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Abstract: It is crucial to determine the thermophysical properties of high-moisture extruded sam-
ples (HMESs) to properly understand the texturization process of high-moisture extrusion (HME),
especially when the primary objective is the production of high-moisture meat analogues (HMMAs).
Therefore, the study’s aim was to determine thermophysical properties of high-moisture extruded
samples made from soy protein concentrate (SPC ALPHA® 8 IP). Thermophysical properties such
as the specific heat capacity and the apparent density were experimentally determined and further
investigated to obtain simple prediction models. These models were compared to non-HME-based lit-
erature models, which were derived from high-moisture foods, such as soy-based and meat products
(including fish). Furthermore, thermal conductivity and thermal diffusivity were calculated based on
generic equations and literature models and showed a significant mutual influence. The combination
of the experimental data and the applied simple prediction models resulted in a satisfying mathemat-
ical description of the thermophysical properties of the HME samples. The application of data-driven
thermophysical property models could contribute to understanding the texturization effect during
HME. Further, the gained knowledge could be applied for further understanding in related research,
e.g., with numerical simulation studies of the HME process.

Keywords: data-driven prediction models; high-moisture extrusion; high-moisture meat analogues
(HMMAs); thermophysical properties of HMMAs; protein texturization

1. Introduction

Thermophysical properties of feed, agricultural, and food products are often required
for process engineering design of apparatus and operation or optimization of processes.
Data on thermophysical properties such as enthalpy (H), specific heat capacity (cp), ap-
parent density (ρ), thermal conductivity (k), and thermal diffusivity (α) are required to
predict heat transfer rates in foods, especially when designing heating, cooling, or freezing
processes [1,2]. Further information on the definition of these thermophysical properties
can be found elsewhere [3–10].

One of the most significant limitations in designing and optimizing thermal food pro-
cessing systems is the lack of data on thermophysical properties of food [11]. To overcome
the limitation of experimental data on thermophysical properties, mathematical models
have been developed to predict these for all conditions and compositions of foods. Some
of these models are based on the properties of their food-related components (e.g., fats,
carbohydrates, proteins, etc.), since the thermophysical properties of foods are strongly
dependent on chemical composition and temperature, whereas other models are directly
linked to a certain type of food, e.g., soy dough, tofu, meat, and fish products [4,11–19].
Due to the dependence on the chemical composition, thermophysical properties of foods
can be predicted. Nevertheless, experimental measurements are the primary source for
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thermophysical modeling, and a comprehensive literature search revealed limited experi-
mental data on thermophysical properties of plant-based proteins with a high moisture
content (≥50%) and there are no existing data for high-moisture extruded samples. For
some thermophysical properties, the analyses can be quite direct, whereas other analyses
may be more challenging. For example, the apparent density of solid foods can be deter-
mined via a simple geometric dimension method, whereas the specific heat capacity of a
food system can be measured via a sensitive differential scanning chromatography (DSC)
analysis approach or estimated via mathematical models as the sum of the specific heat
capacities of its individual components, as it is an additive property and not food structure
dependent [20,21]. In general, for calculating thermal food processing systems, the specific
heat capacity is an important consideration. The specific heat capacity of food materials
shows a temperature dependency and, thus, changes with temperature [22].

Thermal diffusivity is dependent on heat capacity, density, water content, and thermal
conductivity. Thermal conductivity is a structure-dependent property and depends on
fiber or porous structure. This dependency makes it more challenging to model. However,
models based on the electrical resistance analogy by considering the direction of heat flow
through the food can be applied [23].

High-moisture extrusion (HME) is a multistep thermomechanical process, which in-
volves the combination of heating, mixing, shearing, kneading, and subsequent cooling
of a protein–water mixture to facilitate texturization of multilayered fibrous structures
with a meat-like texture [24–26]. Therefore, data on thermophysical properties are impor-
tant to describe the texturization effects of a protein–water mixture throughout the HME
process. To gain insights into the texturization mechanisms of plant-based proteins, the
knowledge of their thermophysical properties is a prerequisite for evaluating texturization
effects during HME. All thermomechanical processes during HME (e.g., in the screw and
cooling die section) are of great importance, as their interaction is responsible for the entire
outcome of the HME process in terms of product-related attributes. Currently, there is no
literature source available describing the use of thermophysical properties to explain the
texturization effect during HME processing. Thus, the aim of this work was to determine
the above-mentioned thermophysical properties of high-moisture extruded samples made
from soy protein concentrate to shed light into the black box of HME texturization. The
specific heat capacity and apparent density were obtained experimentally and further
researched to develop simple prediction models. The experimentally measured thermo-
physical values were compared with predicted values based on mathematical equations
from the literature, which are related to food but not directly to high-moisture extruded
samples [12,13,20,23,27,28]. Further, the measured values of the specific heat capacity and
apparent density were used to predict and compare thermal conductivity and thermal
diffusivity using mathematical model equations based on the literature [12,13,20,23,27,28].
The models were selected to calculate thermophysical properties of high-moisture extruded
samples (HME samples), because the models were based: (i) on food constituents and thus
cover a broad range of food products, (ii) on soy protein ingredients, or (iii) on meat or fish
products, which should be mimicked by HME.

