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Abstract: Fenugreek seeds are a rich source of bioactive compounds, such as diosgenin, which is one
of the most crucial steroidal sapogenins emerging in the field with its spectacular health benefits.
Plant-based diosgenin is bitter in taste and has remarkably low consumption levels, making it unable
to fulfil the role of improving health benefits. Diosgenin is spray dried to mask bitterness and
astringent flavors with two different wall materials, such as maltodextrin (MD) and whey protein
concentrate (WPC), separately. The spray-drying condition of the selected optimization process
was inlet air temperature (IAT 150–170 ◦C), feed flow rate (FFR 300–500 mL/h), and carrier agent
concentration (CAC 10–20%). The optimization of the process variable was conducted for producing
optimized encapsulated diosgenin powder (EDP) with both MD and WPC. The selected parameters,
such as yield, encapsulation efficiency, moisture content, antioxidant activity, hygroscopicity, and
solubility, are investigated in this current work. Based on the experimental results, the significant
R2 values depict the model fitting to the responses. EDP revealed an optimization condition at
170 ◦C IAT, 500 mL/h FFR, and 20% CAC for MD and WPC. The highest responses were observed
with WPC-EDP, such as yield at 82.25%, encapsulation efficiency at 88.60%, antioxidant activity at
53.95%, and hygroscopicity at 12.64%. MD-EDP revealed higher solubility at 96.64% and moisture
content at 2.58%. EDP was studied using micrographs and diffractograms for the optimized samples,
which revealed a smooth and dented surface with an amorphous nature for MD-EDP and WPC-EDP,
respectively. EDP exhibited acceptable powder properties with regard to fulfilling the set purpose.
EDP can be a better potential ingredient in different food matrices to act as a delivery vehicle for
various health aliments.

Keywords: diosgenin; optimization; powder morphology; process parameters; spray drying

1. Introduction

The increasing demand for the development of nutraceuticals has encouraged many
researchers to search for various bioactive compounds in different food matrices. The rich-
ness of Indian spices is yet to be explored, attracting scientists to explore their matrices.
Among the various Indian spices, fenugreek is gaining attention due to the presence of
numerous bioactive compounds, such as diosgenin [1]. Diosgenin is a steroidal aglycone
compound that is produced through alternations in the chemical synthetic pathway. It aids
in the production of various sex hormones, such as progesterone, estrogen, and steroidal
drugs on an industrial level [2]. The medicinal properties of diosgenin aids in the prevention
and treatment of various metabolic disorders, such as cancer, diabetes, cardiovascular disorder,
obesity, hyperglycemia, blood and bone disorders, vasodilating effect, melanogenesis, and
many others [3]. Diosgenin can be extracted from different sources, such as Trigonella foenum
graecum (fenugreek), Dioscorea spp. wild yam, and many more. The diosgenin was extracted
from fenugreek using ultrasound-assisted extraction conducted by Arya and Kumar [4].
The extracted diosgenin has a bitter taste and astringent flavor that is unacceptable in
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terms of its sensory profile. The remarkable health properties of diosgenin have attracted
the attention of researchers who seek to mask the bitter taste and astringent flavor of
fenugreek-extracted diosgenin. The most likely and suitable way to make diosgenin more
palatable is to extract it using a suitable technique. Spray drying is a suitable technique for
encapsulating diosgenin [5].

Spray drying is the technique of converting a liquid feed into the spray-dried powder
with the aid of a carrier agent that masks the core material and protects it against internal
and external environmental factors, such as pH, temperature, digestive juice, and light.
Spray drying aids in the good storage potential of sensitive bioactive compounds by
covering them with a suitable drying agent and converting them in powder with a low
moisture content. It also helps to occupy less storage space and has an extended shelf
life [6]. The selection of suitable wall materials completes the encapsulation, along with
the selection of process parameters. The wall materials aid in the completion of the spray-
drying process by providing an encapsulating shield against the selected variables for the
core material [7]. The spray drying of diosgenin was conducted using the two most-common
wall materials: maltodextrin (MD) and whey protein concentrate (WPC) [8]. The variation
in the characteristics of the powders depends on the chosen wall material. The usage of
maltodextrin in spray-dried food powders results in a variety of powder products. MD is a
complex polysaccharide that has a hygroscopic nature with better encapsulation efficiency
and higher bulk density; however, it tends to be a sticky powder because of its low glass-
transition temperature [9]. In contrast, WPC is a protein-complex wall material based on a
protein matrix that facilitates rapid heat and mass transfer during drying, and results in
leaving behind a powder with lower hygroscopicty and bulk density values and is less
sticky [10]. There are many different types of spray-dried powder produced with MD,
such as pomegranate extract [11], curcumin [12], garlic oleoresin [13], and WPCs, such as
blueberry [14], peanut sprout [15], garcinia juice, and many more [16].

In view of the bitter taste of fenugreek seed-extracted diosgenin makes it less palatable
due to the unacceptable flavor. The encapsulation uses both MD and WPC for masking
the bitterness and astringent flavor of diosgenin. This research paper focuses on the effect
of carrier agents MD and WPC, inlet air temperature, feed flow rate on yield, encapsu-
lation efficiency, moisture content, antioxidant activity, hygroscopicity, solubility, and its
optimization using the response surface methodology. The optimized encapsulated dios-
genin powder (EDP) from both MD and WPC was evaluated for studying the powder
characteristics, such as surface particle morphology and X-ray diffractograms.

