to this issue. Most fraud is harmless, and this leads to a lack of attention.

Citation: Gorini, T.; Mezzasalma, V.; Deligia, M.; De Mattia, F.; Campone, L.; Labra, M.; Frigerio, J. Check Your Shopping Cart: DNA Barcoding and Mini-Barcoding for Food Authentication. *Foods* **2023**, *12*, 2392. https://doi.org/10.3390/ foods12122392

Academic Editor: Jan Mei Soon

Received: 16 May 2023 Revised: 7 June 2023 Accepted: 14 June 2023 Published: 16 June 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Nevertheless, the consumers have a large interest in the quality of food. McCallum and colleagues investigate consumers' willingness to pay for premium products to reduce risk and uncertainty related to food fraud, showing that consumers are willing to pay for premium products to avoid food fraud and purchase an authentic product [11]. In this regard, blockchain has emerged as a promising technology that allows users to trace food products and eliminate or reduce harmful food fraud.

Treiblmaier and Garaus investigate how the use of blockchain to trace food products impacts consumers' perception of product quality, finding that blockchain labels help to strengthen consumers' perceived quality of food products which, in turn, increases their purchase intention [12]. Introducing DNA analysis into supply chain control could increase consumers' confidence and consequently the budget allocated for food shopping. DNA barcoding has been frequently used in the literature for food authentication and supply chain control [13–15].

The application of DNA barcoding in food authentication is rooted in the concept of using short and standardized DNA sequences to differentiate between species. The technique targets specific regions of the genome, such as the mitochondrial DNA (mtDNA) or chloroplast DNA (cpDNA), which exhibit sufficient variability among species while maintaining conserved regions within the same species [16,17]. By comparing the barcode sequences obtained from unknown samples with well-curated reference databases, such as ncbi (https://www.ncbi.nlm.nih.gov/nucleotide/ accessed on 1 May 2023) and BOLD (https://www.boldsystems.org/ accessed on 1 May 2023), DNA barcoding allows for the identification of species present in food products, thereby enabling the detection of fraudulent practices.

One of the key advantages of DNA barcoding is its ability to detect adulteration and substitution in complex food matrices [18]. The technique can differentiate between closely related species or detect the presence of non-declared ingredients, even in processed or highly fragmented products. For instance, in cases where premium and expensive seafood species are substituted with cheaper alternatives, DNA barcoding can expose such fraudulent activities by identifying the true species present in the sample [19]. Similarly, it can detect the presence of allergenics that may pose health risks to consumers. Furthermore, DNA barcoding can aid in the identification of geographical origins or specific cultivars, providing valuable information regarding product quality, cultural heritage, and compliance with geographical indication regulations [20].

The use of DNA barcoding in combating food fraud has gained significant attention worldwide. Governments, regulatory agencies, and industry stakeholders recognize its potential to ensure food authenticity, protect consumer rights, and maintain market integrity. In recent years, various countries and international organizations have established initiatives and regulations to promote the adoption of DNA barcoding as a standard practice in food authentication. These include The EU Agri-Food Fraud Network (FFN), the United States Food and Drug Administration's (FDA) GenomeTrakr program, and the International Organization for Standardization's (ISO) guidelines on DNA-based methods for food authenticity testing.

Despite its numerous benefits, DNA barcoding is not without limitations. Challenges related to sample preparation, DNA extraction, database completeness, and the availability of suitable reference materials need to be addressed for wider adoption and successful implementation. Furthermore, ongoing advancements in DNA sequencing technologies, bioinformatics tools, and reference databases are vital to enhance the accuracy, efficiency, and reliability of DNA barcoding in food fraud detection.

This study aimed to identify several workflows of DNA barcoding for supply chain control in different food fields. A total of 38 companies, operating in 5 different fields (seafood, botanicals, agrifood, spices, and probiotics) supplied some of their high-selling products for a total of 212 specimens. Among these samples we can find fish filets, herbal teas, truffles, caviar, canned fish, processed products, powders, plant extracts, food supplements, flours, etc., a mix of products that can be considered representative of a supermarket

shopping cart. The technical goals of the study are to (i) define the most suitable extraction methods for food matrices, (ii) identify the most suitable barcode region useful for different types of products (i.e., fresh, processed, etc.) and designed primer pairs when necessary, and (iii) estimate the ability of DNA barcoding tools to assess fraud in high-selling products.

2. Materials and Methods

2.1. Specimen Collection

The specimen collection was based on some defined criteria: (i) the most counterfeit species according to the literature were collected, (ii) sampling of the same species belonging to different companies was preferred, and (iii) when possible, raw/fresh, intermediate, and final products were collected. A total of 46 companies operating in the food field were contacted to join this study. The companies were chosen considering the food field operating (seafood, agrifood, spices, botanicals, and probiotic) with the aim to cover the most defrauded fields. A total of 38 companies agreed to participate in the project and a total of 212 specimens were collected (Table A1). In this study, we analyzed different typologies of products, from fresh (fish filets) to highly processed products (food supplements).

2.2. DNA Extraction

Considering the wide typology of specimens tested in this study, different commercial kits and extraction methods were chosen based on the literature [21–24]. For seafood specimens (fresh and intermediate specimens), Tissue Genomic DNA Extraction (Fisher Molecular Biology, Rome, Italy) (TGF) was selected and for more difficult products, such as canned fish and products preserved in oil and brine; the ReliaPrep[™] gDNA Tissue MiniPrep System (Promega, Milan, Italy) (RPP) was tested/used with a modification to the protocol. The products preserved in brine were washed three times with a physiological solution (NaCl 0.7%), mixing overnight at room temperature. Canned specimens were pretreated in order to clean the tissue from the conservation liquid, such as oil (vegetable and olive); briefly, oil and lipids were removed by soaking in chloroform/methanol/water (1:2:0.8) and mixing overnight at room temperature [24].

For agrifood products, spices, and botanicals, a DNeasy Plant Kit (QIAGEN, Milan, Italy) (DPQ) was used following the instructions. For more complex samples belonging to these fields, such as phytoextract, the CTAB method was also applied [25]. The CTAB method allows us to start from a higher amount of material (1 g) and to harvest all the DNA in the solution.

Finally, for probiotic specimens, QIAamp DNA Microbiome Kit (QIAGEN) (QAQ) was used. In Table A1 are shown all the extraction methods used for all specimens. Purified gDNA was checked for concentration and purity by using a Qubit 2 Fluorometer and Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA).

2.3. Barcode Region Selection

A universal set of DNA barcoding markers for each product was tested. Specifically, different primer pairs were selected for animals, plants, fungi, and bacteria.

2.3.1. Animal DNA Barcoding

The amplification efficiency of the barcode region is associated with the primer pairs. A primer pair specific for a universal barcode region should be versatile across a wide range of animal species and have high affinity to DNA templates. Nevertheless, sometimes the universal primers are not applicable for certain taxa or specimens and it is necessary to redesign primers, as for some specimens in this study [26]. The barcode regions chosen for animal identifications were the mitochondrial markers COI (Cytochrome c oxidase I), RNA 16S (16S ribosomal RNA), CytB (Cytochrome b), and Control Region (DLoop). For the species *Dicentrarchus labrax, Katsuwonus pelamis, Thunnus* sp., primer pairs for DNA barcoding and mini-barcoding, respectively, were designed in silico in this study. For *Dicentrarchus labrax*, the COI region was identified as the most suitable for species identification, while for

Katsuwonus pelamis and *Thunnus* spp., the control region (CR) was chosen based on the literature [22]. All nucleotide sequences of the COI gene and control region (CR) were obtained from NCBI Nucleotide for *Dicentrarchus* spp., *Katsuwonus pelamis*, and *Thunnus* spp., respectively, and were aligned using ClustalW2 software (www.ebi.ac.uk/Tools/msa/clustalw2/ accessed on 1 May 2023). The most conserved regions for *Dicentrarchus* sp., *Katsuwonus pelamis*, and *Thunnus* spp. were identified using Bioedit software and primer pairs specific for the genus *Dicentrarchus* spp. and *Thunnus* spp. and the species *Katsuwonus pelamis* were de novo designed. Primer pairs were tested with Primer–Blast tool available from NCBI (www.ncbi.nlm.nih.gov/tools/primer-blast/ accessed on 1 May 2023) to verify the specificity. Primer sequences are shown in Table 1.

Primer Name	Gene	Primer Sequence (5'->3')	bp	Ta °C	Target	Reference
Cox1_Ward_FishF1 Cox1_Ward_FishR1	COI	F: TCAACCAACCACAAAGACATTGGCAC R: TAGACTTCTGGGTGGCCAAAGAATCA	655	55 °C	Bony fish	[27]
Cox1_Ward_FishF2 Cox1_Ward_FishR2	COI	F: TCGACTAATCATAAAGATATCGGCAC R: ACTTCAGGGTGACCGAAGAATCAGAA	616	55 °C	Bony fish	[27]
LCO 1490 HCO 2198	COI	F: GGTCAACAAATCATAAAGATATTGG R: TAAACTTCAGGGTGACCAAAAAATCA	700	47 °C	Crustaceans and cephalopods	[28]
16sar-L 16sbr_H	16S rRNA	F: CGCCTGTTTAYCAAAAACAT R: CCGGTCTGAACTCAGATCACGT	571	57 °C	Animal universal	[29]
GLUDG C61221H	Cytb	F: TGACTTGAARAACCAYCGTTG R: CTCCAGTCTTCGRCTTACAAG	1140	52 °C	Animal universal	[30]
Tuna_CR_F Tuna_CR_R	CR	F: GCAYGTACATATATGTAAYTACACC R: CTGGATGGTAGGYTCTTACTGCG	236	58 °C	Thunnus spp.	[31]
Tuna_CR_F Tuna_minibar_R2	CR	F: GCAYGTACATATATGTAAYTACACC R: GAYATATGAATAKTTWSRTAC	80	52 °C	Thunnus spp.	[31]/This study
Sco5S_F Sco5S_R	ITS	F: CTCACTGTTACAGCCTG R: CAAACACATGCTATCCTT	120	48 °C	Scomber spp.	[19]
Katw_F Katw_R	CR	F: GCGAGATYTAAGACCTACCACG R: GAGCTGGTTGGTCTCTT	80	54 °C	<i>Katswonus</i> spp.	This study
Dlab_F Dlab_R	COI	F: TCTTATTCTCCCCGGGTTCG R: GATGTGAAGTATGCGCGTGT	186	59 °C	Dicentrarchus spp.	This study
rbcL_1F rbcL724R	rbcL	F: ATGTCACCACAAACAGAAAC R: TCGCATGTACCTGCAGTAGC	743	50 °C	Plants universal	[31,32]
rbcL 1 rbcL B	rbcL	F: TTGGCAGCATTYCGAGTAACTCC R: AACCYTCTTCAAAAAGGTC	226	50 °C	Plants universal	[33]
matK_3F_KIM matK_1R_KIM	matK	F: CGTACAGTACTTTTGTGTTTACGAG R: ACCCAGTCCATCTGGAAATCTTGGTT	636	53 °C	Plants universal	[34]
psbA trnH	psbA- trnH	F: GTTATGCATGAACGTAATGCTC R: CGCGCATGGTGGATTCACAATCC	300–600	53 °C	Plants universal	[35]
ITS-p5 ITS-u4	ITS	F: CCTTATCAYTTAGAGGAAGGAG R: RGTTTCTTTTCCTCCGCTTA	300-750	55 °C	Plants universal	[36]
ITS3_KYO2 ITS-4	ITS	F: GATGAAGAACGYAGYRAA R: RGTTTCTTTTCCTCCGCTTA	300–500	55 °C	Fungi	[37]
P0 P6	16S rRNA	F: GAGAGTTTGATCCTGGCTCAG R: CTACGGCTACCTTGTTACGA	1540	54 °C	Bacteria	[38]

Table 1. List of primer name, gene target, primer sequence (5'->3'), bp of the fragment obtained, annealing temperature, taxonomic target, and reference.

2.3.2. Plant DNA Barcoding

Starting from 2005, mitochondrial, plastid, and nuclear genomes were studied to identify a barcode universal region for plants [39–42] and four gene regions (*rbcL, matK, trnH-psbA*, and ITS) have been chosen as the standard DNA barcodes in most applications for plants [43–45]. In this study, all of these barcode regions were tested. However, recently, some manuscripts described the efficacy of mini-barcode regions (i.e., the analysis of smaller genome portions—100–150 bp—usually associated with the largest DNA barcodes) for the identification of processed plant extracts [46,47]. Furthermore, in this study, a DNA mini-barcoding barcode (*rbcL* mini-barcoding) was tested for plant extracts. Primer sequences are shown in Table 1. The different plant regions chosen for each species were defined after an in silico analysis; the sequences for the DNA barcoding marker chosen in this study were downloaded from NCBI Nucleotide database

(https://www.ncbi.nlm.nih.gov/nucleotide/ accessed on 1 May 2023). Sequences were aligned using the online tool Muscle (https://www.ebi.ac.uk/Tools/msa/muscle/ accessed on 1 May 2023) and manually edited using Bioedit. Haplotypes were collapsed by using the online tool Fabox (https://users-birc.au.dk/palle/php/fabox/ accessed on 1 May 2023). Finally, each haplotype was compared to the online database using the BLAST algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi accessed on 1 May 2023). The best performing plant markers in terms of identification were chosen and selected for the analysis.

2.3.3. Fungi DNA Barcoding

The most common barcode region for fungi identification is ITS [48–50]. El Karkouri and colleagues also tested this region for truffles, finding the efficiency for species identification for *Tuber* spp. Genera [51]. In this study, the ITS barcode region was also chosen for DNA barcoding analysis. Primer sequences are shown in Table 1.