2. Material and Methods
2.1. Raw Materials

A soy protein concentrate (SPC ALPHA® 8 IP) was purchased from Solae Europe
S.A. (Solae LLC, St. Louis, MO, USA) to determine thermophysical properties of its high-
moisture extruded products. The composition of the plant-based raw material, which is
often used as a benchmark reference ingredient for HME by the food industry, is listed in
Table 1 based on the supplier’s specification. In further discussion, SPC ALPHA® 8 IP will
be referred to as SPC Alpha 8.
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Table 1. Composition of the soy protein concentrate SPC Alpha 8 based on the supplier’s specification
(Solae 2015).

Unit/Legend SPC Alpha 8

Composition
Dry matter (TS) g/100 g raw material 95.4

Protein 66.5
Fat 1.6
Ash 6.8

Carbohydrates (incl. 18 g/100 g dietary fibers) 20.5

2.2. High-Moisture Extrusion (HME)

SPC Alpha 8 was textured by HME using a laboratory, co-rotating twin screw extruder
ZSK 25 from Werner & Pfleiderer (Coperion GmbH, Stuttgart, Germany) with an outer
screw diameter of Da = 25 mm and a length–outer diameter ratio of L/Da = 28.8. The
material temperature (Tin) and extruder pressure (pin) were measured directly before the
cooling die inlet, and the specific mechanical energy (SME) was calculated based on the
equation developed by Meuser and van Lengerich [29]. High-moisture extruded samples
at three different water contents were available from previous trials, and details on the
experimental setup can be found in Högg and Rauh [30]. Based on the experimental
design of this study and its results, five high-moisture extruded samples at different water
contents and with defined textural attributes (well-textured (HMMA), textured, and poorly
textured) were selected (Table 2), in order to study the influence of water content and/or
texture on thermophysical properties. Sample No. 3 in Table 2 was originally not part of
the experimental design from Högg and Rauh [30]. This sample was included to allow a
comparison of three different textures at the same water content of 60%.

Table 2. High-moisture extruded samples for characterization of thermophysical properties. HME
samples were selected based on extruded water content and evaluated sensory texture. For further
details, refer to Högg and Rauh [30].

Experimental Plan Responses
Process Variables Process Response Product Response

No. Moisture
content [%]

Screw
speed
[rpm]

Mass flow
rate [kg/h]

Barrel tem-
perature

[◦C]

Material
tempera-

ture
[◦C]

Extruder
pressure

[bar]

SME
[Wh/kg] Texture

1 60 400 13 160 133.10 21.06 30.68 well-textured
2 60 400 13 120 104.85 16.73 26.20 poorly textured
3 60 400 13 140 116.4 15.07 20.81 textured
4 65 310 9.5 170 137.76 9.69 9.71 textured
5 70 400 13 160 120.11 6.63 6.09 textured

The thermophysical properties such as specific heat capacity, apparent density, thermal
diffusivity, and thermal conductivity of the samples listed in Table 2 were determined. The
methods and/or mathematical models used are described in detail below.

The sensory evaluation and clustering of the HME samples were performed as de-
scribed by Högg and Rauh [30]. The HME samples were clustered into well-textured,
textured, and poorly textured based on the following criteria (Table 3):
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Table 3. Criteria for classifying HME samples as well-textured, textured, and poorly textured, as
determined by sensorial analyses.

Cluster Description and Example of Texture

Poorly textured

Soft, mushy, and brittle HME samples displaying no multilayered, fibrous
structure, with a structure like shortcrust pastry.
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2.3. Determination of Apparent Density

The apparent density was measured by the geometric dimension method, which is a
simple and accurate method for regularly shaped foods [31–35] At least 10 regularly shaped
specimens were punched out of one HME sample (Table 2) using a 0.016 m diameter core
cutter. Each specimen was weighed using a laboratory scale (±0.0001 g, Scaltec SBA 31,
Scaltec Instruments GmbH, Göttingen, Germany) and its characteristic dimension was
measured using a caliper (±0.01 mm, Globaltronics GmbH & Co. KG, Hamburg, Germany).
Weight and dimensions were converted into kg and m, respectively, and the apparent
density of each HME sample was calculated as an average of the individual measurements
(n = 10) using Equation (1):

ρap =
1
n ∑n

i=1
mi
Vi

=
1
n ∑n

i=1
mi

π ri
2hi

(1)

where ρap is the apparent density (kg/m3), m is the weight of the cylindrical sample (kg), r
is the radius of the cylindrical sample (m), and h is the height of the cylindrical sample (m).