2. Materials and Methods
2.1. Feed Preparation

The fenugreek seed-extracted bioactive compound diosgenin was selected for the
encapsulation. Encapsulation was performed using two different wall materials: maltodex-
trin with dextrose equivalent 20 (MD) and whey protein concentrate with 80% concentrate
(WPC). The chemicals, MD, and WPC used for the analysis of the spray-dried diosgenin
powder were recovered from Loba Chemie and Mahaan Foods, India. The spray-drying
feed was prepared by dissolving varying amounts of carrier agent concentrations, followed
by other independent variables, such as feed flow rate and inlet air temperature selected
for RSM. The diosgenin was added to the feed in limited amounts due to its steroidal
nature. The liquid feed was fed to the spray drier via a feed pump through an atomizer
which enters into the drying chamber. Inside the drying chamber, the liquid feed was
converted into tiny, fine spray-dried droplets because of the interaction with high inlet
air temperature. The spray-dried microparticle were collected from the cyclone of the
spray dryer. The initial amount of fenugreek used for diosgenin extraction was 100 g of
defatted fenugreek power. The diosgenin extracted with the UAE method ranged from
40 mg/100 g of defatted fenugreek seed powder [5]. The sample preparation was based on
the previous work performed for fixing the trial amount of diosgenin that varied from 0.1
to 0.5%, and 0.3% was selected for the spray drying [17]. Based on the previous studies,
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0.3% diosgenin was added to the spray-dried feed separately to produce encapsulated
diosgenin powder with MD and WPC. The recommended diosgenin intake should not be
more that 510 mg/kg/day with no significant toxicity [18]. The selected dependent vari-
ables for the encapsulation of diosgenin included inlet air temperature (IAT, 150–170 ◦C),
feed flow rate (FFR, 300–500 mL/h), and carrier agent concentration (CAC, 10–20%), as
shown in Table 1. The atomizer for the spray dryer had a 0.5 mm diameter, concurrent air
flow, and a peristaltic pneumatic pump to regulate the feed flow rate. The feed was fed
into a pilot-scale spray dryer (SM Scientech, Kolkata, India). The produced encapsulated
diosgenin powder (EDP) from both wall materials (MD and WPC) was kept in an airtight
container until further use.

Table 1. Coded and real values for representation of the independent variables in central composite
designs for MD and WPC.

Inlet Air Temperature
(IAT, A ◦C)

Feed Flow Rate
(FFR, B mL/h)

Carrier Agent
Concentration (CAC, C %)

Runs Coded Real Coded Real Coded Real

1 −1 150 −1 300 −1 10

2 +1 170 −1 300 −1 10

3 −1 150 +1 500 −1 10

4 +1 170 +1 500 −1 10

5 −1 150 −1 300 +1 20

6 +1 170 −1 300 +1 20

7 −1 150 +1 500 +1 20

8 +1 170 +1 500 +1 20

9 −1.682 143 * 0 400 0 15

10 +1.682 177 * 0 400 0 15

11 0 160 −1.682 232 * 0 15

12 0 160 +1.682 568 * 0 15

13 0 160 0 400 −1.682 6.6

14 0 160 0 400 +1.682 23.4

15 0 160 0 400 0 15

16 0 160 0 400 0 15

17 0 160 0 400 0 15

18 0 160 0 400 0 15

19 0 160 0 400 0 15

20 0 160 0 400 0 15
* Roundoff to nearest digit.

2.2. Yield

The yield of EDP was calculated for each drying aid [19] using Equation (1):

PowderYield(%) =
Mass of powder obtained (g)

Mass of dried diosgenin + Mass of MD and WPC
∗ 100 . . . (1)

2.3. Microcapsule Characterization
2.3.1. Encapsulation Efficiency (EE, %)

For the estimation of the encapsulation efficiency of EDP, 50 mg of powder was
dissolved in 50 mL of distilled water for surface and total diosgenin values. The sample
was vortexed for 5 min, followed by centrifugation at 4000× g for 5 min. The filtrate
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was collected for total diosgenin content, and residual broken particles were analyzed for
surface diosgenin content by washing it with ethanol 3 times [20]. The total and surface
diosgenin contents were estimated by dissolving 0.2 mL of each sample (MD-EDP and
WPC-EDP), followed by the addition of two-color reagents CR1 and CR2 and kept in a
water bath at 60 ◦C for 30 min. The 0.5 mL distilled water was added to the samples for
the estimation of diosgenin content in MD-EDP and WPC-EDP by spectrophotometric
observation recorded at 430 nm [21]. Encapsulation efficiency was estimated by using
Equation (2):

Encapsulation Efficiency(%) =
Total diosgenin − Surface diosgenin

Total diosgenin
∗ 100 . . . (2)

2.3.2. Moisture Content (MC, %)

EDP was analyzed for moisture content by placing 5 g of powder in a hot-air oven at
105 ± 5 ◦C for 5 h [19]. The moisture content was calculated using Equation (3):