2.3.4. Bacteria DNA Barcoding

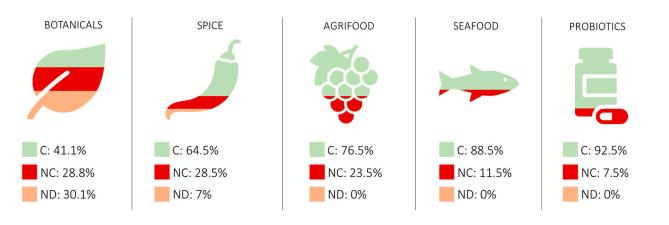
For bacteria identification, the 16S rRNA gene is used. It is a common housekeeping gene in all prokaryotic organisms. This gene is the most used in bacterial study because (i) it is present in almost all bacteria, (ii) the function of the 16S rRNA gene over time has not changed, suggesting that random sequence changes are a more accurate measure of the evolution, and (iii) the 16S rRNA gene (1500 bp) is large enough for informatics purposes, even if, for DNA barcoding, a smaller region is analyzed [52]. Primer sequences are shown in Table 1.

2.4. DNA Amplification and Identification

A standard PCR amplification was performed using PCR Mix Plus (A&A Biotechnology, Danzica, Poland) following the manufacturer's instructions in a 25 μ L reaction containing 1 μ L 10 mM of each primer and 3 μ L of gDNA (about 20–50 ng). PCR cycles differ in relation to the primer pairs used. All the PCR programs are shown Appendix A Table A2. The amplicon was visualized by electrophoresis on agarose gel using 1.5% agarose Tris-acetate-EDTA (TAE) gel. Purified amplicons were bidirectionally sequenced by Sanger at Eurofins Genomics (Ebersberg, Germany). After manual editing, primer removal, and pairwise alignment, all the tested samples' (Table A2) identities were assessed by adopting a standard comparison approach against the GenBank database with BLASTn [53]. Each barcode sequence was taxonomically assigned to the species with the nearest matches (maximum identity > 99% and query coverage of 100%).

3. Results and Discussion

DNA extraction was successful for 187 specimens out of 212, with high DNA quality and good yield (i.e., $3.2-27.4 \text{ ng}/\mu\text{L}$). The presences in the public databases of the sequences for all the species considered in our study were checked and confirmed. For 25 specimens (11,8% of total), 22 for botanicals and 3 for spices, the extracted DNA was not suitable for the analysis in terms of quantity and quality (Table A1). Concerning the identification, for most of the samples (88.2%), it was possible to identify the species, proving the suitability of the barcode region selected. A total of 45 samples out of 212 were defrauded for a total of 21.2% of detected fraud (Table A1).


Considering the results of this study, the most defrauded products were botanicals, with 28.8% of substitution or contamination (Table 2). To identify the contaminants, further analysis, such as Next Generation Sequencing (NGS), is necessary [54].

Almost all specimens were impossible to identify by morphological methodology, because they were treated, in the form of powder or capsule. This value is in line with the percentage presented by Ichim and colleagues, who showed that 27% of the herbal products commercialized in the global marketplace are adulterated [8]. In the same way, the higher percentage of specimens without detectable DNA (31.4%) were botanicals too (Figure 1, Table 2). This value can be explained considering that more than half of the

specimens (51 of 70) undergo industrial pre-treatment, such as high temperatures, use of solvent (ethanol, glycerol), and other industrial treatments such as CO₂ supercritical extraction. These industrial processing steps degrade, fragment, and precipitate DNA. In a previous study of ours [46], we evaluated the capability of DNA barcoding identification for botanicals (phytoextract and botanicals). We found that phytoextracts obtained through hydroalcoholic treatment, with the lower percentage of ethanol (<40%) and aqueous processing at low temperature, had a major rate of sequencing and identification success. In this study, we obtained similar results, with a success of identification for liquid aqueous phytoextracts with a low percentage of ethanol (<40%) (i.e., DIF_74, DIF_75, DIF_138, etc.) and an incapability to detect DNA in the other typology of specimens.

Collected Non-Compliant No DNA Detected Specimens' Compliant Sector Typology Specimens (Percentage) (Percentage) (Percentage) Fresh/raw 6 (100%) 6 / Intermediate 4 4 (100%) Seafood 60 8 (13.3%) Processed 52 (86.6%) Total 70 62 (88.5%) 8 (11.5%) Fresh/raw 19 14 (73.7%) 5 (26.3%) Intermediate 3 3 (100%) **Botanicals** Processed 51 13 (25.5%) 16 (31.3%) 22 (43.2%) 73 22 (30.1%) Total 30 (41.1%) 21 (28.8%) Fresh/raw 13 12 (92.3%) 1 (7.7%) 0 0 Intermediate / Agrifood 1 (25%) 3 (75%) 0 Processed 4 Total 17 14 (76.5%) 3 (23.5%) Fresh/raw 18 13 (72.2%) 4 (22.2%) 1 (5.6%) Intermediate / / Spice Processed 24 14 (58.3%) 8 (33.3%) 2 (8.3%) Total 42 27 (64.5%) 12 (28.5%) 3 (7%) Fresh/raw / / Intermediate Probiotics 13 12 (92.5%) 1 (7.5%) Processed Total 13 12 (92.5%) 1 (7.5%)

Table 2. In the table are indicated the number of specimens analyzed divided into compliant, noncompliant, and samples where DNA was not detected, also expressed in percentage.

Figure 1. Infographics represent the percentage of compliant, non-compliant, and specimens with no DNA detected (C, NC and ND) for all the field analyzed.

After botanicals, the spice sector revealed 28.5% of defrauded products. Our results are in line with the study of Cottenet and colleagues [55]. In most of the non-compliant samples (10 of 12), we did not find a substitution, but a contamination. In some cases (DIF_147 and DIF_173), we were able to identify the genera; in all the remaining samples we obtained multiple sequences and it was impossible to identify any species or genera.

This means that the contamination in those samples is high and it is possible that multiple species coexist, as indicated in the literature [56].

Although in the agrifood samples the fraud percentage is lower than botanicals and spices, we face a substitution case of fraud for all the cases. Sample DIF_193 was declared Tuber brumale but was identified as Tuber melanosporum. These two species, although similar, can be distinguished by morphological analysis. Analyzing the gleba, the *Tuber melanospo*rum, known as the black truffle or Périgord truffle, it is very dark, tending to purplish-black and with fine white veins, while the *Tuber brumale*, commonly known as winter truffle or musky truffle, is grey-brownish with large and sparse veins. The interesting fact is that *Tuber melanosporum* is more expensive than *Tuber brumale*. In this case we are facing an involuntary substitution that damages the company but not the consumers. For this reason, the control of the supply chain is important, not only to offer a high-quality product, but also to avoid mistakes that can damage the company itself. The frauds detected in seafood products are not in line with the literature, which declares a percentage of 25–30% of mislabelling [57], while we detected a lower percentage (11.4%). This data can be explained considering that the specimens analyzed were collected directly from the company, assuming that all the samples were compliant. In all cases we faced a case of mislabelling, which is a false claim or distortion of the information provided on the label/packaging. The specimens DIF_009, DIF_069, and DIF_070 were different species of the same genus. They were probably an unintentional fraud. Nevertheless, the specimens DIF_008, DIF_027, DIF_028, DIF_041, and DIF_048 were found to be a totally different genus. The most serious case is the sample DIF_041. This specimen was a processed product and the species was impossible to detect by morphological analysis. It was declared as Theragra chalcogramma but was found to be *Lepidopsetta polyxystra*. Theragra chalcogramma belongs to the order Gadiformes and is commonly called "Alaska pollock", while Lepidopsetta polyxystra belongs to the order Pleuronectiformes and is a flat fish commonly called "Northern rock sole". The criticality of the seafood sector is that companies buy filets or semi-processed fish, unlike other sectors where the starting material is already ground or processed (e.g., botanicals, spices, etc.). This highlights a problem in the control of the supply chain. Finally, the probiotics sector was found to have the lowest percentage of fraud (7.7%). Moreover, we found that the specimen DIF_210, declared *Bifidobacterium bifidum*, was contaminated with other bacteria. There was probably an unintentional contamination in the production site with another probiotic. Recent studies have demonstrated that probiotic contamination with other probiotics is a common occurrence. For example, a study by Lewis and colleagues found that the contents of many bifidobacterial probiotic products analyzed in their study differ from the ingredient list, sometimes at a subspecies level. Only 1 of the 16 probiotics perfectly matched its bifidobacterial label claims in all samples tested [58]. The implications of probiotic contamination can vary depending on the specific strains involved and the intended use of the probiotic product. In some cases, the presence of unintended probiotics may be harmless or even beneficial. However, there is also a risk of introducing harmful or pathogenic microorganisms that may compromise the safety and efficacy of the probiotic product.

Considering the data from Table 2, it is possible to notice how processed products (such as botanicals, agrifood, and spices) have a significantly higher percentage of fraud. This is because the product, being crushed, transformed, or otherwise not in its whole form, is more difficult to identify morphologically and therefore fraud is more easily carried out.

To conclude, the extraction methods retrieved from the literature and tested in this study seem to be suitable for the chosen products, due to the DNA extraction success of 187 specimens out of 212. Moreover, most of the samples were identified at the species level, so in this study the most suitable barcode regions useful for different types of products were identified. The DNA barcoding approach, given its maturity and its wide application in the last twenty years, could be used in strategic points of the food supply chain: customs, goods management office, but also directly in medium-large companies and in the GDO. Nowadays some companies use DNA analysis to check their suppliers and to ensure

customers a quality product, but this technology, although widely used in the scientific environment, is not yet fully accepted by the final consumer. Raising awareness and citizen science will be needed to convey the importance and potential of this approach. In conclusion, this study contributes to the growing body of research on DNA barcoding for species identification in the food industry.

4. Conclusions

Given the results of this study, DNA analysis provides a powerful tool for detecting and identifying contaminants in commercial food products, enabling manufacturers and regulatory authorities to take appropriate action to ensure the quality and safety of these products. The results confirm the suitability and reliability of DNA barcoding and mini-barcoding as fast and effective methods for ensuring quality and safety in the food field. Moreover, techniques such as LAMP, RPA, BAR-RPA, Bar-HRM, and minION have made DNA-based methods more affordable, as they require cheaper instruments and protocols [22,59,60]. However, some challenges, in particular in relation to non-conformances observed in botanicals and spices, remain an issue to investigate. Nevertheless, by addressing these technical and scientific issues and implementing standardized workflows, DNA barcoding can play a crucial role in combating food fraud and enhancing traceability in the food supply chain, thus ensuring consumer confidence and facilitating regulatory compliance.

Author Contributions: Conceptualization, J.F. and V.M.; methodology, T.G. and M.D.; validation, M.D., T.G. and J.F.; investigation, J.F. and V.M.; data curation, J.F., T.G. and V.M.; writing—original draft preparation, J.F.; writing—review and editing, J.F., V.M. and M.L.; supervision, J.F. and V.M.; funding acquisition, F.D.M., M.L. and L.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by "National Biodiversity Future Center—NBFC" project code CN_00000033, Decreto Direttoriale MUR n.1034 del 17 giugno 2022. The funder had no role in conducting the research and/or during the preparation of the article.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: We are grateful to the companies that kindly provided the specimens for this study. The authors are indebted to Federica Scrivo for advice and support during manuscript preparation.

Conflicts of Interest: Authors Tommaso Gorini, Valerio Mezzasalma, and Fabrizio De Mattia were employed by the company FEM2-Ambiente srl. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Appendix A

Table A1. In the table are indicated specimen code, the company, the sample typology, the declared and detected species, the field, the extraction typology, and the barcode region chosen.