Preliminary tests were performed to study the influence of texturization degree on the
apparent density. Therefore, high-moisture extruded samples that depicted a well-defined,
defined, and non-multilayered fibrous structure and were extruded with a water content of
60% were selected and analyzed (Table 2, sample No. 1, sample No. 2, and sample No. 3).
Subsequently, prediction models were derived from the calculated density values. In
addition, the model obtained in this study was compared with models from the literature
(more information see Last Table, page 13–14) [4,20,28,36].

2.4. Determination of Specific Heat Capacity by µDSC

The calorimetric measurements were performed using a microcalorimeter (µDSC7
EVO, SETARAM Instrumentation, Caluire, France) in a temperature range of 40 ◦C to
115 ◦C with a heating rate of 0.2 K min−1. The sample cell of the µDSC was filled with
0.6500 g of sample and accurately weighed to the nearest 0.0001 g. The initial temperature
of 40 ◦C was chosen due to the cooling die temperature, which was set to 40 ◦C.

Before the HME samples were analyzed, a blank test was performed with an empty
cell, and the specific heat capacity cp of distilled water was determined. The uncertainty
of the analysis was derived by comparing the measured cp of water with the cp of water
found in the literature and all further measured data were corrected with an uncertainty of
5.6◦% as described by Yu and Christie [37] and Zhang et al. [38].

In addition to the blank test and the cp determination of distilled water, preliminary
tests were performed to investigate the influence of (1) the cutting procedure and geomet-
rical shapes as well as (2) the texturization degree on the determination of specific heat
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capacity, as extrusion conditions can influence thermophysical properties [39]. Therefore,
HME samples that were well-textured, textured, and poorly textured with a water con-
tent of 60% (w/w, on a dry basis) were selected and calorimetrically analyzed (Table 2,
sample No. 1, sample No. 2, and sample No. 3). The samples were either cut into slices
(1 mm × 5 mm × 19 mm, H ×W × L) or cubes (1 mm × 1 mm × 1 mm, H ×W × L).

To evaluate the influence of a possible denaturation reaction on the specific heat
capacity of HMESs, a rescan was performed in which an initial DSC scan was performed,
then the sample was cooled to 40 ◦C within 1.5 h, equilibrated at 40 ◦C for 1 h, and
re-scanned.

Based on the results of the preliminary tests, further calorimetric analyses were carried
out with HME samples extruded at water contents of 65 and 70%.

The mass loss due to water evaporation during measurements was <0.09%. The
specific heat capacity cp of each sample was calculated as an average of two individual
measurements in the temperature range of 40–115 ◦C and the data were fitted via a linear
regression model over the tested temperature range to mathematically describe cp. All
data were processed with CALISTO software (Version v1.097, SETARAM Instrumentation,
Caluire, France).

In addition, the derived models of the samples with different water contents were
summarized using a multiple linear regression (MLR) approach as a function of water
content and temperature. This MLR model was compared with literature models that
studied thermophysical properties based on the composition of the food [4,20], soy-based
products such as soy flour, soy dough, and tofu [13,27,28,40], or a meat product [18].

2.5. Model Prediction for Thermal Diffusivity

Thermal diffusivity α was predicted using theoretical and empirical mathematical
model equations from the literature, including: (1) the model of Choi and Okos [20], which
is one of the most common models for predicting thermal diffusivity and which is based on
the composition of food products; (2) the prediction model of Wallapapan et al. [13] used for
studying the thermal diffusivity of defatted soy flour over a moisture range of 9–39% and
densities of 95–1300 kg/m3 at a temperature of 130 ◦C; (3) the model of Wagner [27] used for
studying the thermal diffusivity of defatted soy dough in a temperature range of 70–105 ◦C
at moisture levels of 0, 25, and 50%, although only average values over the measured
temperature range were available; (4) the prediction model for processed soy protein, or
more precisely, the regression model of Baik and Mittal [28] for tofu in a temperature range
of 6–74.2 ◦C and moisture content range of 0.3–0.7 (wb); and (5) the mathematical model
from Sweat [12] for meat and fish products (Table 4).

2.6. Model Prediction for Thermal Conductivity

The thermal conductivity k was calculated using Equation (2), in which the specific
heat capacity (cp) model and the apparent density (ρ) model developed in this work and
the thermal diffusivity (α, Table 4) derived from the models of Choi & Okos [20] as well as
Baik and Mittal [28] were added.

k = α ρ cp (2)

In addition to Equation (2), thermal conductivity was also calculated using a model
based on the analogy with electrical resistance. This approach takes the structural depen-
dence of thermal conductivity into account. The parallel and series (or perpendicular)
thermal conductivity models of Murakami and Okos [23] for multicomponent systems
were used.
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Table 4. Mathematical and empirical models from literature to predict thermal diffusivity.