MC (%) =
Mass of powder before drying (g)− Mass of powder after drying (g)

Mass of powder before drying (g)
∗ 100 . . . (3)

2.3.3. Antioxidant Activity (AA,%)

The antioxidant activity of EDP was estimated by the DPPH method with some
modifications. A total of 10 mg of MD-EDP and WPC-EDP each was dissolved in 1 mL
of distilled water followed by dissolving 3.4 mg of DPPH in 100 mL methanol. 0.1 mL of
diosgenin powder extract, and 3.9 mL of DPPH solution were mixed together. The sample
was kept in the dark for 45 min and observance was recorded at 515 nm with methanol
blank [22]. The free-radical scavenging capacity of EDP was calculated using Equation (4):

DPPH Scavenging(%) = 1 − Absorbance of sample
Absorbance of control

∗ 100 . . . (4)

2.3.4. Hygroscopicity (HG, %)

The hygroscopicity of the EDP was estimated by placing 1 g of powder in pre-weighed
petri dish kept in a desiccator containing an ammonium sodium chloride solution with a
relative humidity value of 80% [23]. The powder was kept for 14 days for hygroscopicity
studies. The hygroscopicity was calculated using Equation (5):

HG (%) =
Sample weight after storage (g)− Samplestorage before storage (g)

Initial weight of sample
∗ 100 . . . (5)

2.3.5. Solubility (SB, %)

EDP was analyzed for solubility by placing 0.1 g of powder in 10 mL of distilled water.
The sample was vortexed and centrifuged at 3000 rpm for 10 min. The supernatant was
transferred to a pre-weighed petri dish and dried at 105 ◦C for 3h. Solubility was calculated
by using the weight difference between the original sample weight and supernatant dried
in the pre-weighed petri dish [24].

2.3.6. Powder Morphology

The EDP surface morphology was analyzed by using a scanning electron microscope
(JSM-7610, F PLUS, JOEL Ltd., Tokyo, Japan). The samples were prepared using gold
coating on the powder particles using focused ion beam etching. The micrographs of the
MD-EDP and WPC-EDP were recorded from 500× to 3500×, respectively [25].

2.3.7. X-ray Diffraction

EDP was analyzed for the estimation of the powder type by using X-ray diffractometer
(D8 Advance, Bruker, Germany) using a Cu-based anode X-ray tube. The powder sample
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was kept against the glass slide in an aluminum holder and measurements were observed
using a diffraction angle ranging from 10◦ to 80◦ (2θ) with a scanning rate of 4◦/min at
30 mA and 40 kV [26].

2.4. Experimental Design

The experiments were conducted for the optimization of the process parameters with
a central composited design (CCD). The encapsulated diosgenin powder was produced in
twenty experimental runs performed with six center points, as shown in Table 1. Design
expert software (Minneapolis, 11.0.4.1, MA, USA) was used for conducting the experiments,
followed by the optimization of data and a quadratic model being used for expressing the
response variable as a function of the independent variable. The accuracy of the model
selected was analyzed by closely observing various parameters, such as ANOVA, R2,
adjusted R2, lack of fit, and coefficient of variation (CV) [27]. The real and coded values of
factors are presented in Table 1 for both the carrier agents MD and WPC. The statistical
significance was analyzed for selected responses, such as yield, encapsulation efficiency,
moisture content, antioxidant activity, hygroscopicity, and solubility. The equation below
was used for the estimation of the factors and models used in the optimization:

Y = βo + ∑K
i=1 βiXi + ∑K

i=1 βiiX2
i + ∑K

i=j ∑
K
j=i+1 βijXij + ε

where Y: the desired value of the response, such as Y1 = yield (%); Y2 = encapsulation
efficiency (%); Y3 = moisture content (%); Y4 = antioxidant activity (%); Y5 = hygroscopicity
(%); and Y6 = solubility (%). xi represents the coded independent variables (x1 = inlet air
temperature, x2 = feed flow rate, and x3 = carrier agent concentration); βo is the constant;
and βi, βii, and βij are the linear, quadratic, and cross-product coefficients, respectively, and
E is an error.

3. Results
3.1. Model Fitting

The impact of the independent variables IAT, FFR, and CAC (MD and WPC) were
observed for the dependent variables, such as yield, encapsulation efficiency, moisture
content, antioxidant activity, hygroscopicity, and solubility, as represented in Table 2. The
responses revealed a confidence level of 95% with ANOVA and were coded for a second-
order regression equation, as represented in Table 3. The dependent variables showed n
acceptable values for R2 as observed with values for MD-EDP and WPC-EDP for yield
(0.9973, 0.9961), encapsulation efficiency (0.9848, 0.9874), moisture content (0.9921, 0.9910),
antioxidant activity (0.9830, 0.9955), hygroscopicity (0.9847, 0.9906), and solubility (0.9909,
0.9918), respectively. After erasing the non-significant terminologies from the model,
significant data are presented in Table 3.
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Table 2. Representation of the effects of independent variables on the dependent variables of spray-dried diosgenin powder with MD and WPC.