Specimen Code	Company	Sample Typology	Declared Species	Detected Species	Sector	Extraction	Barcode
DIF_001	Company 1	Canned olive oil	Thunnus albacares	Thunnus albacares	Seafood	RPP	Control Region
DIF_002	Company 1	Canned olive oil	Katsuwonis pelamis	Katsuwonus pelamis	Seafood	RPP	Control Region
DIF_003	Company 1	Canned seed oil	Thunnus albacares	Thunnus albacares	Seafood	RPP	Control Region
DIF_004	Company 1	Canned olive oil	Thunnus albacares	Thunnus albacares	Seafood	RPP	Control Region
DIF_005	Company 1	Canned olive oil	Thunnus albacares	Thunnus albacares	Seafood	RPP	Control Region
DIF_006	Company 1	Brine	Thunnus albacares	Thunnus albacares	Seafood	RPP	Control Region
DIF_007	Company 1	Canned olive oil	Scomber colias	Scomber colias	Seafood	RPP	ITS
DIF_008	Company 1	Brine	Katsuwonis pelamis	Thunnus albacares	Seafood	RPP	Control Region

UHE_UDI Company 1 Carned ultw oil Figuration engenesistion Second TGI CON DIF_D12 Company 2 Fillet Unprenerationing Engenetic straining Sectiond TGF COI DIF_D13 Company 2 Fillet Laboration straining Sectiond TGF COI DIF_D13 Company 2 Burger Kaphias gladius Sectiond TGF COI DIF_D13 Company 2 Burger Naphias gladius Sectiond TGF COI DIF_D15 Company 2 Burger National motion Status statu Sectiond TGF COI DIF_D17 Company 2 Burger Thanne silbuares Thanne silbuares Sectiond TGF COI DIF_D10 Company 2 Burger Torrelynche mights Dorcelynches mights Sectiond TGF COI DIF_D12 Company 3 Filtel Naphinge marce significant Sectiond TGF COI DIF_D12 Company 3 Filtel Naphinge	Specimen Code	Company	Sample Typology	Declared Species	Detected Species	Sector	Extraction	Barcode
DHI_011 Company 2 Hillet Paragenaus langinstris Sociand IC3 COI DH_012 Company 2 Fillet Isteprinters strandmid Isteprinters commund Sociand IC3 COI DF_014 Company 2 Burget Xiphis glabits Sociand IC3 COI DF_015 Company 2 Burget Xiphis glabits Sociand IC4 COI DF_015 Company 2 Burget Sociand staff Sociand IC4 COI DF_015 Company 2 Burget Sociand staff Sociand staff Sociand IC4 COI DF_010 Company 2 Burget Oncompute myles Docemputes myles Sociand IC4 COI Diff.02 Company 3 Fillet Split globalits Sociand IC4 COI Diff.02 Company 3 Fillet Aristemorph foliaca Sociand IC4 COI Diff.02 Company 3 Fillet Aristemorph foliaca Sociand IC4 COI Diff.02 Company 3 </td <td>DIF_009</td> <td>Company 1</td> <td>Canned olive oil</td> <td>Thunnus obesus</td> <td>Thunnus albacares</td> <td>Seafood</td> <td>RPP</td> <td>Control Region</td>	DIF_009	Company 1	Canned olive oil	Thunnus obesus	Thunnus albacares	Seafood	RPP	Control Region
DIF_012 Company 2 Fillet Lipponenc romanni Lipponenc romanni Sectord TGF COI DIF_013 Company 2 Barger Aphini galance Sectord TGF COI DIF_015 Company 2 Barger Aphini galance Sectord TGF COI DIF_015 Company 2 Barger Schwadar Selfood TGF COI DIF_015 Company 2 Barger Schwadar Schwadar Selfood TGF COI DIF_015 Company 2 Burger Thomas Bhorare Thomas Bhorare Selfood TGF COI DIF_012 Company 2 Burger Onarhynchan mytics Domerhynchan mytics Selfood TGF COI DIF_022 Company 3 Fillet Nephing shares Domerhynchan mytics Selfood TGF COI DIF_022 Company 3 Fillet Antecempinent Inginentia Selfood TGF COI DIF_022 Company 3 Fillet Antecempinent Inginentia	DIF_010	Company 1	Canned olive oil	Engraulis engrasicolus	Engraulis engrasicolus	Seafood	TGF	COI
DHF_013 Company 2 Fillet Lates inflaticus Lates inflaticus Secfood TGF COI DHF_014 Company 2 Barger Xphais gilalus Xphais gilalus Secfood TGF COI DHF_015 Company 2 Barger Secfood TGF COI DHF_010 Company 2 Barger Secfood TGF COI DHF_010 Company 2 Barger Thamas albarams Thamas albarams Secfood TGF COI DHF_010 Company 2 Barger Thoms albarams Thamas albarams Secfood TGF COI DHF_020 Company 2 Barger Thoms albarams Onconfighenism piles Secfood TGF COI DHF_022 Company 3 Fillet Processed product Onconfighenism piles Secfood TGF COI DHF_022 Company 3 Fillet Processed product Tote is contained binearity formany secfood TGF COI DHF_022 Company 3 Fillet Processecomp	DIF_011	Company 2	Fillet	Parapenaeus longirostris	Parapenaeus longirostris	Seafood	TGF	COI
DHF_014 Company 2 Burger Xiphias glafilar Xiphias glafilar Seafood TGF COI DHF_015 Company 2 Burger Numbry fullis mights Numbry fullis mights Seafood TGF COI DHF_017 Company 2 Burger Shans subar Seafood TGF COI DHF_018 Company 2 Burger Durohygichus mykis Ourohygichus mykis Seafood TGF COI DHF_012 Company 2 Burger Ourohygichus mykis Ourohygichus mykis Seafood TGF COI DHF_022 Company 3 Füllet Sepis officinalis Seafood TGF COI DHF_022 Company 3 Füllet Nephorps norregicus Seafood TGF COI DHF_022 Company 3 Füllet Artistemprin orregicus Seafood TGF COI DHF_022 Company 3 Füllet Artistemprin orregicus Seafood TGF COI DHF_023 Company 3 Füllet Artistemprin orregic	DIF_012	Company 2	Fillet	Litopenaeus vannamei	Litopenaeus vannamei	Seafood	TGF	COI
DH_015 Company 2 Burger Xphiss glulius Xphiss glulius Sectored TGF COI DHF_016 Company 2 Burger Salms subm Salms subm Sectored TGF COI DHF_019 Company 2 Burger Theorem Salms submerse Sectored TGF COI DHF_019 Company 2 Burger Theorem Salms submerse Sectored TGF COI DHF_019 Company 2 Burger Oncorbigncius migks Oncorbigncius migks Sectored TGF COI DHF_022 Company 3 Fillet Septo afficinulis Sectored TGF COI DHF_022 Company 3 Fillet Nephreps norregicas Sectored TGF COI DHF_022 Company 3 Fillet Nephreps norregicas Sectored TGF COI DHF_025 Company 3 Fillet Nephreps norregicas Sectored TGF COI DHF_025 Company 3 Fillet Nephreps nempress fille Sectored	DIF_013	Company 2	Fillet	Lates niloticus	Lates niloticus	Seafood	TGF	COI
DHE_016 Company 2 Burger Oncordipactions mpkins Standood TGF COI DHF_015 Company 2 Burger Standowskin Scalood TGF COI DHF_015 Company 2 Burger Thrunum albacers Standowskin Scalood TGF COI Control Region DHF_015 Company 2 Burger Oncordipactions mpkins Oncordipactions mpkins Scalood TGF COI DHF_012 Company 3 Fillet Spring dipcinalis Scalood TGF COI DHF_022 Company 3 Fillet Spring dipcinalis Scalood TGF COI DHF_023 Company 3 Fillet Prophosys norregicas Nephosys norregicas Scalood TGF COI DHF_024 Company 3 Fillet Aristemerght filter Scalood TGF COI DHF_025 Company 3 Fillet Tobrode scajatris Scalood TGF COI DHF_027 Company 3 Fillet Tobrode scajatris	DIF_014	Company 2	Burger	Xiphias gladius	Xiphias gladius	Seafood	TGF	COI
DIF_017 Company 2 Barger Sulmus albarans Sulmus albarans Sulmus albarans Sectiond TGF COI DIF_018 Company 2 Barger Thumus albarans Thumus albarans Sectiond TGF Control Region DIF_020 Company 2 Barger Oncohynchus mykis Oncohynchus mykis Sectiond TGF COI DIF_021 Company 2 Processed product Oncohynchus mykis Sectiond TGF COI DIF_022 Company 3 Fillet Seption fichnilis Sectiond TGF COI DIF_023 Company 3 Fillet Pargenensis longitoris Sectiond TGF COI DIF_025 Company 3 Fillet Aristonompita folicat Aristonompita folicat Sectiond TGF COI DIF_025 Company 3 Fillet Aristonompita folicat Sectiond TGF COI DIF_028 Company 3 Fillet Aristonompita folicat Oncidanititys cariston Sectiond TGF COI	DIF_015	Company 2	Burger	Xiphias gladius	Xiphias gladius	Seafood	TGF	COI
DHF_018 Company 2 Burger Thumus albacares Teumus albacares Seafood TGF Control Region DHF_010 Company 2 Burger Oncorhynchus mykis Oucorhynchus mykis Seafood TGF COI DHF_021 Company 2 Processed product Oncorhynchus mykis Seafood TGF COI DHF_022 Company 3 Fillet Seafood TGF COI DHF_022 Company 3 Fillet Narper optics Seafood TGF COI DHF_023 Company 3 Fillet Propences (providences longinstris Parapences longinstris Seafood TGF COI DHF_025 Company 3 Fillet Lalgo valgaris Lalgo valgaris Seafood TGF COI DHF_026 Company 3 Fillet Tridenose sogiatus Todarosis sogiatus Seafood TGF COI COI COI DIF_020 Company 3 Fillet Markaomerha longins Seafood TGF COI DIF_020 Company 4 Processed produ	DIF_016	Company 2	Burger	Oncorhynchus mykiss	Oncorhynchus mykiss	Seafood	TGF	COI
DBF_019 Company 2 Barger Onconfunction mytics Seafood TGF COI DBF_021 Company 2 Processed product Onconfunction mytics Seafood TGF COI DBF_021 Company 3 Fillet Sepia officinalis Seafood TGF COI DBF_022 Company 3 Fillet Nephrops norrogicus Seafood TGF COI DBF_024 Company 3 Fillet Nephrops norrogicus Seafood TGF COI DBF_024 Company 3 Fillet Aristomurphs filacea Aristomurphs filacea Seafood TGF COI DBF_024 Company 3 Fillet Indigo tudgeris Ladigo tudgeris Seafood TGF COI DBF_025 Company 3 Fillet Torgeorestatists Ladigo tudgeris Seafood TGF COI DBF_025 Company 3 Fillet Metaccias metaccias Metaccias metaccias Metaccias metaccias Seafood TGF COI DBF_028 Company 4 <	DIF_017	Company 2	Burger	Salmo salar	Salmo salar	Seafood	TGF	COI
DIF_920 Company 2 Barger Oncothynchus mykiss Seafood TCF COI DIF_921 Company 2 Processed product Oncothynchus mykiss Seafood TCF COI DIF_922 Company 3 Fillet Sepis officinuitis Seafood TCF COI DIF_923 Company 3 Fillet Nephraps norregicus Nephraps norregicus Seafood TCF COI DIF_924 Company 3 Fillet Aristeomorpha folacos Aristeomorpha folacos Seafood TCF COI DIF_925 Company 3 Fillet Lolig o ulgaris Lolig o ulgaris Seafood TCF COI DIF_926 Company 3 Fillet Trigoparus latevica Childonichiugs caulus Seafood TCF COI DIF_920 Company 3 Fillet Merinecins methiccins Merinecins gaji Seafood TCF COI DIF_931 Company 4 Processed product Merinecins gaji Seafood TCF COI DIF_932 Company 4	DIF_018	Company 2	Burger	Thunnus albacares	Thunnus albacares	Seafood	TGF	Control Region
DIF_021 Company 2 Processed product Oncorthynchus mykiss Seafood TGF COI DIF_022 Company 3 Fillet Sepia officinalis Seafood TGF COI DIF_024 Company 3 Fillet Naphrops narregicus Naphrops narregicus Seafood TGF COI DIF_024 Company 3 Fillet Aristeomorphe foliaco Seafood TGF COI DIF_024 Company 3 Fillet Aristeomorphe foliaco Seafood TGF COI DIF_025 Company 3 Fillet Toligo valgaris Loligo valgaris Seafood TGF COI DIF_027 Company 3 Fillet Toligopens lastonia Chelinoichlys cuclus Seafood TGF COI DIF_028 Company 3 Fillet Octypen solgaris Octypen solgaris Seafood TGF COI DIF_030 Company 4 Processed product Menuccus gayi Menuccus gayi Seafood TGF COI DIF_031 Company 4	DIF_019	Company 2	Burger	Oncorhynchus mykiss	Oncorhynchus mykiss	Seafood	TGF	COI
DF_922 Company 3 Fillet Septa officinalis Septa officinalis Seafood TGF COI DF_924 Company 3 Fillet Naphrops norregicus Seafood TGF COI DF_924 Company 3 Fillet Parayaneus longinstris Parayaneus longinstris Seafood TGF COI DF_925 Company 3 Fillet Laligo trulgeris Laligo trulgeris Seafood TGF COI DF_926 Company 3 Fillet Todarosis duates Seafood TGF COI DF_928 Company 3 Fillet Todarosis duates Seafood TGF COI Affect and transition and transit	DIF_020	Company 2	Burger	Oncorhynchus mykiss	Oncorhynchus mykiss	Seafood	TGF	COI
DIF_023 Company 3 Fillet Nephrops norcegicus Nephrops norcegicus Seafood TGF COI DIF_024 Company 3 Fillet Parapeneus Imgirostris Parapeneus Ingirostris Seafood TGF COI DIF_025 Company 3 Fillet Aristeomorpha foliazea Seafood TGF COI DIF_026 Company 3 Fillet Todardes segitatius Todaropsis babrane Seafood TGF COI DIF_028 Company 3 Fillet Todardes segitatius Todaropsis babrane Seafood TGF COI COI Fillet Matericus marchicus Seafood TGF COI COI Fillet Matericus gayi Matericus Seafood TGF COI COI Fillet Matericus gayi Matericus gayi Seafood TGF COI DIF.033 Company 4 Processed product Salmo salar Seafood TGF COI DIF.033 Company 4 Processed product Thumms albeares Thumus albeares Seafood TGF Control Region <td< td=""><td>DIF_021</td><td>Company 2</td><td>Processed product</td><td>Oncorhynchus mykiss</td><td>Oncorhynchus mykiss</td><td>Seafood</td><td>TGF</td><td>COI</td></td<>	DIF_021	Company 2	Processed product	Oncorhynchus mykiss	Oncorhynchus mykiss	Seafood	TGF	COI
DIF_024 Company 3 Fillet Parapaeness longitostris Parapaeness longitostris Seafood TGF COI DIF_025 Company 3 Fillet Aristomorpha foliacca Aristomorpha foliacca Seafood TGF COI DIF_026 Company 3 Fillet Todarodes signitutis Loligo tulgaris Seafood TGF COI DIF_027 Company 3 Fillet Todarodes signitutis Merluccius selucius Seafood TGF COI DIF_030 Company 3 Fillet Octopus valgaris Octopus valgaris Seafood TGF COI DIF_031 Company 4 Processed product Dicentrardus labrax Seafood TGF COI DIF_032 Company 4 Processed product Merinecius gari Seafood TGF COI DIF_033 Company 4 Processed product Thurmus albacares Thurmus albacares Seafood TGF Control Region DIF_035 Company 4 Processed product Thurmus albacares Thurmus albacares Seafood <td>DIF_022</td> <td>Company 3</td> <td>Fillet</td> <td>Sepia officinalis</td> <td>Sepia officinalis</td> <td>Seafood</td> <td>TGF</td> <td>COI</td>	DIF_022	Company 3	Fillet	Sepia officinalis	Sepia officinalis	Seafood	TGF	COI
DEF_024 Company 3 Fillet Parapaeneus longinostris Parapaeneus longinostris Seafood TGF COI DIF_025 Company 3 Fillet Aristomorpha foliaca Aristomorpha foliaca Seafood TGF COI DIF_026 Company 3 Fillet Loligo vulgaris Loligo vulgaris Seafood TGF COI DIF_027 Company 3 Fillet Trigtoporus lastoviza Chelidonichthys cucuus Seafood TGF COI DIF_030 Company 3 Fillet Octopus vulgaris Seafood TGF COI DIF_030 Company 4 Processed product Dicentrarchus labrax Seafood TGF COI DIF_031 Company 4 Processed product Martuccius gayi Seafood TGF COI DIF_033 Company 4 Processed product Thumus albacers Thumus albacers Seafood TGF Control Region DIF_035 Company 4 Processed product Thumus albacers Seafood TGF Control Region	DIF_023	Company 3	Fillet	Nephrops norvegicus	Nephrops norvegicus	Seafood	TGF	COI
DF_026 Company 3 Fillet Laligo eulgaris Laligo eulgaris Seafood TGF COI DF_027 Company 3 Fillet Todaropis gilattus Todaropis chana Seafood TGF COI DF_028 Company 3 Fillet Trigleporus lashoriza Chelidonichthys cuclus Seafood TGF COI DF_029 Company 3 Fillet Methodics mertraccius Seafood TGF COI DF_030 Company 3 Fillet Methodics mertraccius Seafood TGF COI DF_031 Company 4 Processed product Dicentrarchus labrax Seafood TGF COI DF_033 Company 4 Processed product Mertuccius guj Seafood TGF COI DF_034 Company 4 Processed product Thurmus albucares Thurmus albucares Seafood TGF Control Region DF_035 Company 4 Processed product Thurmus albucares Thurmus albucares Seafood TGF Control Region DF_037	DIF_024	Company 3	Fillet		Parapaeneus longirostris	Seafood	TGF	COI
DIF_027 Company 3 Fillet Todaroles signatus Todaropsis bilance Seafood TGF COI DIF_028 Company 3 Fillet Trigloporus lastoviza Chelidonichthys cuclulus Seafood TGF COI/165 rRN/ DIF_029 Company 3 Fillet Merluccius merluccius Merluccius merluccius Seafood TGF COI DIF_031 Company 4 Processed product Dicentrarchus labrax Dicentrarchus labrax Seafood TGF COI DIF_032 Company 4 Processed product Merluccius gayi Merluccius gayi Seafood TGF COI DIF_033 Company 4 Processed product Salma salar Salma salar Seafood TGF Control Region DIF_035 Company 4 Processed product Thummus albacares Thummus albacares Seafood TGF Control Region DIF_036 Company 4 Fricessed product Thummus albacares Seafood TGF Control Region DIF_037 Company 5 Fillet Thummus albacares<	DIF_025	Company 3	Fillet	· · ·	Aristeomorpha foliacea	Seafood	TGF	COI
DF_027 Company 3 Fillet Todarodes segitatus Todaropis bilanue Seafood TGF COI DF_028 Company 3 Fillet Trigloporus lastoriza Chelidonichthys cuculus Seafood TGF COI COI Fillet DIF_029 Company 3 Fillet Metuccius metuccius Metuccius metuccius Seafood TGF COI DIF_030 Company 4 Processed product Dicentrarchus labrax Dicentrarchus labrax Seafood TGF COI DIF_031 Company 4 Processed product Metuccius gayi Seafood TGF COI DIF_033 Company 4 Processed product Salme salar Salme salar Seafood TGF COI DIF_033 Company 4 Processed product Salme salar Salme salar Seafood TGF Control Region DIF_035 Company 4 Processed product Thummus albacares Seafood TGF Control Region DIF_036 Company 4 Fries Control Region DIF_037 Company 5 Brine Dobailcus gigas Doailcus gigas Seafood<	DIF 026	Company 3	Fillet	Loligo vulgaris	Loligo vulgaris	Seafood	TGF	COI
DIF_028 Company 3 Fillet Trigloporus lastovica Chelidotichthys cuculus Seafood TGF COI/16S rRN/ DIF_029 Company 3 Fillet Merluccius merluccius Merluccius merluccius Seafood TGF COI DIF_030 Company 4 Processed product Dicentrarchus labrax Seafood TGF CVI DIF_032 Company 4 Processed product Merluccius gray Merluccius gray Seafood TGF COI DIF_033 Company 4 Processed product Salmo salar Seafood TGF COI DIF_034 Company 4 Processed product Thurnus albacares Seafood TGF COI DIF_035 Company 4 Processed product Thurnus albacares Thurnus albacares Seafood TGF Control Region DIF_036 Company 4 Processed product Thurnus albacares Seafood TGF Control Region DIF_036 Company 5 Fillet Thurnus albacares Seafood TGF Control Region				0 0	0 0			
DIF_029 Company 3 Fillet Merluccius merluccius Merluccius merluccius Seafood TGF COI DIF_030 Company 3 Fillet Octopus vulgaris Octopus vulgaris Seafood TGF COI DIF_031 Company 4 Processed product Dicentrarchus labrax Dicentrarchus labrax Seafood TGF COI DIF_032 Company 4 Processed product Merluccius gayi Merluccius gayi Seafood TGF COI DIF_033 Company 4 Processed product Thumnus albacares Thumnus albacares Seafood TGF Control Region DIF_036 Company 4 Processed product Thumnus albacares Thumnus albacares Seafood TGF Control Region DIF_036 Company 4 Processed product Thumnus albacares Thumnus albacares Seafood TGF Control Region DIF_038 Company 5 Fillet Thumnus albacares Thumnus albacares Seafood TGF COI DIF_0404 Company 5 Brine		1 5		0				COI/16S rRNA
DIF_030 Company 3 Fillet Octopus oulgaris Octopus oulgaris Seafood TGF COI DIF_031 Company 4 Processed product Dicentractus labrax Dicentractus labrax Seafood TGF COI DIF_032 Company 4 Processed product Mertuccius gayi Mertuccius gayi Seafood TGF COI DIF_034 Company 4 Processed product Thumus albacares Thumus albacares Seafood TGF Control Region DIF_035 Company 4 Processed product Thumus albacares Thumus albacares Seafood TGF Control Region DIF_035 Company 4 Processed product Thumus albacares Thumus albacares Seafood TGF Control Region DIF_037 Company 5 Fillet Pleuronectes platesas Seafood TGF Col trol Region DIF_043 Company 5 Brine Octopus oulgaris Octopus vulgaris Seafood TGF COI DIF_043 Company 5 Brine Doctopus oulgaris <td< td=""><td></td><td></td><td></td><td>0 1</td><td>5</td><td></td><td></td><td></td></td<>				0 1	5			