Food Product Temperature Prediction Model * Reference

Various high-moisture
food products T = −40–150 ◦C

α = ∑n
i=1 Ei αi with Ei =

Mi
ρi

∑n
i=1

Mi
ρi

[20]

Water
αWater =
1.3168× 10−7 + 6.2477×
10−10 T − 2.4022× 10−12 T2

Protein
αProtein =
6.8714× 10−8 + 4.7578×
10−10 T − 1.4646× 10−12 T2

Fat
αFat =
9.8777× 10−8 − 1.2569×
10−10 T − 3.8286× 10−14 T2

Carbohydrate
αCHO =
8.0842× 10−8 + 5.3052×
10−10 T − 2.3218× 10−12 T2

Fiber
αFiber =
7.3976× 10−8 + 5.1902×
10−10 T − 2.2202× 10−12 T2

Ash
αAsh =
1.2461× 10−7 + 3.7321×
10−10 T − 1.2244× 10−12 T2

Defatted soy flour with
Xw = 0.09–0.39 T = 130 ◦C α = 2.76× 10−8 + 35.74× 10−8 Xw − 14.90×

10−11 Xw ρ + 65.56× 10−11 (
Xw

2 ρ
) [13]

Soy dough
with
Xw = 0–0.50

T = 70–105 ◦C
Xw = 0: α = 8.89 10−8

Xw = 0.25: α = 10.37 10−8

Xw = 0.5: α = 12.43 10−8
[27]

g Tofu with
Xw = 0.34–0.76 (w.b.) T = 6–74 ◦C α =

(
0.0816− 0.05682 Xw + 0.1164 Xw

2 + 6.866× 10−4

Xw
2 T − 5.17× 10−6Xw

2 T2)× 10−6 [28]

* Thermal diffusivity in m2/s; calculation of ρ according to the regression equation established in this study (more
information see Last Table, pages 12 and 13).

The parallel model is the sum of the thermal conductivities of the different ingredients
of a food multiplied by their volume fractions (Equations (3) and (4)):

k‖ = ∑n
i=1 Ei ki (3)

with

Ei =

Mi
ρi

∑n
i=1

Mi
ρi

(4)

where kII is the thermal conductivity for parallel heat flow, Ei is the volume fraction of the
food component, and ki is the heat conductivity of the food component. Ei can be calculated
with Equation (4) where Mi is the mass fraction and ρi is the density of the food ingredient.

The series or perpendicular model is the reciprocal of the sum of the volume fractions
divided by their thermal conductivities (Equation (5)):

1
k⊥

= ∑n
i=1

Ei
ki

(5)

where Ei is the volume fraction of the food component and ki is the heat conductivity of the
food component.

A summary of all models applied to calculate the thermal conductivity is shown in
Table 5.
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Table 5. Theoretical or experimental models for predicting the thermal conductivity of high-moisture
extruded samples.

Food Product Temperature Prediction Model Reference

Various high-moisture
food products T = −40–150 ◦C

k‖ =
n
∑

i=1
Ei ki ; 1

k⊥
=

n
∑

i=1

Ei
ki

[20]

Water kW = 5.7109× 10−1 + 1.7625×
10−3 T − 6.7036× 10−6 T2

Protein kP = 1.7881× 10−1 + 1.1958 ∗
10−3 T − 2.7178 ∗ 10−6 T2

Fat kFa = 1.8071× 10−1 − 2.7604 ∗
10−3 T − 1.7749× 10−7 T2

Carbohydrate
kCHO =
2.0141× 10−1 + 1.3874×
10−3 T − 4.3312× 10−6 T2

Fiber kFi = 1.8331× 10−1 + 1.2497×
10−3 T − 3.1683× 10−6 T2

Ash kAsh = 3.2962× 10−1 + 1.4011×
10−3 T − 2.9069× 10−6 T2

Defatted soy flour with
Xw = 0.09–0.39 T = 130 ◦C k = −0.228 + 0.249× 10−3 ρ + 1.304 Xw − 0.926 Xw

2 [13]

Tofu with
Xw = 0.34–0.72 (w.b.) T = 6–74 ◦C k = 0.2112 + 0.0008943 Xw T + 0.3077 Xw

2 [28]

Meat and fish products
with
Xw = 0.60–0.80 (w.b.)

T = 0–60 ◦C k = 0.08 + 0.52 Xw [12]

HME sample with
Xw = 0.60–0.70 (d.b.)

k = α ρ cp
Specific heat cp and density ρwere calculated with models
developed in this study, αwas taken from [28] (2003) and
[9] (1986), respectively

Mathematical
calculation

2.7. Statistical Analysis

SigmaPlot software (SigmaPlot 12.5, Systat Software Inc., San Jose, CA, USA) was
used to develop regression models for specific heat capacity and apparent density of the
HME samples. To select the best-fitting model, two criteria were considered, the correlation
coefficient R2 and the F-value of the model. To evaluate significant differences between the
cp of different HME samples, the method described by Paternoster et al. [41] was selected,
which compares the slopes of individual cp measurements via a statistical t-test (p < 0.05).