Run

MD WPC

A- IAT
(◦C)

B- FFR
(mL/h)

C- CAC
(%) Yield (%) EE

(%) MC (%) AA
(%)

HG
(%)

SB
(%) Yield (%) EE

(%) MC (%) AA
(%)

HG
(%)

SB
(%)

1 150 300 10 50.42 60.52 1.85 37.57 11.84 87.64 49.04 51.27 2.56 37.34 5.92 70.92

2 160 400 15 48.64 60.45 0.65 47.94 11.44 91.12 44.57 60.05 1.45 43.59 6.25 76.96

3 170 500 20 67.75 62.16 0.75 52.71 9.76 94.12 52.34 65.17 2.06 38.44 9.38 82.92

4 160 400 15 69.43 54.29 1.47 37.77 8.04 92.4 53.63 65.18 2.05 38.74 9.15 83.48

5 150 500 10 37.48 58.37 1.75 46.42 11.09 78.88 53.94 64.28 1.95 39.42 9.19 82.32

6 160 400 6.6 50.23 58.79 1.88 39.59 11.78 88.76 53.78 63.35 2.09 39.08 9.6 83.12

7 150 300 20 51.77 58.21 1.74 38.85 11.20 87.44 82.25 88.60 0.98 52.26 4.82 85.81

8 170 300 20 34.12 46.78 2.58 42.76 11.27 71.52 74.53 83.23 0.97 49.28 7.24 88.12

9 170 500 10 80.65 59.91 0.79 51.19 6.64 91.23 50.53 67.78 0.82 48.05 10.53 86.26

10 150 500 20 59.65 50.49 0.97 47.89 11.58 91.6 71.68 63.71 1.60 38.40 6.32 87.18

11 160 568 15 39.76 58.51 2.06 45.41 13.52 86.8 69.46 86.41 0.96 53.95 7.09 89.28

12 160 232 15 51.34 55.29 1.86 38.42 11.68 88.24 59.12 69.11 0.85 44.28 9.69 91.72

13 160 400 15 42.98 83.33 1.85 45.72 14.42 87.48 39.45 58.41 1.98 47.51 8.92 73.8

14 160 400 23.4 51.76 56.47 1.84 37.10 11.34 87.72 53.55 64.61 2.09 38.30 9.37 82.12

15 160 400 15 72.67 53.73 0.75 48.24 9.78 93.12 63.65 70.35 1.79 46.64 6.94 82.42

16 177 400 15 57.33 81.58 0.65 43.63 11.17 96.64 36.76 55.49 2.76 43.21 9.66 65.48

17 143 400 15 47.99 78.08 2.39 36.63 7.65 75.84 52.79 63.12 2.03 39.46 9.22 83.04

18 160 400 15 51.85 67.43 1.87 37.41 11.57 88.36 61.37 72.96 1.17 46.13 9.28 86.88

19 160 400 15 42.74 58.16 1.27 42.97 8.23 81.68 41.87 61.08 2.25 43.59 11.99 81.8

20 170 300 10 61.57 65.19 1.58 45.19 8.75 87.72 44.87 63.78 2.06 46.57 12.64 82.64

MD: maltodextrin; WPC: whey protein concentrate; EE = encapsulation efficiency; MC = moisture content; AA = antioxidant activity; HG = hygroscopicity; SB = solubility; IAT: inlet air
temperature; FFR: feed flow rate; and CAC: carrier agent concentration.
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Table 3. Representation of the significant levels (p-values) for the dependent variables of spray-dried diosgenin powder with MD and WPC.

MD WPC

Yield
(%)

EE
(%)

MC
(%)

AA
(%)

HG
(%)

SB
(%)

Yield
(%)

EE
(%)

MC
(%)

AA
(%)

HG
(%)

SB
(%)

Model <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

A <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

B <0.0001 0.1924 <0.0001 0.0035 <0.0001 <0.0001 <0.0001 0.0882 <0.0001 <0.0001 <0.0001 <0.0001

C <0.0001 <0.0001 <0.0001 0.0032 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

AB 0.3030 0.2245 0.9924 0.0655 0.1032 0.0005 0.0206 0.1820 0.0113 <0.0001 <0.0001 <0.0001

BC 0.4099 0.0008 0.0673 0.0023 0.0170 <0.0001 0.1984 0.0333 <0.0001 <0.0001 <0.0001 <0.0001

CA 0.0854 0.0019 <0.0001 0.0002 0.0008 0.0009 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0007

A2 0.0025 0.4475 0.0172 0.0002 <0.0001 <0.0001 0.4944 0.2142 0.7233 0.0002 0.0050 0.0002

B2 0.1411 0.1852 <0.0001 <0.0001 0.0016 <0.0001 0.4330 0.0004 0.1746 <0.0001 <0.0001 <0.0001

C2 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0012 0.2823 0.0005 <0.0001 <0.0001 0.0002 0.0003