DIF_031 Company 4 Processed product Dicentrarchus labrax Dicentrarchus labrax Seafood TGF CytB DIF_032 Company 4 Processed product Merluccius gayi Merluccius gayi Seafood TGF COI DIF_033 Company 4 Processed product Salmo salar Salmo salar Seafood TGF COI DIF_034 Company 4 Processed product Thumus albacares Thumus albacares Seafood TGF Control Region DIF_035 Company 4 Processed product Thumus albacares Thumus albacares Seafood TGF Control Region DIF_036 Company 4 Processed product Thumus albacares Thumus albacares Seafood TGF Control Region DIF_036 Company 5 Fillet Pleuronectes platesa Pleuronectes platesa Seafood TGF COI DIF_040 Company 5 Brine Doctopus vulgaris Octopus vulgaris Seafood TGF COI DIF_041 Company 5 Brine Dosi		1 5						
DIF_032Company 4Processed productMerluccius gnyiMerluccius gnyiSeafoodTGFCOIDIF_033Company 4Processed productSalmo salarSalmo salarSeafoodTGFCOIDIF_034Company 4Processed productThumnus albacaresThumnus albacaresSeafoodTGFControl RegionDIF_035Company 4Intermediate productThumnus albacaresThumnus albacaresSeafoodTGFControl RegionDIF_036Company 4Processed productThumnus albacaresThumnus albacaresSeafoodTGFControl RegionDIF_037Company 4FilletThumnus albacaresThumnus albacaresSeafoodTGFControl RegionDIF_038Company 5FilletPleuronectes platessaPleuronectes platessaSeafoodTGFCOIDIF_040Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_041Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_042Company 5BrineLitopenaeus trannaneiLitopenaeus transmateiSeafoodTGFCOIDIF_043Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_044Company 5BrineThumuus albacaresThumuus albacaresSeafoodTGFCOIDIF_044Company 5BrineMoltogrammaLepidopettu polytytynSeafoodTGFCOI<				, 0				
DIF_033 Company 4 Processed product Salmo salar Salmo salar Seafood TGF COI DIF_034 Company 4 Processed product Thumnus albacares Thumnus albacares Seafood TGF Control Region DIF_035 Company 4 Intermediate product Thumnus albacares Thumnus albacares Seafood TGF Control Region DIF_036 Company 4 Processed product Thumnus albacares Thumnus albacares Seafood TGF Control Region DIF_037 Company 4 Fillet Thumnus albacares Thumnus albacares Seafood TGF Control Region DIF_038 Company 5 Fillet Pleuronectes platesa Pleuronectes platesa Seafood TGF COI DIF_040 Company 5 Brine Objus ulgaris Octopus vulgaris Seafood TGF COI DIF_041 Company 5 Brine Discitus gigas Dosidicus gigas Seafood TGF COI DIF_044 Company 5 Brine Litopenacus vanname		~ •	-					
DIF_034 Company 4 Processed product Thumus albacares Thumus albacares Seafood TGF Control Region DIF_035 Company 4 Intermediate product Thumus albacares Thumus albacares Seafood TGF Control Region DIF_036 Company 4 Processed product Thumus albacares Thumus albacares Seafood TGF Control Region DIF_037 Company 4 Fillet Thumus albacares Thumus albacares Seafood TGF Control Region DIF_039 Company 5 Brine Octopus vulgaris Octopus vulgaris Seafood TGF COI DIF_040 Company 5 Brine Dosidicus gigas Dosidicus gigas Seafood TGF COI DIF_041 Company 5 Brine Distopenaeus vanamei Lippapaeus vanamei Seafood TGF COI DIF_042 Company 5 Brine Seafood TGF COI DI DiF.044 Company 5 Brine Distopaeus gigas Dosidicus gigas Seafood TGF		~ •						
DIF_035Company 4Intermediate productThumnus albacaresThumnus albacaresSeafoodTGFControl RegionDIF_036Company 4Processed productThumnus albacaresThumnus albacaresSeafoodTGFControl RegionDIF_037Company 4FilletThumnus albacaresThumnus albacaresSeafoodTGFControl RegionDIF_038Company 5FilletPleuronectes platessaSeafoodTGFCOIDIF_039Company 5BrineOctopus sulgarisOctopus sulgarisSeafoodTGFCOIDIF_040Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_041Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_042Company 5BrineSepia officinalisSepia officinalisSeafoodTGFCOIDIF_043Company 5BrineLitopenacus vannameiLitopenacus vannameiSeafoodTGFCOIDIF_044Company 5BrineThumnus albacaresThumnus albacaresSeafoodTGFCOIDIF_045Company 5BrineThumnus albacaresThumnus albacaresSeafoodTGFCOIDIF_045Company 5BrineThumnus albacaresThumnus albacaresSeafoodTGFCOIDIF_044Company 5BrineMalva spp.SeafoodTGFCOIDIDIF_045Company 5BrineSalmo salarSalmo s		~ •	-					
DIF_036Company 4Processed productThumnus albacaresThumnus albacaresSeafoodTGFControl RegionDIF_037Company 4FilletThumnus albacaresThumnus albacaresSeafoodTGFControl RegionDIF_038Company 5FilletPleuronectes platessaPleuronectes platessaSeafoodTGFCOIDIF_039Company 5BrineOctopus vulgarisOctopus vulgarisSeafoodTGFCOIDIF_040Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_041Company 5BrineDosidicus gigasDesidicus gigasSeafoodTGFCOIDIF_042Company 5BrineSepia officinalisSeafoodTGFCOICOIDIF_043Company 5BrineLitopenaeus vannameiLitopenaeus vannameiSeafoodTGFCOIDIF_044Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_044Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_045Company 5BrineSalmo salarSalmo salarSeafoodTGFCOIDIF_044Company 5BrineGalus morhuaGalus morhuaSeafoodTGFCOIDIF_045Company 5BrineGalus morhuaGalus morhuaSeafoodTGFCOIDIF_044Company 5BrineMolva spp.Brosme brosmeSeafoodTG			Intermediate					Control Region
DIF_037Company 4FilletThumnus albacaresThumnus albacaresSeafoodTGFControl RegionDIF_038Company 5FilletPleuronectes platessaPleuronectes platessaSeafoodTGFCOIDIF_039Company 5BrineOctopus vulgarisOctoupus vulgarisSeafoodTGFCOIDIF_040Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_041Company 5Processed productTheragra chalcogrammaLepidopsetta polyxystraSeafoodTGFCOIDIF_042Company 5BrineSepia officinalisSepia officinalisSeafoodTGFCOIDIF_043Company 5BrineLitopenaeus vannameiLitopenaeus vannameiSeafoodTGFCOIDIF_044Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_044Company 5BrineDinunus albacaresThunnus albacaresSeafoodTGFCOIDIF_045Company 5BrineSalmo salarSalmo salarSeafoodTGFCOIDIF_046Company 5BrineGalus morhuaGalus morhuaGalus morhuaSeafoodTGFCOIDIF_048Company 7BrineMolra spp.Brosne brosneSeafoodTGFCOIDIF_049Company 7BrineMolra spp.Brosne brosneSeafoodTGFCOIDIF_049Company 7Fresh productMerluccius paradoxus	DIF_036	Company 4	Processed product	Thunnus albacares	Thunnus albacares	Seafood	TGF	Control Region
DIF_038Company 5FilletPleuronectes platessaPleuronectes platessaSeafoodTGFCOIDIF_039Company 5BrineOctopus vulgarisOctoupus vulgarisSeafoodTGFCOIDIF_040Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_041Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_042Company 5BrineSepia officinalisSeafoodTGFCOIDIF_043Company 5BrineLitopenaeus vannameiLitopenaeus vannameiSeafoodTGFCOIDIF_044Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_045Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_046Company 5BrineThunnus albacaresThunnus albacaresSeafoodTGFCOIDIF_047Company 5BrineGadus morhuaGadus morhuaSeafoodTGFCOIDIF_048Company 7BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser gueldenstaedtiiAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser acariiAcipenser baerii			-	Thunnus albacares	Thunnus albacares	Seafood	TGF	Control Region
DIF_039Company 5BrineOctopus vulgarisOctopus vulgarisSeafoodTGFCOIDIF_040Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_041Company 5Processed productTheragra chalcogrammaLepidopsetta polyxystraSeafoodTGFCOIDIF_042Company 5BrineSepia officinalisSepia officinalisSeafoodTGFCOIDIF_043Company 5BrineLitopenaeus vannameiLitopenaeus vannameiSeafoodTGFCOIDIF_044Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_045Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_046Company 5BrineThunnus albacaresThunnus albacaresSeafoodTGFCOIDIF_047Company 5BrineSalmo salarSalmo salarSeafoodTGFCOIDIF_048Company 5BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser haccariiAcipenser naccariiSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser baerii <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></td<>								0
DIF_040Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_041Company 5Processed productTheragra chalcogrammaLepidopsetta polyxystraSeafoodTGFCOI/16S rRN/zDIF_042Company 5BrineSepia officinalisSepia officinalisSeafoodTGFCOIDIF_043Company 5BrineLitopenaeus vannameiLitopenaeus vannameiSeafoodTGFCOIDIF_043Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_044Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_045Company 5BrineThunnus albacaresThunnus albacaresSeafoodTGFCOIDIF_046Company 5BrineSalmo salarSalmo salarSeafoodTGFCOIDIF_047Company 5BrineGadus morhuaGadus morhuaSeafoodTGFCOIDIF_048Company 7BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 7Fresh productAcipenser gueldenstaedtiiAcipenser transmontanusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser gueldenstaedtiiAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser seafoidTGFCytBDIF_054Company 7Fresh		~ •						
DIF_041Company 5Processed productTheragra chalcogrammaLepidopsetta polyxystraSeafoodTGFCOI/16S rRN/ADIF_042Company 5BrineSepia officinalisSepia officinalisSeafoodTGFCOIDIF_043Company 5BrineLitopenaeus vannameiLitopenaeus vannameiSeafoodTGFCOIDIF_044Company 5BrineDividicus gigasDosidicus gigasSeafoodTGFCOIDIF_045Company 5BrineThumnus albacaresThumnus albacaresSeafoodTGFCOIDIF_046Company 5BrineSalmo salarSalmo salarSeafoodTGFCOIDIF_047Company 5BrineGadus morhuaGadus morhuaSeafoodTGFCOIDIF_048Company 5BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 5Processed productMerluccius paradoxusMerluccius paradoxusSeafoodTGFCOIDIF_049Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCytBDIF_050Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser seafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser stellatusSeafoodTGFCytBDIF_055Company 7Fres		1 5						
DIF_042Company 5BrineSepia officinalisSepia officinalisSeafoodTGFCOIDIF_043Company 5BrineLitopenaeus vannameiLitopenaeus vannameiSeafoodTGFCOIDIF_044Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_044Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_045Company 5BrineThunnus albacaresThunnus albacaresSeafoodTGFControl RegionDIF_046Company 5BrineSalmo salarSalmo salarSeafoodTGFCOIDIF_047Company 5BrineGadus morhuaGadus morhuaSeafoodTGFCOIDIF_048Company 5BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 7Processed productMerluccius paradoxusMerluccius paradoxusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCytBDIF_052Company 7Fresh productAcipenser naccariiAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser baeriiAcipenser sacariiSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser baeriiAcipenser sacariiSeafoodTGFCytBDIF_054Company 7Fresh prod								
DIF_043Company 5BrineLitopenaeus vannameiLitopenaeus vannameiSeafoodTGFCOIDIF_044Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_045Company 5BrineThunnus albacaresThunnus albacaresSeafoodTGFControl RegionDIF_046Company 5BrineSalmo salarSalmo salarSeafoodTGFCOIDIF_047Company 5BrineGadus morhuaGadus morhuaSeafoodTGFCOIDIF_048Company 5BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 5Processed productMerluccius paradoxusMerluccius paradoxusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCytBDIF_051Company 7Fresh productHuso husoHuso husoSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser baeriiAcipenser baerii/Acipenser gueldenstaedtiiSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser stellatusSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser stellatusSeafoodTGFCytBDIF_055<			_					
DIF_044Company 5BrineDosidicus gigasDosidicus gigasSeafoodTGFCOIDIF_045Company 5BrineThunnus albacaresThunnus albacaresSeafoodTGFControl RegionDIF_046Company 5BrineSalmo salarSalmo salarSeafoodTGFCOIDIF_047Company 5BrineGadus morhuaGadus morhuaSeafoodTGFCOIDIF_048Company 5BrineGadus morhuaGadus morhuaSeafoodTGFCOIDIF_048Company 5BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 5Processed productMerluccius paradoxusMerluccius paradoxusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCytBDIF_051Company 7Fresh productAcipenser gueldenstaedtiiAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser baerii/Acipenser gueldenstaedtiiSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytB <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
DIF_045Company 5BrineThunnus albacaresThunnus albacaresSeafoodTGFControl RegionDIF_046Company 5BrineSalmo salarSalmo salarSeafoodTGFCOIDIF_047Company 5BrineGadus morhuaGadus morhuaSeafoodTGFCOIDIF_048Company 5BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 5Processed productMerluccius paradoxusMerluccius paradoxusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCytBDIF_051Company 7Fresh productAcipenser gueldenstaedtiiAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser naccariiSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser stellatusSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 8IntermediateThumus sppThumus albacaresSeafoodTGFCytB <tr< td=""><td></td><td>~ •</td><td></td><td>1</td><td></td><td></td><td></td><td></td></tr<>		~ •		1				
DIF_046Company 5BrineSalmo salarSalmo salarSeafoodTGFCOIDIF_047Company 5BrineGadus morhuaGadus morhuaSeafoodTGFCOIDIF_048Company 5BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 5Processed productMerluccius paradoxusMerluccius paradoxusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCytBDIF_051Company 7Fresh productAcipenser gueldenstaedtiiAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_052Company 7Fresh productHuso husoHuso husoSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser stellatusSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser baeriiAcipenser stellatusSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 8IntermediateThumus sppThumus albacaresSeafoodTGFCytBDIF_056Company 8IntermediateThumus sppThumus albacaresSeafoodTGFCytB		~ •						
DIF_047Company 5BrineGadus morhuaGadus morhuaSeafoodTGFCOIDIF_048Company 5BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 5Processed productMerluccius paradoxusMerluccius paradoxusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCytBDIF_051Company 7Fresh productAcipenser gueldenstaedtiiAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_052Company 7Fresh productHuso husoHuso husoSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser baerii/Acipenser gueldenstaedtiiSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 8IntermediateThumus sppThumus albacaresSeafood		~ •						ç
DIF_048Company 5BrineMolva spp.Brosme brosmeSeafoodTGFCOIDIF_049Company 5Processed productMerluccius paradoxusMerluccius paradoxusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCytBDIF_051Company 7Fresh productAcipenser gueldenstaedtiiAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_052Company 7Fresh productHuso husoHuso husoSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser baerii/Acipenser gueldenstaedtiiSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 8IntermediateThumus sppThumus al		~ •						
DIF_049Company 5Processed productMerluccius paradoxusMerluccius paradoxusSeafoodTGFCOIDIF_050Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCytBDIF_051Company 7Fresh productAcipenser gueldenstaedtiiAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_052Company 7Fresh productHuso husoHuso husoSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser baerii/Acipenser gueldenstaedtiiSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 8IntermediateThumus sppThumus albacaresSeafoodTGFControl Beerior		~ •						
DIF_050Company 7Fresh productAcipenser transmontanusAcipenser transmontanusSeafoodTGFCytBDIF_051Company 7Fresh productAcipenser gueldenstaedtiiAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_052Company 7Fresh productHuso husoHuso husoSeafoodTGFCytBDIF_053Company 7Fresh productHuso husoHuso husoSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser baerii/Acipenser gueldenstaedtiiSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 8IntermediateThunnus sppThunnus albacaresSeafoodTGFControl Region								
DIF_051Company 7Fresh productAcipenser gueldenstaedtiiAcipenser gueldenstaedtiiSeafoodTGFCytBDIF_052Company 7Fresh productHuso husoHuso husoSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_053Company 7Fresh productAcipenser naccariiAcipenser naccariiSeafoodTGFCytBDIF_054Company 7Fresh productAcipenser baeriiAcipenser baerii/Acipenser gueldenstaedtiiSeafoodTGFCytBDIF_055Company 7Fresh productAcipenser stellatusAcipenser stellatusSeafoodTGFCytBDIF_056Company 8IntermediateThunnus sppThunnus albacaresSeafoodTGFControl Beerior				,				
DIF_052 Company 7 Fresh product Huso huso Huso huso Seafood TGF CytB DIF_053 Company 7 Fresh product Acipenser naccarii Acipenser naccarii Seafood TGF CytB DIF_054 Company 7 Fresh product Acipenser baerii Acipenser baerii/Acipenser gueldenstedtii Seafood TGF CytB DIF_055 Company 7 Fresh product Acipenser stellatus Acipenser stellatus Seafood TGF CytB DIF_055 Company 7 Fresh product Acipenser stellatus Acipenser stellatus Seafood TGF CytB DIF_056 Company 8 Intermediate Thunnus spp Thunnus albacares Seafood TGF Control Beerior				· ·	,			<u> </u>
DIF_053 Company 7 Fresh product Acipenser naccarii Acipenser naccarii Seafood TGF CytB DIF_054 Company 7 Fresh product Acipenser baerii Acipenser baerii/Acipenser gueldenstaedtii Seafood TGF CytB DIF_055 Company 7 Fresh product Acipenser stellatus Acipenser stellatus Seafood TGF CytB DIF_056 Company 8 Intermediate Thumus spp Thumus albacares Seafood TGF Control Beerior		~ •	-	. 0	, 0			· · · · ·
DIF_054 Company 7 Fresh product Acipenser baerii Acipenser baerii/Acipenser gueldenstaedtii Seafood TGF CytB DIF_055 Company 7 Fresh product Acipenser stellatus Acipenser stellatus Seafood TGF CytB DIF_056 Company 8 Intermediate Thunnus spp Thunnus albacares Seafood TGF Control Beging			-					5
DIF_054 Company 7 Fresh product Acipenser buent gueldenstaedtii Seafood TGF CytB DIF_055 Company 7 Fresh product Acipenser stellatus Acipenser stellatus Seafood TGF CytB DIF_056 Company 8 Intermediate Thunnus spp Thunnus albacares Seafood TGF Control Region	DIF_053	Company 7	Fresh product	Acipenser naccarii		Seafood	TGF	CytB
DIF 056 Company 8 Intermediate Thumus spp Thumus albacares Seafood TCE Control Region			-		gueldenstaedtii			2
	DIF_055	Company 7	Fresh product	Acipenser stellatus	Acipenser stellatus	Seafood	TGF	CytB
	DIF_056	Company 8		Thunnus spp.	Thunnus albacares	Seafood	TGF	Control Region