3. Results and Discussion
3.1. Characterization of Specific Heat Capacity of High-Moisture Extruded Samples

Based on preliminary tests, where the aim was to study the influence of cutting tech-
niques and texturization degree on the specific heat capacity, the high-moisture extruded
samples were cut into slices for further µDSC investigation. This decision to slice the sam-
ples relied on the following hypothesis supported by the literature [42,43]. HME samples
have a solid structure after coming out of the cooling die, and chopping the HME samples
into cubes could increase the surface-to-volume ratio, potentially releasing more surface
water and resulting in a falsified and higher cp value than the actual cp value of a solid HME
product. Ioannidi et al. [42] and Höhne et al. [43] also found differences in cp measurements
due to different cutting techniques and the differences could be explained by temperature
distribution. The temperature distribution is more homogeneous in an intact, dense, and
solid sample cut into slices than in a compact sample cut into a cube shape. Thus, the
homogenous temperature distribution could lead to a more homogeneous heat transfer
through the sample. A homogenous temperature distribution and heat transfer are also
recommended by DSC instrument manufacturers to generate accurate values. Furthermore,
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cutting the HME products into slices minimized the effects of mechanical manipulation
and kept the HME sample as close as possible to its natural state. Therefore, in order to
determine the influence of water on the specific heat capacity, HME samples extruded at
water contents of 60, 65, and 70% (w/w, on dry basis) were analyzed (Table 2). The selected
HMESs were evaluated as textured using the sensorial analysis described in Section 2. The
results are shown in Figure 1.
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The specific heat capacities correlated positively with temperature and, thus, increased
with temperature. Furthermore, a dependence of specific heat capacity on water content
was evident as well as significant (p < 0.05). This was to be expected since water dominates
in the HME products [8,27,44,45]. The specific heat capacity increased with increasing
water content. For HMESs with different water content, the specific heat capacity increases
with increasing water content, as more heat energy is required to raise the temperature of
the sample by 1 ◦C. This is due to the fact that water in the sample can absorb and store
more heat energy than other components present, such as fats, fibers, and proteins, which
have lower specific heat capacities [46]. For example, the specific heat capacity of water is
4184 J/kg K at 20 ◦C, while the specific heat capacity of cellulose fibers is 1300–1500 J/kg
K [47] and that of proteins (e.g., albumin and globulin) is approx. 1200 J/kg K at 20 ◦C [48].

Due to the dependence of specific heat capacity on water and temperature, a multiple
linear regression (cp = 2341.64 + 1201.57 XW + 3.8958 T) as a function of mass fraction of
water content Xw and temperature T was derived with R2 = 0.96 and SE = 18.73. This
MLR equation can be applied for predicting specific heat capacity of HME samples made
from soy protein concentrate SPC Alpha 8.

The multiple linear regression model with a correlation coefficient of R2 = 0.96 can
be seen as a good prediction tool for determining specific heat capacities of HME samples
made from SPC Alpha 8 in the temperature range between 40 and 115 ◦C and with water
mass fractions of 0.60–0.70 (d.b.).

The mathematical model derived from experimental data was compared with theoreti-
cal or empirical methods from the literature, which predict, among others, the specific heat
of food products depending on their chemical composition and temperature [4]. Table 6
shows an overview of relevant theoretical or empirical methods from the literature. Models
that studied the thermophysical properties of soy-based materials were also selected and
compared with our predictive model. Further, a model for predicting the specific heat
capacity of turkey meat was included as a comparison with meat products.
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Table 6. Theoretical or empirical methods from literature for predicting the specific heat capacity of
food. The percentage deviation describes the difference between the experimentally obtained value
vs. the value calculated by the respective model.

Food Product Temperature Prediction Model
Percentage Deviation

(at T = 90 ◦C and Xw = 0.60)
†

Reference

Broad range of
food products
Average for all
types of
carbohydrates
(XC), protein (XP),
fat (XF), and ash
(XA)

−40 ◦C < T <
150 ◦C

cp =
n
∑

i=1
cpiXi

HME sample: 0.84% [4]

Water
cpW =
4176.2− 0.0909 T +
5.4731× 10−3 T2

Protein
cpP =
2008.2+ 1.2089 T−
1.3129× 10−3 T2

Fat
cpF =
1984.2+ 1.4733 T−
4.8008× 10−3 T2

Carbohydrate
cpC =
1548.8+ 1.9625 T−
5.9399× 10−3 T2

Fiber
cpFi =
1845.9+ 1.8306 T−
4.6509× 10−3 T2

Ash
cpA =
1092.6+ 1.8896 T−
3.6817× 10−3 T2

Defatted soy flour
at MC of 9.2 to 39%

T = 130 ◦C
(DSC method)

cp = 1749 + 3363 XW
(cp in J/kg ◦C)

HME sample: 5.54%
at T = 130 ◦C and Xw = 0.60 [13]

Defatted soy
dough
at MC of 0 to 70%

25 ◦C < T <
170 ◦C
(DSC method)

50 % MC and T = 90 ◦C:
cp = 3055.12 J/kg K

HME sample: −7.23%
at T = 90 ◦C and Xw = 0.50 [27]

Soy dough T = 20 ◦C cp = 1480 + 2170 XW
(cp in J/kg ◦C)

HME sample: −1.10%
at T = 20◦C and Xw = 0.60 [40]

Tofu
Xw = 0.3–0.7 (w.b.)