R2 0.9973 0.9848 0.9921 0.9830 0.9847 0.9909 0.9961 0.9874 0.9910 0.9955 0.9906 0.9918

ADJ R2 0.9948 0.9711 0.9850 0.9677 0.9710 0.9827 0.9925 0.9760 0.9829 0.9914 0.9821 0.9843

CV 1.64 2.67 4.71 2.09 3.14 0.9328 1.88 2.23 4.45 1.06 3.11 0.9681

Lack of fit 0.244 NS 0.071 NS 0.129 NS 0.616 NS 0.171 NS 0.071 NS 0.063 NS 0.058 NS 0.096 NS 0.606 NS 0.073 NS 0.087 NS

MD: maltodextrin; WPC: whey protein concentrate; EE = encapsulation efficiency; MC = moisture content; AA = antioxidant activity; HG = hygroscopicity; and SB = solubility. NS:
non-significant.
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3.2. Yield

Encapsulated powder yield was one of the most crucial factors to be analyzed for esti-
mating the efficacy of the spray-drying process [28]. The effect of spray-drying parameters
was observed on the EDP yield that ranged from 34.12 to 80.65% and 36.76 to 82.25% for
MD-EDP and WPC-EDP, respectively, as represented in Table 2. The analysis of variance for
EDP yield, shown in Table 3, which depicted a significant fit for the quadratic model and a
non-significant lack of fit. The impact of the selected independent variables IAT, FFR, and
CAC was observed in favor of yield. The increase in IAT and FFR resulted in a considerable
increase in the EDP yield, which was observed positively, whereas the impact of CAC had
a moderate effect on the EDP yield with a medium-range-producing maximum yield with
both the carrier agents MD and WPC. There was a lower yield observed in the case of MD
as compared to WPC, due to the greater stickiness during the drying operation occurring
in the drying wall chamber. The impact of CAC was observed in the EDP yield in the form
of increasing an carrier agent, causing a higher yield with a significant effect (p < 0.05). The
wall-forming capacity of the maltodextrin occurred up to certain limit due to the rapid heat
and mass transfer that occurred during the drying process. The feed that contained MD as
a wall material showed a quick response with regard to the moisture evaporation from the
droplet surface during the drying of the atomized feed particles, and it revealed that rapid
responses of MD during drying caused a lower yield. The contour plots of MD and WPC
with impact values observed in the EDP are shown in Figure 1. The equation generated
from the model optimization is represented in Table 4. A similar effect of MD was observed
on the powder yield for the production of red–purple food colorant from Opuntia stricta,
where the maximum yield ranged up to 54.63% [29]. The feed containing WPC as the
carrier agent concentration revealed a better yield due to reduced adhesion. The higher
yield in WPC was due to the greater interaction among protein and surface-active elements
present on the periphery of the droplet. The surface-active elements aided in forming a
film over the droplets that reduced the contact time between the dryer chamber wall and
caused a potential reduction in stickiness and enhanced the powder yield [30]. A similar
trend of results was observed for WPC spray-dried bayberry juice powder, with a yield
ranging from 45.6 to 56.2% [31].
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Table 4. Response variables and their model equations for MD and WPC for EDP.

Response Variables Response Model Equations for MD as Carrier Agent Response Model Equations for WPC as Carrier Agent

Yield (%) +51.23 + 2.97 A − 3.98 B + 13.09 C + 0.3365 AB − 0.2665 AC +
0.5914 BC + 0.9261 A2 − 0.3689 B2 + 2.78 C2

+ 53.32 + 2.96 A – 3.92 B + 13.00 C +0.2168 AB − 0.3017AC +
0.4197 BC + 0.7555 A2 − 0.3790 B2 + 2.75 C2

Encapsulation Efficiency (%) +59.33 + 6.26 A + 0.6211 B + 7.86 C − 0.7515 AB + 2.74 AC + 2.43 BC
− 0.3419 A2 -0.6154 B2 + 3.97 C2

+ 64.25 + 6.25 A − 0.7625 B + 8.06 C − 0.6995 AB + 2.79 AC +
2.63 BC − 0.5636 A2 + 0.9693 B2 + 3.47 C2

Moisture content (%) +1.84 − 0.3724 A + 0.3549 B − 0.2660 C − 0.0003 AB − 0.0523 AC −
0.3273 BC − 0.0541 A2 − 0.2059 B2 − 0.1989 C2

+ 2.05 − 3610 A + 0.3610 B − 0.2659 C − 0.0099 AB − 0.0396 AC −
0.3224 BC -0.0625 A2 − 0.2084 B2 − 0.1988 C2

Antioxidant activity (%) +38.17 + 3.26 A + 0.9271 B + 0.9436 C − 0.6605 AB + 1.30 AC +
1.83 BC + 1.39 A2 + 2.24 B2 + 3.70 C2

+ 38.92 + 2.77 A + 0. 8724 B + 1.30 C − 0.9536 AB + 1.67 AC +
2.22 BC + 0.9461 A2 + 2.25 B2 + 3.83 C2

Hygroscopicity
(%)

+11.58 + 1.08A + 0.8256 B − 1.14 C − 0.2119 AB − 0.3377 AC −
0.5550 BC − 0.7454 A2 + 0.3790 B2 − 1.01 C2

+ 9.33 + 0.9763 A + 0.7538 B − 1.30 C − 0.3410 AB − 0.6908 AC −
0.5502 BC − 0.6574 A2 + 0.6012 B2 − 0.9175 C2

Solubility
(%)