Specimen Code DIF_057 DIF_058 DIF_059 DIF_060 DIF_061 DIF_062 DIF_063 DIF_064 DIF_065 DIF_066 DIF_067 DIF_068 DIF_069 DIF_070 DIF_071 DIF_072

DIF_073

DIF_074 DIF_075 DIF_076 DIF_077 DIF_078 DIF_079

DIF_080

DIF_081

DIF_082

DIF_083

DIF_084

DIF_085

DIF_086

DIF_087

DIF_088

DIF_089

DIF_090

DIF_091

DIF_092

DIF_093

DIF_094

Company 11

Company 12

Company 13

Company 13

Company 14

Company 14

Dry phytoextract

CO2 supercritical

Essential oil

Essential oil

Essential oil

Liquid gliceric

phytoextract Liquid gliceric

phytoextract Liquid gliceric

phytoextract

Flour

Flour

Powder

Raw plant

Dry acqueous phytoextract

Food supplement

Food supplement

Magnolia officinalis Rehder

& E.H. Wilson

Citrus limon L.

Mentha x piperita L.

Citrus sinensis L.

Matricaria chamomilla L.

Camellia sinensis Kuntze

Calendula officinalis L.

Oryza sativa L.

Manihot esculenta Crantz

Aloe vera L.

Cynara cardunculus L.

Cynara cardunculus L.