10 ◦C < T <
105 ◦C
(modulated DSC
method)

cp = 2055+ 1064 XW + 1596 XW
2 + 1.06 T

(R2 = 0.959)
(cp in J/kg ◦C, T in ◦C)

HME sample: −1.46% [28]

Turkey
Xw = 74.88 %

34 ◦C < T < 82 ◦C
(modulated DSC
method)

cp = 3003.3 + 4.567 T (R2 = 0.998)
(cp in J/kg ◦C, T in ◦C)

HME sample: −5.19%
at T = 80 ◦C and Xw = 0.7488 [18]

Regression model
Xw = 0.6–0.7 (d.b.)

40 ◦C < T <
115 ◦C
(DSC method)

cp = 2341.64 + 1201.57 XW + 3.8958 T
(R2 = 0.96)

HME sample: −0.29% ‡
Developed
in this
study

† Unless otherwise stated, equation of the multilinear regression model was used. ‡ Compared to value measured
cp at 90 ◦C (3423 J/kgK) via µDSC.

When comparing the regression model based on our experimental data with theoretical
or empirical models from the literature (Table 6), our experimental data agreed well with
the literature models. The percent deviations are listed in Table 6. Unless otherwise noted,
the deviation was calculated at a temperature of 90 ◦C and water content of 60% to compare
the literature models with our multilinear regression model.

As shown in Table 6, not all of the used literature models covered the entire parameter
domain tested in this study (Table 2). Therefore, to be able to make a comparison with the
models of Wallapapan et al. [13], Wagner [27], Baird and Reed [40], and Marcotte et al. [18],
the experimentally obtained multilinear regression model as well as the literature models
were extrapolated to the valid domain. This was accomplished by retaining one of the
parameters of each model (either temperature or water content) in their valid domain.
For example, for the comparison of our developed model with the model of Wallapapan
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et al. [13], a temperature of 130 ◦C and a water content of 60% were used. Thus, the
parameter values that were “outside” of the domains were the mass water fraction of 0.60
for the Wallapapan et al. model and the temperature of 130 ◦C for our model. A similar
approach was followed for all other models.

Using the above-mentioned approach, deviations between the literature models and
our developed model could be calculated (Table 6).

Wagner [27] investigated the specific heat capacity of defatted soybean doughs with
water contents between 30 and 70% but did not establish an equation for the measured
values, so the specific heat could only be compared for MC of 50%. The deviation was
−7.23% for a temperature of 90 ◦C at 50% moisture content.

Baird and Reed [40] published the equation listed in Table 6 based on the results of
Heldman and Singh [11]. The equation was valid for cp values at T = 20 ◦C. Therefore,
our MLR model was extrapolated to T = 20 ◦C and compared to the cp values of Baird
and Reed [40]. Percentage deviations of −1.10% indicated good agreement with our MRL
model at a moisture content of 60%. Extrapolation of the Baird and Reed [40] model to
higher temperatures resulted in higher deviations up to −9% at T = 90 ◦C. The specific heat
of the processed products, such as tofu and turkey, showed a deviation between −1.46 and
−5.19% compared to HME products. In particular, the cp values of tofu corresponded very
well with our model. Both models were obtained at similar water content and temperature
ranges. The two literature models that best describe cp based on the smallest deviation
compared to HMESs measured at 90 ◦C via µDSC are Choi and Okos (0.84%) [4] and Baik
and Mittal (1.46%) [28] (Table 6).

3.2. Determination of Apparent Density

The apparent density is defined as the density of the product, including all pores
and void spaces [36]. The influence of the texturization degree of high-moisture extruded
samples on the apparent density was determined by selecting samples with different
textures (Figure 2) but with the same moisture content (Xw = 0.60, Table 2). The apparent
density values are plotted versus the subjectively determined texturization, as shown in
Figure 2.
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The apparent density decreased slightly, but not significantly, with decreasing textur-
ization degree, as shown in Figure 2. A density of 1199.26 kg/m3 (±25.15) was determined
for a well-textured sample. In comparison, a density of 1172.04 kg/m3 (±17.32) was
measured for a poorly textured sample.
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Structural properties of food products are affected by various factors, such as material
moisture content, material morphology, process method, and condition [6,10,34,49]. Since
the texturization of high-moisture extruded samples is mainly influenced by HME process
conditions such as material temperature, SME, and material pressure, these conditions
could also influence the product density [33,50–53]. However, no significant density
differences between different sensory-evaluated textured samples could be found (p > 0.05).
Therefore, for each water content, a mean density was calculated (Figure 3).
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In contrast to the texturization degree, the water mass fraction used in the HME
process revealed an influence on apparent density. The apparent density decreased with
increasing water content (Figure 3). The average density of the samples extruded at 60%
water content showed a density of 1185.31 kg/m3 (±27.11). The samples with 65 and 70%
moisture content had a density of 1098.86 kg/m3 (±18.58) and 1074.01 kg/m3 (±6.34),
respectively. The decrease in density with increased water content was expected as the
dry solid density is higher than the water density [34]. The density of the HMESs was
significantly different for all tested water contents (p < 0.05).