+88.01 + 4.27 A − 2.46 B + 4.17 C + 1.44 AB − 2.20 AC + 1.35 BC −
1.43 A2 + 1.52 B2 − 0.9598 C2

+ 82.82 + 4.41 A − 2.55 B + 4.15 C + 1.62 AB − 2.23 AC + 1.54 BC −
1.33A2 + 1.60 B2 − 1.01 C2

A: inlet air temperature; B: feed flow rate, and C: carrier agent concentration.
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3.3. Powder Characterization
3.3.1. Encapsulation Efficiency (EE)

Encapsulation is a physico-mechanical process comprising the entrapment of bioactive
compounds in various sorts of carrier agents increasing the stability of the encapsulated
compound. The encapsulation efficiency of spray-dried food powders majorly impacted
efficient targeted delivery, safety from environmental changes, and efficacy in retaining
bioactive compounds [32]. The encapsulation efficiencies for MD-EDP and WPC-EDP
ranged from 50.49 to 83.33% and 51.27 to 88.60%, respectively. The contour plots of encap-
sulation efficiency are presented in Figure 2 for MD and WPC. The encapsulation efficiency
was impacted by IAT and CAC with a positive impact and significant difference (p < 0.05),
and FFR presented a negative impact, as shown in Table 3. A better EE value was observed
with WPC in comparison with MD, due to the good surface protein interactions and bind-
ing with diosgenin. The increase in IAT and CAC caused an increase in EE by reducing
the contact time to form a semi-permeable membrane crust over the droplet that caused
suppressed interactions of diosgenin and the particle surface during drying [33]. A similar
study conducted with regard to spray-dried nettle-extract powder ranged from 63.23 to
87.21% with an increase in IAT and MD concentrations [34]. The effect of WPC in regard of
EE observed with flax seed oil microencapsulation ranged from 62.3 to 95.7%, revealing
better EE values as compared to other wall materials [35]. The effect of spray drying was
observed on the loading capacity of iron microcapsules prepared with glucomannan that
ranged from 69.43 to 74.46% [36]. The equation generated from the model optimization is
presented in Table 4.
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3.3.2. Moisture Content

The moisture content of MD-EDP and WPC-EDP ranged from 0.65 to 2.58% and 0.82 to
2.76%, respectively. The effect of IAT was observed positively on the EDP with significant
differences (p < 0.05), as the contour plot shows in Figure 3, for MD and WPC. The increase
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in IAT and CAC caused rapid moisture removal from the droplet surface and the moisture
content decreased to an acceptable level [37]. A reduced level of moisture content was ob-
served for MD-EDP due to the more and rapid interaction of the MD-feed atomized droplet
with hot air inside the drier chamber. The retention of moisture content in the atomized
droplet was a bit higher in WPC-EDP due to the greater interaction of feed moisture content
and surface-active protein elements that bind with intermolecular spaces. The entrapment
of higher moisture levels in WPC-EDP due to the dented-surface phenomenon occurred
due to the hydrophilic nature of the whey protein concentrate as compared to MD [38].
A similar study performed for the spray drying of Sohiong fruit powder which had mois-
ture content ranging from 3.15–4.51% [39]. The study was also conducted for the spray
drying of tomato powder with different wall materials. The most suited range of moisture
content was revealed for WPC, ranging from 3.41 to 4.71 g/100 g [40]. The moisture content
of spray-dried powders was observed in the range of 2.89–4.12% for the stability of the
food powders [41]. The equation generated from the model optimization is represented in
Table 4.
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3.3.3. Antioxidant Activity

Antioxidant activity is one major factor that counts for the bioactivity of spray-dried
powders. The antioxidant activity of MD-EDP and WPC-EDP ranged from 37.01 to 52.71%
and 37.34 to 53.95%, respectively, with the significant differences (p < 0.05) and contour plots
shown in Figure 4 for MD and WPC. A certain decrease was observed in the samples whose
drying was conducted at a higher spray-drying inlet air temperature causing a reduction
in the antioxidant activity. This decrease was observed due to the reduced stability of
antioxidants against higher processing temperature conditions. The influence of WPC was
observed in the form of a film formation on the atomized feed droplets that prevented
the degradation of the antioxidants, as compared with the MD with regard to EDP. The
significant effect of IAT observed on EDP with an increase in IAT caused a reduction in
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antioxidant activity. Better antioxidant activity was observed in the case of WPC-EDP,
rather than MD-EDP, due to the increased emulsifying properties and gelling capacity that
aided the antioxidant activity [14]. A similar effect was observed for spray-dried amla
powder produced with MD as a carrier agent, revealing its antioxidant activity. A reduction
was observed in amla powder antioxidant activity with a higher concentration of MD due
to an increased entrapment of the bioactive compound of amla inside the droplet during the
drying process [42]. The effect of MD as a drying carrier agent was observed for antioxidant
activity in black garlic aqueous extract powder. A reduction in antioxidant activity was
revealed in black garlic powder with an increase in MD concentration [43]. A study was
conducted for cookies prepared from the spray drying of blackcurrant concentrate with
whey protein isolate. A better retention of the antioxidant capacity was observed with a
higher radical scavenging capacity in the cookies [44]. The antioxidant activity of beetroot
juice powder produced with WPC using the spray-drying technique ranged from 68.85 to
77.29% [45]. The equation generated from the model optimization is presented in Table 4.
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3.3.4. Hygroscopicity