Panax ginseng C.A. Meyer

Monascus purpureus

	Table A1. Con	nt.				
Company	Sample Typology	Declared Species	Detected Species	Sector	Extraction	Barcode
Company 8	Canned olive oil	Thunnus spp.	Thunnus albacares	Seafood	RPP	Control Region
Company 8	Intermediate product	Thunnus spp.	Thunnus albacares	Seafood	TGF	Control Region
Company 8	Canned olive oil	Thunnus spp.	Thunnus albacares	Seafood	RPP	Control Region
Company 8	Intermediate product	Thunnus spp.	Thunnus albacares	Seafood	TGF	Control Region
Company 8	Canned olive oil	Thunnus spp.	Thunnus albacares	Seafood	RPP	Control Region
Company 8	Canned olive oil	Engraulis encrasicolus	Engraulis encrasicolus	Seafood	RPP	COI
Company 9	Fillet	Dentex angolensis Poll & Maul	Dentex angolensis Poll & Maul	Seafood	TGF	COI
Company 9	Fillet	Synaptura spp.	Synaptura lusitanica	Seafood	TGF	COI
Company 9	Fillet	Psettodes spp.	Psettodes bennettii	Seafood	TGF	COI
Company 9	Fillet	Gadus morhua L.	Gadus morhua L.	Seafood	TGF	COI
Company 9	Fillet	Epinephelus costae Steindachner	Epinephelus costae Steindachner	Seafood	TGF	COI
Company 9	Fillet	Dosidicus gigas d'Orbigny	Dosidicus gigas d'Orbigny	Seafood	TGF	COI
Company 9	Processed product	Merluccius capensis Castelnau	Merluccius paradoxus	Seafood	TGF	COI
Company 9	Processed product	Merluccius hubbsi Marini	Merluccius gayi	Seafood	TGF	COI
Company 10	Raw plant	Humulus lupulus L.	Humulus lupulus L.	Botanicals	DPQ	ITS
Company 10	Extraction waste 7% EtOH	Humulus lupulus L.	Humulus lupulus L.	Botanicals	DPQ/CTAB	ITS
Company 10	Extraction waste 50% EtOH	Humulus lupulus L.	Humulus lupulus L.	Botanicals	DPQ/CTAB	ITS
Company 10	Liquid phytoextract 7% EtOH	Humulus lupulus L.	Humulus lupulus L.	Botanicals	DPQ/CTAB	ITS
Company 10	Liquid phytoextract 50% EtOH	Humulus lupulus L.	Humulus lupulus L.	Botanicals	DPQ/CTAB	ITS
Company 11	Powder	Malva sylvestris L.	Malva sylvestris L.	Botanicals	DPQ	ITS
Company 11	Powder	Carica papaya L.	Contamination	Botanicals	DPQ	ITS
Company 11	Powder	Valeriana officinalis L.	Valeriana officinalis L.	Botanicals	DPQ	psbA-trnH
Company 11	Dry phytoextract	Garcinia cambogia Desr.	Jurinea leptoloba	Botanicals	DPQ/CTAB	ITS
Company 11	Liquid idroalcolic phytoextract	Vaccinium macrocarpon Aiton	Leersia spp.	Botanicals	DPQ/CTAB	rbcL

No DNA detected

No DNA detected

Abotilum indicum

Contamination

Sida acuta

No DNA detected

No DNA detected

Cicer arietinum

Cicer arietinum

No DNA detected

Cynara cardunculus L.

Contamination

Contamination

Contamination

DPQ/CTAB

DPQ

DPQ/CTAB

DPQ/CTAB

DPQ/CTAB

ITS

ITS

ITS

ITS

matK

ITS

psbA-trnH

ITS

ITS

psbA-trnH

psbA-trnH

psbA-trnH

rbcL

ITS

Botanicals

1 1 A1 C

Specimen Code	Company	Sample Typology	Declared Species	Detected Species	Sector	Extraction	Barcode
DIF_095	Company 14	Raw plant	Aloe vera L.	Contamination	Botanicals	DPQ/CTAB	psbA-trnH
DIF_096	Company 15	Raw plant	Syzygium aromaticum (L.) Merr & L.M. Perry	Contamination	Botanicals	DPQ/CTAB	ITS
DIF_097	Company 15	Powder	Rhus spp.	No DNA detected	Botanicals	DPQ/CTAB	ITS
DIF_098	Company 15	Powder	Citrus hystrix DC.	Moniliella suaveolens	Botanicals	DPQ/CTAB	ITS
DIF_099	Company 16	Food supplement	Phyllanthus niruri L.	No DNA detected	Botanicals	DPQ/CTAB	ITS
DIF_100	Company 16	Food supplement	Hibiscus sabdariffa L.	No DNA detected	Botanicals	DPQ/CTAB	ITS
DIF_101	Company 16	Oil	Serenoa repens Small	No DNA detected	Botanicals	DPQ/CTAB	ITS
DIF_102	Company 17	Raw plant	Cymbopogon citratus Stapf	Cymbopogon citratus Stapf	Botanicals	DPQ	psbA-trnH
DIF_103	Company 17	Raw plant	Glycyrrhiza glabra L.	Glycyrrhiza glabra L.	Botanicals	DPQ	matK + ITS
DIF_104	Company 17	Raw plant	Foeniculum vulgare Mill.	Foeniculum vulgare Mill.	Botanicals	DPQ	psbA-trnH
DIF_105	Company 17	Raw plant	Malva sylvestris L.	Malva sylvestris L.	Botanicals	DPQ	psbA-trnH
DIF_106	Company 17	Raw plant	Matricaria chamomilla L.	Matricaria chamomilla L.	Botanicals	DPQ	matK
DIF_107	Company 17	Raw plant	Matricaria chamomilla L.	Matricaria chamomilla L.	Botanicals	DPQ	matK
DIF_108	Company 17	Raw plant	Foeniculum vulgare Mill.	Foeniculum vulgare Mill.	Botanicals	DPQ	psbA-trnH
DIF_109	Company 17	Raw plant	Zingiber officinale Roscoe	Zingiber officinale Roscoe	Botanicals	DPQ	ITS
DIF_110	Company 17	Raw plant	Citrus limon L.	Contamination	Botanicals	DPQ	ITS
DIF_111	Company 17	Raw plant	Citrus limon L.	Citrus limon L.	Botanicals	DPQ	ITS
DIF_112	Company 18	Raw plant	Camellia sinensis Kuntze	Camellia sinensis var. sinensis	Botanicals	DPQ	ITS
DIF_113	Company 19	Liquid phyotoextract 23% EtOH	Althaea officinalis L.	Althaea officinalis L.	Botanicals	DPQ/CTAB	<i>rbcL</i> mini- barcoding
DIF_114	Company 19	Dry phytoextract CO2 supercritical	Serenoa repens Small	Contamination	Botanicals	DPQ/CTAB	ITS
DIF_115	Company 19	Liquid gliceric phytoextract	Althaea officinalis L.	No DNA detected	Botanicals	DPQ/CTAB	rbcL
DIF_116	Company 19	Liquid gliceric phytoextract	Althaea officinalis L.	No DNA detected	Botanicals	DPQ/CTAB	rbcL
DIF_117	Company 19	Liquid phyotoextract 23% EtOH	Althaea officinalis L.	Althaea officinalis L.	Botanicals	DPQ/CTAB	<i>rbcL</i> mini- barcoding
DIF_118	Company 20	Dry phyotoextract 23% EtOH	Vaccinium myrtillus L.	No DNA detected	Botanicals	DPQ/CTAB	rbcL
DIF_119	Company 20	Dry phyotoextract 23% EtOH	Vaccinium myrtillus L.	No DNA detected	Botanicals	DPQ/CTAB	rbcL
DIF_120	Company 20	Dry phyotoextract	Panax ginseng C.A. Meyer	Contamination	Botanicals	DPQ/CTAB	rbcL
DIF_121	Company 20	Dry phytoextract	Panax ginseng C.A. Meyer	No DNA detected	Botanicals	DPQ/CTAB	rbcL
DIF_122	Company 20	Dry phytoextract	Curcuma longa L.	No DNA detected	Botanicals	DPQ/CTAB	ITS
DIF_123	Company 20	Powder	Malva sylvestris L.	Contamination	Botanicals	DPQ	psbA-trnH
DIF_124	Company 21	Raw plant	Origanum vulgare L.	Origanum onites	Botanicals	DPQ	ITS
DIF_125	Company 21	Processed product	Prunus dulcis (Mill.) D.A.Webb	Prunus dulcis (Mill.) D.A.Webb	Botanicals	DPQ	ITS
DIF_126	Company 22	Dry phytoextract	Magnolia officinalis Rehder & E.H. Wilson	No DNA detected	Botanicals	DPQ/CTAB	ITS
DIF_127	Company 22	Powder	Plantago ovata Forssk.	Plantago spp.	Botanicals	DPQ	psbA-trnH
DIF_128	Company 22	Powder	Plantago ovata Forssk.	Plantago ovata	Botanicals	DPQ	psbA-trnH
DIF_129	Company 22	Dry phytoextract	Elaeis guineensis Jacq.	No DNA detected	Botanicals	DPQ/CTAB	ITS
DIF_130	Company 22	Dry phytoextract	Carum carvi L.	No DNA detected	Botanicals	DPQ/CTAB	matK
DIF_131	Company 23	Raw plant	Silybum marianum (L.) Gaertn.	Contamination	Botanicals	DPQ	ITS
DIF_132	Company 23	Dry phytoextract	Silybum marianum (L.) Gaertn.	No DNA detected	Botanicals	DPQ/CTAB	ITS

Specimen Code	Company	Sample Typology	Declared Species	Detected Species	Sector	Extraction	Barcode
DIF_133	Company 24	Powder	Plantago ovata Forssk.	Plantago ovata Forssk.	Botanicals	DPQ	psbA-trnH
DIF_134	Company 25	Raw plant	Cymbopogon citratus Stapf	Cymbopogon citratus Stapf	Botanicals	DPQ	psbA-trnH
DIF_135	Company 25	Raw plant	Citrus limon L.	Citrus limon L.	Botanicals	DPQ	ITS
DIF_136	Company 26	Powder	Crocus sativus L.	Contamination	Botanicals	DPQ	matK + ITS
DIF_137	Company 29	Extraction waste	Zingiber officinale Roscoe	No DNA detected	Botanicals	DPQ/CTAB	ITS
DIF_138	Company 29	Liquid acqueous phytoexctract	Zingiber officinale Roscoe	Zingiber officinale Roscoe	Botanicals	DPQ/CTAB	ITS
DIF_139	Company 29	Essential oil	Zingiber officinale Roscoe	No DNA detected	Botanicals	DPQ/CTAB	ITS
DIF_140	Company 30	Liquid phytoexctract	Panax ginseng C.A. Meyer	No DNA detected	Botanicals	DPQ/CTAB	rbcL
DIF_141	Company 15	Powder	Cinnamomum verum J.Presl	Contamination	Spice	DPQ	matK + psbA-trnH
DIF_142	Company 15	Raw plant	Cinnamomum verum J.Presl	Cinnamomum spp.	Spice	DPQ	matK + psbA-trnH
DIF_143	Company 15	Raw plant	Piper borbonense C. DC.	Piper guineense	Spice	DPQ	ITS
DIF_144	Company 15	Raw plant	Vanilla planifolia Jacks. ex Andrews	Contamination	Spice	DPQ	ITS
DIF_145	Company 15	Raw plant	Vanilla planifolia Jacks. ex Andrews	No DNA detected	Spice	DPQ/CTAB	ITS
DIF_146	Company 26	Powder	Curcuma longa L.	Contamination	Spice	DPQ	ITS
DIF_147	Company 26	Powder	Curcuma longa L.	Curcuma spp.	Spice	DPQ	ITS
DIF_148	Company 26	Raw plant	Cinnamomum cassia J.Presl	Cinnamomum cassia J.Presl	Spice	DPQ	matK + psbA-trnH
DIF_149	Company 26	Raw plant	Cinnamomum verum J.Presl	Cinnamomum verum J.Presl	Spice	DPQ	matK + psbA-trnH
DIF_150	Company 26	Powder	Cinnamomum cassia J.Presl	Cinnamomum cassia J.Presl	Spice	DPQ	matK + psbA-trnH
DIF_151	Company 26	Raw plant	Cinnamomum tamala T.Nees & Eberm.	Cinnamomum tamala T.Nees & Eberm.	Spice	DPQ	matK + psbA-trnH
DIF_152	Company 26	Powder	Zingiber officinale Roscoe	Contamination	Spice	DPQ	ITS
DIF_153	Company 11	Powder	Curcuma longa L.	Curcuma longa L.	Spice	DPQ	ITS
DIF_154	Company 26	Powder	Crocus sativus L.	Crocus sativus L.	Spice	DPQ	matK + ITS
DIF_155	Company 26	Raw plant	Crocus sativus L.	Crocus sativus L.	Spice	DPQ	matK + ITS
DIF_156	Company 26	Powder	Capsicum spp.	Contamination	Spice	DPQ	ITS
DIF_157	Company 26	Raw plant	Piper nigrum L.	Contamination	Spice	DPQ	ITS
DIF_158	Company 26	Powder	Capsicum spp.	Capiscum spp.	Spice	DPQ	ITS
DIF_159	Company 26	Raw plant	Vanilla planifolia Jacks. ex Andrews	Contamination	Spice	DPQ	rbcL
DIF_160	Company 26	Raw plant	Crocus sativus L.	Crocus sativus L.	Spice	DPQ	matK + ITS
DIF_161	Company 27	Dry phytoextract 30% EtOH	Crocus sativus L.	Contamination	Spice	DPQ/CTAB	matK + ITS
DIF_162	Company 15	Powder	Capsicum spp.	Capsicum spp.	Spice	DPQ	ITS
DIF_163	Company 15	Powder	Myristica fragrans Houtt.	Cuminum cyminum	Spice	DPQ	ITS
DIF_164	Company 15	Powder	Curcuma longa L.	Curcuma longa L.	Spice	DPQ	ITS
DIF_165	Company 28	Raw plant	Origanum vulgare L.	Origanum vulgare L.	Spice	DPQ	ITS
DIF_166	Company 29	Raw plant	Zingiber officinale Roscoe	Zingiber officinale Roscoe	Spice	DPQ	ITS
DIF_167	Company 31	Raw plant	Piper nigrum L.	Piper nigrum L.	Spice	DPQ	ITS
DIF_168	Company 31	Raw plant	Piper nigrum L.	Piper nigrum L.	Spice	DPQ	ITS
DIF_169	Company 31	Raw plant	Allium cepa L.	Allium cepa L.	Spice	DPQ	ITS
DIF_170	Company 31	Powder	Allium cepa L.	Allium cepa L.	Spice	DPQ	ITS
DIF_171	Company 31	Powder	Capsicum spp.	Capsicum spp.	Spice	DPQ	ITS
DIF_172	Company 31	Powder	Capsicum spp.	Capsicum spp.	Spice	DPQ	ITS
DIF_173	Company 31	Powder	Curcuma longa L.	Curcuma spp.	Spice	DPQ	ITS