To mathematically describe the effect of the tested moisture content on the apparent
density a linear regression model was applied to the data and a regression equation of
ρap = −1113 XW + 1842.9 with a coefficient of determination of R2 = 0.91 could be derived.
The dependence of density on water content has already been studied and published for
different food systems [44,54,55]. However, density dependence for HME products has not
yet been studied. Baik and Mittal [28] published similar apparent densities in the range
of 1053–1251 kg/m3 for tofu products with water contents between 0.34 and 0.73 (w.b.)
and revealed a regression equation of ρap = −474 XW + 1400. These results are in good
correlation to our density model-based results for HME samples.

Based on the composition of a food product, Choi and Okos [4] developed a model
similar to the specific heat capacity model to predict the true density, which is the density of
a pure substance or a material calculated from its components. However, the model of Choi
and Okos [4] does not take into account structural effects, air phase, or interaction between
phases and, hence, has limited application. Rahman and Driscoll [36] extended the Choi and
Okos [4] model, including mass and volume conservation to consider interactions of phases
and formation of an air phase. Therefore, a density prediction model was developed using
mass and volume conservation, and new terms were introduced to account for interactions
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of the phases and formation of an air phase during processing. Another approach to
determine the density of HMESs is via the HME process. Thus, the density of an HME
sample can be predicted online based on the extrusion throughput, the cross-sectional area
of the cooling die used, and the average flow rate of the product when exiting the cooling
die. All prediction models mentioned are summarized in Table 7, and our experimental
density data measured at a temperature of 20 ◦C were compared to those models. The
relative errors were calculated in percent with respect to the experimental data.

Table 7. Theoretical or experimental models for predicting the density of high-moisture extruded
samples. The percentage deviation describes the difference between the experimentally obtained
value vs. the value calculated by the respective model.

Food Product Temperature Prediction Model Percentage Deviation
(at T = 20 ◦C) † Reference

Fresh seafood
Xw = 0.73–0.86
(w.b.)

T = 20± 3 ◦C

ρap = (1− εex)
1

∑n
i=1

Xi
ρi HME sample, Xw = 0.60:

−11.24%
HME sample, Xw = 0.65:
−4.83%
HME sample, Xw = 0.70:
−3.20%

[36]
based on
[4]

Water
ρW = 997.18 +
3.1439× 10−3 T −
3.7574× 10−3 T2

Protein ρP = 1329.9−
5.1840× 10−1 T

Fat ρF = 925.6−
4.1757× 10−1 T

Carbohydrate ρC = 1599.1−
3.1046× 10−1 T

Fiber ρFi = 1311.5−
3.6589× 10−1 T

Ash ρA = 2423.8−
2.8063× 10−1 T

Excess volume
−εex =
(93.24 Xw + 42.97 XP + 2460 XF − 4256 XA − 1086 XC)×
10−4

Tofu
Xw = 0.34–0.73
(w.b.)

6 ◦C < T < 74 ◦C
ρap = −474 XW + 1400
(R2 = 0.961)

HME sample, Xw = 0.60:
−5.88%
HME sample, Xw = 0.65:
−0.63%
HME sample, Xw = 0.70:
−0.54%

[28]

HME sample
Xw based on HME
process

T
Based on HME
process

ρap =
.

m
.

V
=

.
m

v×A�

HME sample, Xw = 0.60:
−2.34%
HME sample, Xw = 0.65:
−3.32%
HME sample, Xw = 0.70:
−2.71%

HME
process
(based on
process
condi-
tions)

HME sample
Xw = 0.60–0.70
(d.b.)

T = 20± 5 ◦C
ρap = −1113 XW + 1842.9
(R2 = 0.9073)

HME sample, Xw = 0.60:
−0.86%
HME sample, Xw = 0.65:
1.87%
HME sample, Xw = 0.70:
−0.95%

Regression
equation
(experi-
mental
data)

With density ρ in kg/m3; average flow rate v in m/s; throughput
.

m in kg/s; cross-sectional area of the cooling
die A� in m3; † unless otherwise stated, all relevant process-related data can be found in Table 2.

Relative errors between −11.24 and 2.54% could be calculated. Despite the inclusion
of the excess volume, the densities for the model of Rahman and Driscoll [36] are pre-
dominantly underestimated; the same can be observed for the original model of Choi and
Okos [4]. The excess volume calculation function does not optimally reflect the fibrous
structure in the high-moisture extruded samples. The density model of Baik and Mittal [28]
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based on tofu products also underestimates the density of high-moisture extruded samples,
especially for those samples extruded at 60% water content, but overall the deviations were
lower in comparison to Rahman and Driscoll’s model.