Hygroscopicity is the crucial property of spray-dried powder that depicts the moisture
hold-up and shelf-life properties of the powder [46]. The hygroscopicity of MD-EDP and
WPC-EDP ranged from 6.64 to 13.52% and 4.82 to 12.64%, respectively, with significant
differences (p < 0.05) as contour plots shown in Figure 5 for MD and WPC. The effects of
IAT and CAC were observed on the hygroscopicity of EDP. MD-EDP had greater hygro-
scopicity as compared to WPC-EDP due to the higher molecular weight of the carrier agent
causing a reduction in hygroscopicity, hence causing an overall reduction in the moisture
absorption rate of the spray-dried powder [25]. The higher IAT caused a greater reduction
in the hygroscopicity of the spray-dried powders. The feed that was spray dried at lower
temperatures tended to absorb a higher moisture content and increase hygroscopicity. The
low IAT dried powder produced a higher moisture content and reduced glass-transition
temperatures that caused greater hygroscopicity of the powder [23]. The use of MD could
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modify the hydrophilic and hydrophobic interaction of the sprayed feed particles and
helped to suppress the amount of adsorbed water [47]. The effect of MD was recorded
in the form of higher MD concentration, reducing the hygroscopicity of the powder. The
presence of hydrophilic and hydrophobic bonds and their interaction between wall and
core materials caused a reduction in the amount of water absorbed by the droplet [48].
A similar study conducted for the spray-dried cempedak fruit powder revealed hygro-
scopicity that ranged from 30–38%. The impact of inlet air temperature and carrier agent
concretion with MD showed a significant difference for hygroscopicity [49]. A similar
trend for hygroscopicity was observed for tamarind pulp powder that ranged from 16.61 to
28.96% with WPC. The equation generated from the model optimization is presented in
Table 4.
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3.3.5. Solubility

The concept of evaluating the solubility of spray-dried powder depended on the
criteria of the product’s behavior in aqueous phase and was majorly considered as the final
step toward dissolution and reconstitution quality [50]. The solubility values of MD-EDP
and WPC-EDP ranged from 75.84 to 96.64% and 70.92 to 91.72%, respectively, as represented
in Figure 6, with a contour plot revealing a significant difference. Better solubility was
observed in MD-EDP as compared to WPC-EDP due to the greater solubility of MD as
compared to WPC in solvents [51]. The spray drying of sumac extract encapsulated with
maltodextrin, conducted for studying the solubility levels, revealed that less time was
consumed for the dissolution of the spray-dried powder [52]. The solubility of soybean
hydrolysates was observed more with MD as compared to WPC, ranging from 94 to 97%
with spray drying [51]. A study conducted for the spray drying of jujube extract using
whey protein as a carrier agent presented lower solubility of up to 98%, as compared to
sodium alginate [53]. The equation generated from the model optimization is presented in
Table 4.
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3.4. Optimizations of Carrier Agent Concentration, IAT, and FFR

The optimizations of the MD-EDP and WPC-EDP were performed using two different
carrier agents, and their impactful changes were observed in the upper and lower limits
followed by the predicted and experimental values during the optimization for the selected
parameters, as shown in Table 5. The encapsulated diosgenin powder was evaluated based
on the sensory acceptance that predicted the scores of 7.5 and 8 out of a 9-point hedonic
scale for MD-EDP and WPC-EDP, respectively, which showed the masking of the bitter
taste of diosgenin by the encapsulation process.

Table 5. Representation of the upper and lower limits of the process parameters, followed by the
predicted and experimental values for the selected process responses for EDP production.

Upper and Lower Limits of Variables Predicted and Experimental Values for the Optimized Variable

Aim
MD WPC MD WPC

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Pred.
Value

Exptl.
Value

Variation
(%)

Pred.
Value

Exptl.
Value

Variation
(%)

Factors

A In range 150 170 150 170 170 170

B In range 300 500 300 500 500 500

C In range 10 20 10 20 20 20

Responses

Yield (%) Max. 34.12 80.65 36.76 82.25 51.23 50.21 1.09 75.35 74.54 1.06

EE (%) Max. 46.78 83.33 51.27 88.60 59.33 60.01 1.15 84.05 83.23 0.97

MC (%) Min. 0.65 2.58 0.821 2.763 1.84 1.76 4.18 0.88 0.92 4.55

AA (%) Max. 36.63 52.71 37.34 53.95 38.17 38.36 0.50 49.55 49.28 0.55

HG (%) Min. 6.64 14.42 4.82 12.64 11.57 11.89 2.80 7.48 7.25 3.06

SB (%) Max. 71.52 96.64 65.48 91.72 88.01 88.19 0.19 87.81 88.12 0.36

MD: maltodextrin; WPC: whey protein concentrate; EE = encapsulation efficiency; MC = moisture content; AA =
antioxidant activity; HG = hygroscopicity; and SB = solubility.
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3.4.1. Powder Morphology