Specimen Code	Company	Sample Typology	Declared Species	Detected Species	Sector	Extraction	Barcode
DIF_174	Company 31	Powder	Curcuma longa L.	Curcuma longa L.	Spice	DPQ	ITS
DIF_175	Company 31	Powder	Elettaria cardamomum (L.) Maton	Elettaria cardamomum (L.) Maton	Spice	DPQ	ITS
DIF_176	Company 31	Powder	Elettaria cardamomum (L.) Maton	Elettaria cardamomum (L.) Maton	Spice	DPQ	ITS
DIF_177	Company 31	Powder	Cinnamomum cassia J.Presl	No DNA detected	Spice	DPQ	matK + psbA-trnH
DIF_178	Company 32	Powder	Cinnamomum cassia J.Presl	No DNA detected	Spice	DPQ	matK + psbA-trnH
DIF_179	Company 32	Raw plant	Ocimum basilicum L.	Ocimum basilicum L.	Spice	DPQ	ITS
DIF_180	Company 32	Powder	Myristica spp.	Myristica fragrans	Spice	DPQ	ITS
DIF_181	Company 32	Powder	Capsicum annuum L.	Capsicum spp.	Spice	DPQ	ITS
DIF_182	Company 32	Raw plant	Piper nigrum L.	Piper nigrum L.	Spice	DPQ	ITS
DIF_183	Company 33	Powder	Fragaria spp.	Fragaria spp.	Agrifood	DPQ	ITS
DIF_184	Company 34	Fresh product	Tuber melanosporum vitt.	Tuber melanosporum vitt.	Agrifood	DPQ	ITS
DIF_185	Company 34	Fresh product	Tuber aestivum vitt.	Tuber aestivum vitt.	Agrifood	DPQ	ITS
DIF_186	Company 34	Fresh product	Tuber magnatum pico	Tuber magnatum pico	Agrifood	DPQ	ITS
DIF_187	Company 34	Fresh product	Tuber uncinatum chatin	Tuber uncinatum chatin	Agrifood	DPQ	ITS
 DIF_188	Company 34	Fresh product	Tuber albidum pico	Tuber albidum pico	Agrifood	DPQ	ITS
DIF_189	Company 34	Fresh product	Tuber aestivum vitt.	Tuber aestivum vitt.	Agrifood	DPQ	ITS
DIF_190	Company 34	Fresh product	Tuber albidum pico	Tuber albidum pico	Agrifood	DPQ	ITS
DIF_191	Company 34	Fresh product	Tuber uncinatum chatin	Tuber uncinatum/aestivum	Agrifood	DPQ	ITS
DIF_192	Company 34	Fresh product	Tuber magnatum Pico.	Tuber magnatum Pico.	Agrifood	DPQ	ITS
DIF_193	Company 34	Fresh product	Tuber brumale Vitt.	Tuber melanosporum	Agrifood	DPQ	ITS
		•			0		
DIF_194	Company 34	Fresh product	Tuber mesentericum Vitt.	Tuber mesentericum	Agrifood	DPQ	ITS
DIF_195	Company 34	Fresh product	Tuber brumale Vitt.	Tuber brumale Vitt.	Agrifood	DPQ	ITS
DIF_196	Company 15	Fresh product	Theobroma cacao L.	Theobroma cacao L.	Agrifood	DPQ	ITS
DIF_197	Company 11	Powder	Carica papaya L.	Prunus spp.	Agrifood	DPQ	ITS
DIF_198	Company 35	Flour	Oryza sativa L.	Cicer arietinum	Agrifood	DPQ	ITS
DIF_199	Company 35	Flour	Oryza sativa L.	Cicer arietinum	Agrifood	DPQ	ITS
DIF_200	Company 24	Food supplement liophilized	Lactobacillus paracasei	Lactobacillus paracasei	Probiotics	QAQ	16S rRNA
DIF_201	Company 36	Food supplement liophilized	Lactobacillus gasseri	Lactobacillus gasseri	Probiotics	QAQ	16S rRNA
DIF_202	Company 36	Food supplement liophilized	Lactobacillus gasseri	Lactobacillus gasseri	Probiotics	QAQ	16S rRNA
DIF_203	Company 36	Food supplement liophilized	Lactobacillus reuteri	Lactobacillus reuteri	Probiotics	QAQ	16S rRNA
DIF_204	Company 36	Food supplement liophilized	Lactobacillus paracasei	Lactobacillus paracasei	Probiotics	QAQ	16S rRNA
DIF_205	Company 37	Food supplement liophilized	Lactobacillus paracasei	Lactobacillus paracasei	Probiotics	QAQ	16S rRNA
DIF_206	Company 37	Food supplement liophilized	Lactobacillus acidophilus	Lactobacillus acidophilus	Probiotics	QAQ	16S rRNA
DIF_207	Company 37	Food supplement liophilized	Lactobacillus acidophilus	Lactobacillus acidophilus	Probiotics	QAQ	16S rRNA
DIF_208	Company 37	Food supplement liophilized	Bifidobacterium lactis	Bifidobacterium lactis	Probiotics	QAQ	16S rRNA
DIF_209	Company 37	Food supplement liophilized	Bifidobacterium lactis	Bifidobacterium lactis	Probiotics	QAQ	16S rRNA
DIF_210	Company 38	Food supplement liophilized	Bifidobacterium bifidum	Contamination	Probiotics	QAQ	16S rRNA
DIF_211	Company 38	Food supplement liophilized	Bifidobacterium bifidum	Bifidobacterium bifidum	Probiotics	QAQ	16S rRNA
DIF_212	Company 38	Food supplement	Bifidobacterium bifidum	Bifidobacterium bifidum	Probiotics	QAQ	16S rRNA

P0

ITS-p5

ITS3_KYO2

Table A2. In the table are indicated the PCR program for all the couples of primers used in the study.													
	Cox1_Ward_FishF2 Cox1_Ward_FishR2		16sar-L 16sbr_H	GLUDG C61221H	Tuna_CR_F Tuna_CR_R	Tuna_CR_F Tuna_minibar_R2	Sco5S_F Sco5S_R	Katw_F Katw_R	Dlab_F Dlab_R	rbcL_1F rbcL724R	rbcL 1 rbcL B	matK_3F_KIM matK_1R_KIM	psbA trnH

	Cox1_Ward_FishR	1 Cox1_Ward_FishI	R2 HCO 2198	16sbr_H	C61221H	Tuna_CR_R	Tuna_minibar_R2	Sco5S_R	Katw_R	Dlab_R	rbcL724R	rbcL B	matK_1R_KIM	trnH	ITS-u4	ITS-4	P6
Initial step	94 $^\circ C$ for 3'	94 $^{\circ}C$ for 3'	94 $^\circ C$ for 3'	94 $^{\circ}C$ for 3'	94 $^{\circ}C$ for 3'	94 $^{\circ}C$ for 3'	94 $^{\circ}C$ for 3'	94 $^\circ C$ for 3'	94 $^{\circ}C$ for 3'	94 $^{\circ}C$ for 3'	94 $^{\circ}C$ for 3'	94 $^{\circ}C$ for 3'	94 $^{\circ}C$ for 3'	94 $^{\circ}C$ for 3'	94 $^{\circ}C$ for 3'	94 $^{\circ}C$ for 3'	94 $^\circ C$ for 3'
N. of cycles	35	35	35	40	35	35	35	35	35	30	35	35	35	35	35	35	33
Denaturation	94 $^{\rm o}C$ for 25 $^{\prime\prime}$	94 $^{\circ}C$ for 25 $^{\prime\prime}$	94 $^{\circ}C$ for 1'	94 °C for 25"	94 $^{\circ}C$ for 1 $^{\prime}$	94 $^{\circ}C$ for 30 $^{\prime\prime}$	94 $^{\circ}C$ for $30^{\prime\prime}$	94 $^{\circ}C$ for 45 $^{\prime\prime}$	94 $^{\circ}C$ for 30 $^{\prime\prime}$	94 $^{\circ}C$ for 30 $^{\prime\prime}$	94 $^{\circ}C$ for $45^{\prime\prime}$	94 $^{\circ}C$ for 45 $^{\prime\prime}$	94 $^{\circ}C$ for 45″	94 $^{\circ}C$ for 45 $^{\prime\prime}$	94 $^{\circ}C$ for 45 $^{\prime\prime}$	94 $^{\circ}C$ for 45 $^{\prime\prime}$	94 $^{\circ}C$ for $20^{\prime\prime}$
Annealing	55 $^{\rm o}C$ for 25 $^{\prime\prime}$	$55\ ^{\rm o}C$ for $25^{\prime\prime}$	47 °C for 90″	57 °C for 15″	52 $^{\circ}C$ for 1'	58 $^{\rm o}C$ for 40 $^{\prime\prime}$	52 $^{\circ}C$ for 40 $^{\prime\prime}$	48 $^{\rm o}C$ for 45 $^{\prime\prime}$	54 $^{\rm o}C$ for 40 $^{\prime\prime}$	$59\ensuremath{^\circ} C$ for $40^{\prime\prime}$	50 $^{\rm o}C$ for 30 $^{\prime\prime}$	50 $^{\rm o}C$ for 30 $^{\prime\prime}$	53 $^{\circ}C$ for 30 $^{\prime\prime}$	53 $^{\circ}C$ for 30 $^{\prime\prime}$	$55^{\rm o}C$ for $30^{\prime\prime}$	$55\ ^{\rm o}C$ for $30^{\prime\prime}$	$54\ ^{\circ}C$ for $30^{\prime\prime}$
Extention	72 $^{\circ}C$ for 1 $^{\prime}$	72 $^\circ C$ for 1'	72 °C for 25″	$72 {}^\circ C_{20}$ for $20^{\prime\prime}$	72 $^\circ C$ for 3'	72 $^\circ C$ for 1^\prime	72 $^\circ C$ for 1^\prime	$72\ensuremath{^\circ C}$ for $1'$	72 $^{\circ}C$ for 1 $^{\prime}$	72 $^{\circ}C$ for 1 $^{\prime}$	72 $^{\circ}C$ for 1^{\prime}	72 $^\circ C$ for 1 $^\prime$	72 $^{\circ}C$ for 1 $^{\prime}$	72 $^\circ C$ for 1'	72 $^{\circ}C$ for 1 $^{\prime}$	72 $^\circ C$ for 1^\prime	$72\ensuremath{^\circ C}$ for $45^{\prime\prime}$
Final elongation	$72\ ^\circ C$ for $10'$	$72\ensuremath{^\circ C}$ for $10'$	72 $^\circ C$ for 7'	$72\ ^\circ C$ for $10'$	70 $^{\circ}C$ for 5'	$72\ensuremath{^\circ C}$ for $10'$	$72\ensuremath{^\circ C}$ for $10'$	$72^{\circ}C$ for $7'$	72 $^{\circ}C$ for 10 $^{\prime}$	$72\ensuremath{^\circ C}$ for $10'$	72 $^\circ C$ for 7'	72 $^\circ C$ for 7'	72 $^{\circ}\text{C}$ for 7'	72 $^\circ C$ for 7 $^\prime$	72 °C for 7'	72 °C for 7'	72 °C for 5'

References

- 1. Spielman, S. Food Fraud Is Not Only an Economic Drain but Also a Supply Chain Safety Concern. Food Engineering. 2020. Available online: https://www.foodengineeringmag.com/articles/98984-food-fraud-is-not-only-an-economic-drain-but-alsoa-supply-chain-safety-concern (accessed on 21 December 2022).
- Soon, J.M.; Abdul Wahab, I.R. A Bayesian Approach to Predict Food Fraud Type and Point of Adulteration. *Foods* 2022, 11, 328. [CrossRef]
- Di Pinto, A.; Bottaro, M.; Bonerba, E.; Bozzo, G.; Ceci, E.; Marchetti, P.; Mottola, A.; Tantillo, G.M. Occurrence of mislabeling in meat products using DNA-based assay. J. Food Sci. Technol. 2015, 52, 2479–2484. [CrossRef] [PubMed]
- 4. Kane, D.E.; Hellberg, R.S. Identification of species in ground meat products sold on the US commercial market using DNA-based methods. *Food Control* **2016**, *59*, 158–163. [CrossRef]
- Barbuto, M.; Galimberti, A.; Ferri, E.; Labra, M.; Malandra, R.; Galli, P.; Casiraghi, M. DNA barcoding reveals fraudulent substitutions in shark seafood products: The Italian case of "palombo" (*Mustelus* spp.). Food Res. Int. 2010, 43, 376–381. [CrossRef]
- 6. Liou, P.; Banda, A.; Isaacs, R.B.; Hellberg, R.S. Labeling compliance and species authentication of fish fillets sold at grocery stores in Southern California. *Food Control* **2020**, *112*, 107137. [CrossRef]
- Di Pinto, A.; Terio, V.; Marchetti, P.; Bottaro, M.; Mottola, A.; Bozzo, G.; Bonerba, E.; Ceci, E.; Tantillo, G. DNA-based approach for species identification of goat-milk products. *Food Chem.* 2017, 229, 93–97. [CrossRef]
- 8. Ichim, M.C. The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. *Front. Pharmacol.* **2019**, *10*, 1227. [CrossRef]
- Böhme, K.; Calo-Mata, P.; Barros-Velázquez, J.; Ortea, I. Review of recent DNA-based methods for main food-authentication topics. J. Agricul-Tural Food Chem. 2019, 67, 3854–3864. [CrossRef]
- 10. Mezzasalma, V.; Ganopoulos, I.; Galimberti, A.; Cornara, L.; Ferri, E.; Labra, M. Poisonous or non-poisonous plants? DNA-based tools and applications for accurate identification. *Int. J. Leg. Med.* **2017**, *131*, 1–19. [CrossRef]
- 11. McCallum, C.S.; Cerroni, S.; Derbyshire, D.; Hutchinson, W.G.; Nayga, R.M., Jr. Consumers' responses to food fraud risks: An economic experiment. *Eur. Rev. Agric. Econ.* **2022**, *49*, 942–969. [CrossRef]
- 12. Treiblmaier, H.; Garaus, M. Using blockchain to signal quality in the food supply chain: The impact on consumer purchase intentions and the moderating effect of brand familiarity. *Int. J. Inf. Manag.* **2023**, *68*, 102514. [CrossRef]
- 13. Nehal, N.; Choudhary, B.; Nagpure, A.; Gupta, R.K. DNA barcoding: A modern age tool for detection of adulteration in food. *Crit. Rev. Biotechnol.* **2021**, *41*, 767–791. [CrossRef]
- 14. Tinacci, L.; Guidi, A.; Toto, A.; Guardone, L.; Giusti, A.; D'Amico, P.; Armani, A. DNA barcoding for the verification of supplier's compliance in the seafood chain: How the lab can support companies in ensuring traceability. *Ital. J. Food Saf.* **2018**, *7*, 6894. [CrossRef]
- 15. Galimberti, A.; De Mattia, F.; Losa, A.; Bruni, I.; Federici, S.; Casiraghi, M.; Martellos, S.; Labra, M. DNA barcoding as a new tool for food traceability. *Food Res. Int.* **2013**, *50*, 55–63. [CrossRef]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Ser. B Biol. Sci. 2003, 270, 313–321. [CrossRef] [PubMed]
- 17. Kress, W.J.; Erickson, D.L. A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. *PLoS ONE* **2007**, *2*, e508. [CrossRef] [PubMed]
- 18. Raclariu, A.C.; Heinrich, M.; Ichim, M.C.; de Boer, H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. *Phytochem. Anal.* **2018**, *29*, 123–128. [CrossRef] [PubMed]
- Frigerio, J.; Gorini, T.; Palumbo, C.; De Mattia, F.; Labra, M.; Mezzasalma, V. A Fast and Simple DNA Mini-barcoding and RPA Assay Coupled with Lateral Flow Assay for Fresh and Canned Mackerel Authentication. *Food Anal. Methods* 2022, 16, 426–435. [CrossRef]
- Mezzasalma, V.; Sandionigi, A.; Bruni, I.; Bruno, A.; Lovicu, G.; Casiraghi, M.; Labra, M. Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. *PLoS ONE* 2017, 12, e0184615. [CrossRef]
- 21. Janecka, A.; Adamczyk, A.; Gasińska, A. Comparison of eight commercially available kits for DNA extraction from formalin-fixed paraffin-embedded tissues. *Anal. Biochem.* **2015**, 476, 8–10. [CrossRef]
- Frigerio, J.; Marchesi, C.; Magoni, C.; Saliu, F.; Ballabio, D.; Consonni, V.; Gorini, T.; De Mattia, F.; Galli, P.; Labra, M. Application of DNA mini-barcoding and infrared spectroscopy for the authentication of the Italian product "bottarga". LWT 2021, 139, 110603. [CrossRef]
- 23. Marinček, P.; Wagner, N.D.; Tomasello, S. Ancient DNA extraction methods for herbarium specimens: When is it worth the effort? *Appl. Plant Sci.* 2022, 10, e11477. [CrossRef] [PubMed]
- Chapela, M.J.; Sotelo, C.G.; Pérez-Martín, R.I.; Pardo, M.Á.; Pérez-Villareal, B.; Gilardi, P.; Riese, J. Comparison of DNA extraction methods from muscle of canned tuna for species identification. *Food Control* 2007, 18, 1211–1215. [CrossRef]
- Doyle, J. DNA protocols for plants. In *Molecular Techniques in Taxonomy*; Springer: Berlin/Heidelberg, Germany, 1991; pp. 283–293. [CrossRef]
- Yang, F.; Ding, F.; Chen, H.; He, M.; Zhu, S.; Ma, X.; Jiang, L.; Li, H. DNA barcoding for the identification and authentication of animal species in traditional medicine. *Evid.-Based Complement. Altern. Med.* 2018, 2018, 5160254. [CrossRef]

- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D. DNA barcoding Australia's fish species. *Philos. Trans. R. Soc. B Biol. Sci.* 2005, 360, 1847–1857. [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol. Mar. Biol. Biotechnol.* 1994, 3, 294–299.
- Giusti, A.; Tinacci, L.; Sotelo, C.G.; Marchetti, M.; Guidi, A.; Zheng, W.; Armani, A. Seafood identification in multispecies products: Assessment of 16SrRNA, cytb, and COI Universal Primers' efficiency as a preliminary analytical step for setting up metabarcoding next-generation sequencing techniques. J. Agric. Food Chem. 2017, 65, 2902–2912. [CrossRef]
- 30. Orrell, T.M.; Carpenter, K.E.; Musick, J.A.; Graves, J.E. Phylogenetic and biogeographic analysis of the Sparidae (Perciformes: Percoidei) from cytochrome b sequences. *opeia* **2002**, 2002, 618–631. [CrossRef]
- Mitchell, J.K.; Hellberg, R.S. Use of the mitochondrial control region as a potential DNA mini-barcoding target for the identification of canned tuna species. *Food Anal. Methods* 2016, *9*, 2711–2720. [CrossRef]
- Fay, M.F.; Swensen, S.M.; Chase, M.W. Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). *Kew Bull.* 1997, 52, 111–120. [CrossRef]
- 33. Olmstead, R.G.; Bremer, B.; Scott, K.M.; Palmer, J.D. A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. *Ann. Mo. Bot. Gard.* **1993**, *80*, 700–722. [CrossRef]
- 34. Palmieri, L.; Bozza, E.; Giongo, L. Soft fruit traceability in food matrices using real-time PCR. Nutrients 2009, 1, 316–328. [CrossRef]
- Newmaster, S.G.; Subramanyam, R. Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol. Ecol. Resour. 2009, 9, 172–180. [CrossRef]
- Cheng, T.; Xu, C.; Lei, L.; Li, C.; Zhang, Y.; Zhou, S. Barcoding the kingdom Plantae: New PCR primers for ITS regions of plants with improved universality and specificity. *Mol. Ecol. Resour.* 2016, *16*, 138–149. [CrossRef] [PubMed]
- 37. Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. *PLoS ONE* **2012**, *7*, e40863. [CrossRef] [PubMed]
- Castaldini, M.; Turrini, A.; Sbrana, C.; Benedetti, A.; Marchionni, M.; Mocali, S.; Fabiani, A.; Landi, S.; Santomassimo, F.; Pietrangeli, B.; et al. Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. *Appl. Environ. Microbiol.* 2005, *71*, 6719–6729. [CrossRef] [PubMed]
- Chase, M.W.; Salamin, N.; Wilkinson, M.; Dunwell, J.M.; Kesanakurthi, R.P.; Haidar, N.; Savolainen, V. Land plants and DNA barcodes: Short-term and long-term goals. *Philos. Trans. R. Soc. B Biol. Sci.* 2005, 360, 1889–1895. [CrossRef]
- 40. Newmaster, S.G.; Fazekas, A.J.; Ragupathy, S. DNA barcoding in land plants: Evaluation of rbcL in a multigene tiered approach. *Botany* **2006**, *84*, 335–341. [CrossRef]
- 41. Lahaye, R.; van der Bank, M.; Bogarin, D.; Warner, J.; Pupulin, F.; Gigot, G.; Maurin, O.; Duthoit, S.; Barraclough, T.G.; Savolainen, V. DNA barcoding the floras of biodiversity hotspots. *Proc. Natl. Acad. Sci. USA* **2008**, *105*, 2923–2928. [CrossRef]
- 42. Newmaster, S.G.; Fazekas, A.J.; Steeves, R.A.D.; Janovec, J. Testing candidate plant barcode regions in the Myristicaceae. *Mol. Ecol. Resour.* **2008**, *8*, 480–490. [CrossRef]
- 43. CBOL Plant Working Group. A DNA Barcode for Land Plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797. [CrossRef]
- 44. Bolson, M.; Smidt, E.D.C.; Brotto, M.L.; Silva-Pereira, V. ITS and trnH-psbA as efficient DNA barcodes to identify threatened commercial woody angiosperms from southern Brazilian Atlantic rainforests. *PLoS ONE* **2015**, *10*, e0143049. [CrossRef] [PubMed]
- 45. Kress, W.J. Plant DNA barcodes: Applications today and in the future. J. Syst. Evol. 2017, 55, 291–307. [CrossRef]
- 46. Frigerio, J.; Gorini, T.; Galimberti, A.; Bruni, I.; Tommasi, N.; Mezzasalma, V.; Labra, M. DNA barcoding to trace Medicinal and Aromatic Plants from the field to the food supplement. *J. Appl. Bot. Food Qual.* **2019**, *92*, 33–38. [CrossRef]
- Raclariu, A.C.; Paltinean, R.; Vlase, L.; Labarre, A.; Manzanilla, V.; Ichim, M.C.; Crisan, G.; Brysting, A.K.; De Boer, H. Comparative authentication of Hypericum perforatum herbal products using DNA metabarcoding, TLC and HPLC-MS. *Sci. Rep.* 2017, 7, 1291. [CrossRef]
- 48. Seifert, K.A. Progress towards DNA barcoding of fungi. Mol. Ecol. Resour. 2009, 9, 83–89. [CrossRef]
- 49. Bellemain, E.; Carlsen, T.; Brochmann, C.; Coissac, E.; Taberlet, P.; Kauserud, H. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. *BMC Microbiol.* **2010**, *10*, 189. [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. *Proc. Natl. Acad. Sci. USA* 2012, 109, 6241–6246. [CrossRef]
- El Karkouri, K.; Murat, C.; Zampieri, E.; Bonfante, P. Identification of internal transcribed spacer sequence motifs in truffles: A first step toward their DNA barcoding. *Appl. Environ. Microbiol.* 2007, 73, 5320–5330. [CrossRef]
- Janda, J.M.; Abbott, S.L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 2007, 45, 2761–2764. [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [CrossRef] [PubMed]
- Frigerio, J.; Agostinetto, G.; Mezzasalma, V.; De Mattia, F.; Labra, M.; Bruno, A. DNA-based herbal teas' authentication: An ITS2 and psbA-trnH multi-marker DNA metabarcoding approach. *Plants* 2021, 10, 2120. [CrossRef] [PubMed]
- 55. Cottenet, G.; Cavin, C.; Blancpain, C.; Chuah, P.F.; Pellesi, R.; Suman, M.; Nogueira, S.; Gadanho, M. A DNA metabarcoding workflow to identify species in spices and herbs. *J. AOAC Int.* **2022**, *106*, 65–72. [CrossRef] [PubMed]

- 56. Raclariu-Manolică, A.C.; Anmarkrud, J.A.; Kierczak, M.; Rafati, N.; Thorbek, B.L.G.; Schrøder-Nielsen, A.; de Boer, H.J. DNA Metabarcoding for quality control of basil, oregano, and paprika. *Front. Plant Sci.* **2021**, *12*, 1052. [CrossRef] [PubMed]
- 57. Fernandes, T.J.; Amaral, J.S.; Mafra, I. DNA barcode markers applied to seafood authentication: An updated review. *Crit. Rev. Food Sci. Nutr.* **2021**, *61*, 3904–3935. [CrossRef]
- 58. Lewis, Z.T.; Shani, G.; Masarweh, C.F.; Popovic, M.; Frese, S.A.; Sela, D.A.; Underwood, M.A.; Mills, D.A. Validating bifidobacterial species and subspecies identity in commercial probiotic products. *Pediatr. Res.* **2016**, *79*, 445–452. [CrossRef]
- 59. Sheu, S.C.; Tsou, P.C.; Lien, Y.Y.; Lee, M.S. Development of loop-mediated isothermal amplification (LAMP) assays for the rapid detection of allergic peanut in processed food. *Food Chem.* **2018**, 257, 67–74. [CrossRef]
- 60. Chang JJ, M.; Ip YC, A.; Ng CS, L.; Huang, D. Takeaways from mobile DNA barcoding with BentoLab and MinION. *Genes* 2020, 11, 1121. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.