The morphology of spray-dried powder revealed the superficial structure of the mi-
crocapsules impacted due to process parameters. The most commonly occurring shapes
were spherical, dented, clubbed, and shrunken, depending on the type of carrier agent, its
concentration, and other process parameters [25]. Followed by the optimization of EDP, the
most-suited samples were analyzed for the microstructural analysis by scanning electron
microscope. The micrographs of optimized MD-EDP (A) and WPC-EDP (B) are presented
in Figure 7 at a 2000× magnification as A and B, respectively. MD-EDP had more round-
shaped, spherical microparticles, revealing the effect of the MD as a drying carrier agent.
The round particles are shown with medium interparticle adhesion. The increasing concentra-
tion of MD resulted in the higher viscosity of the feed and formed a gel-like layer over the
feed-atomized droplets that produced rounder particles. A similar effect was observed in
the apple juice concentrate spray dried with MD as a carrier agent [28]. WPC-EDP had more
wrinkled and dented surface microparticles, revealing the interaction of WPC during drying.
The dented shape of the microparticles occurred due to irregular droplet shrinkage during the
initial phase of drying. The moisture removal that occurred during drying caused the rapid
formation of an interface that took place among the drying air, types of drying agent used
in the feed, and droplet surface. The WPC produced more irregular-shaped microparticles
as studied during the production of iron–WPC complex containing microparticles [10]. The
chemical formulation of maltodextrin and whey protein concentrate altered the surface
structure of spray-dried particles. The interaction of starches (maltodextrin) and protein
(whey protein concentrate) during spray drying cause smooth round- and dented-ball
effects, respectively. The starches generally presented a smooth walled effect due to the
strong crosslinking of the molecular forces that did not alter the surface structure much. The
proteins produced dented surfaces due to the presence of ionic groups in the feed particles
that created obstructions during heat and mass exchange of the feed particles. A similar
effect was observed for microparticles produced with WPC at different concentrations,
revealing wrinkled and hollow structures produced using spray-drying technology [54].
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3.4.2. X-ray Diffraction

The interaction of diosgenin with MD and WPC produced an amorphous spray-dried
powder. The effect of carrier agents was observed for the optimized samples obtained
from MD-EDP and WPC-EDP, as shown in Figure 8. EDP depicted the relevant broad
peaks and noise produced in the diffractograms. The XRD pattern of MD-EDP presented
broader peaks, as compared to WPC-EDP. There was no considerable difference among the
diffractograms obtained from MD and WPC. MD-EDP had a slightly greater crystallinity,
because of the broader peak, due to the higher moisture absorption rate of the carrier agent.
WPC-EDP had a less-broad peak due to the greater amorphous nature and reduced crys-
tallinity revealed by the diffractograms. The less-amorphous powder had higher solubility
that caused handling difficulty and may have produced crystallinity during storage; the
higher amorphous nature of the powder prevented the release of the encapsulated sub-
stance from the matrix [55]. The produced microcapsules had very little crystallinity that is
generally accepted for spray-dried food powders. The occurrence of the amorphous nature
of spray-dried powder caused hygroscopicity, stickiness, and the formation of agglomerates
during storage. The amorphous powder contained sugar transformed into a crystalline
structure due to rapid weight gain, causing the collapse of microcapsules and triggering
instability [56]. The spray-dried EDP with MD and WPC was over 78% amorphous in
nature and revealed a less crystalline structure in nature. Similar results were observed
for spray-dried lycopene powder with MD, revealing its amorphous nature due to the
formation of not well-defined small peaks and noises at 10◦ to 25◦ having a very small
crystalline structure due to the type of wall material [57]. A similar observation was made
for the encapsulation of rosemary oil spray drying with blends of whey protein, which
revealed much of the amorphous nature of the powder [58]. The nature of EDP belongs to
the amorphous type due to the presence of MD and WPC as carrier agents. The interaction
of diosgenin with both carrier agents revealed good binding properties during the feed
preparation and spray drying processes.
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4. Conclusions

The production of the encapsulated diosgenin powder using MD and WPC revealed
the stability and process optimization parameters obtained during spray drying. IAT, FFR,
and CAC significantly affected the response variables, such as yield, encapsulation effi-
ciency, moisture content, antioxidant activity, hygroscopicity, and solubility, of MD-EDP
and WPC-EDP. Higher yield, encapsulation, and antioxidant activity of EDP was obtained
with WPC in comparison to MD. The impacts of the carrier agent type and their concentra-
tion effects was clearly observed in the responses of EDP for MD and WPC, respectively.
The micrographs revealed the smooth and wrinkled-wall effects shown by MD and WPC, re-
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spectively. The amorphous nature of EDP showed better stability and quality-preservation
properties. EDP had a more significant effect, compared to the selected CAC that can
propose much more stable food-grade powder properties. Diosgenin can be encapsulated
under the optimum conditions, such as IAT 170 ◦C, FFR 500 mL/h, and CAC 20%, for
the most-suited powder characterization, till further processing. EDP has more potential
for being incorporated in various food matrices for delivering health benefits in view of
benefiting humans.
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