The calculation of the density via process conditions is a good opportunity to measure
the density of the products inline and could be applied to adjust the process conditions if,
e.g., HMMA products with a certain density are desired. However, this method includes
some measurement uncertainties, as inline monitoring of the parameters, such as extrusion
throughput, the cross-sectional area of the cooling die, and especially the average flow rate,
must be very exact to avoid over- or underestimation of the apparent density. As shown
in Table 7, the approach is feasible and gives a rough estimation but is not as exact as the
derived regression model from our experimental data.

The density prediction using the regression equation derived in this study with an
R2 of 0.90 leads to a percentage deviation of −0.95% (HMES, Xw = 0.60) to 1.87% (HMES,
Xw = 0.70) from the geometric dimension method, and is negligible. Thus, the prediction of
the density of high-moisture extruded samples with experimentally or theoretically derived
models is possible but the origin of the models’ must be considered to avoid significant
deviations. However, a definite statement on the dependency between texture and apparent
density in the tested samples cannot be made due to the small number of high-moisture
extruded samples investigated and this could be further investigated in future studies.

Due to the lowest relative errors of our regression model with respect to the measured
data, our model should be the preferred density prediction model for HME samples.
According to Rao et al. [8], accuracies of more than 2–5% are rarely required for most
engineering heat transfer calculations performed in commercial food heating or cooling
applications. Further, the variation in composition, size, and shape of most food products
precludes the necessity for higher accuracies [8] and Rahman and Driscoll [36] stated that
for the prediction of density, an error of less than 3% is normally tolerable for design and
process calculations.

3.3. Prediction of Thermal Diffusivity

In this study, the thermal diffusivity was predicted using theoretical and empirical
models from the literature, as listed in Table 4, and a comparison of the model equations is
shown in Figure 4.
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The thermal diffusivity of high-moisture extruded samples was affected by the water
content and increased as moisture content increased. Similar results have been calculated
and published previously [13,28]. Temperature and water content are major factors affecting
thermal diffusivity compared to fat, protein, and carbohydrates [7]. Food composition and
porosity are further influential factors [34].

The calculation of the thermal diffusivity was based on the prediction models shown
in Table 4. The validity of these models is limited by their studied parameter range. Com-
paring the thermal diffusivity values calculated using different theoretical and experimental
models, differences become apparent. The thermal diffusivity model from Wallapapan
et al. [13] showed significantly higher values in comparison to the other models. The data
calculated based on the models of Choi and Okos [20] and Baik and Mittal [28] resulted
in similar values. An extrapolation of Wagner’s model [27] also showed good agreement
with these values. In particular, for mass water fractions of 0.60 and 0.65, the values of
Wagner [27] and Baik and Mittal [28] were almost identical. For Wagner [27], however, only
average thermal diffusivity values for the temperature range from 70 to 105 ◦C were given.

Although the thermal diffusivity values for high-moisture extruded samples were not
experimentally determined in this study, the models from Choi and Okos [20] and Baik
and Mittal [28] could be used as a reasonable assumption for the thermal diffusivity, since
they showed similar results for the water content range of HMESs, regardless of the origin
of the models. Thus, for the determination of the thermal conductivity (k), the thermal
diffusivity (α) was calculated based on Choi and Okos [20] and Baik and Mittal [28]. Those
models were chosen as the parameter range of Choi and Okos’ model was like ours, and
Baik and Mittal’s model was based on a similar product (Table 4).

3.4. Prediction of Thermal Conductivity

The prediction of thermal conductivity of foods is complex and the obtained results
can vary by two orders of magnitude [34]. Thermal conductivity depends on composi-
tion, structure, and temperature. The thermal conductivity of water is much higher than
that of other food components (protein, fat, and carbohydrate), and therefore the water
content of foods has a significant effect on the thermal conductivity of foods containing
water [56]. Furthermore, the thermal conductivity is not the same for all spatial directions
for non-isotropic products. The structure of fibrous materials such as meat, fish, or ana-
logue products affects thermal conductivity [2,8,34]. The thermal conductivity parallel
to fibers is 1–20% higher than perpendicular to fibers, e.g., in red meat, poultry, and fish
products [2,11,12].

Thermal conductivity (k) combines thermal diffusivity (α) with density (ρ) and specific
heat capacity (cp) (Equation (6)). The specific heat and density models developed in this
work were applied to calculate the thermal conductivity. As mentioned above, the thermal
diffusivity was still an unknown variable in our study and therefore it was predicted using
the model equations of Baik and Mittal [28] and Choi and Okos [20] (Table 4) and could
be used as a reasonable assumption of thermal diffusivity prediction for HME samples
(Figure 4).

k = α ρ cp (6)

To consider the multilayered fibrous structure of HMESs, the thermal conductivity
was further calculated according to the serial and parallel models of Choi and Okos [20].
The calculated thermal conductivity values were compared to various theoretical and exper-
imental models taken from the literature such as Wallapapan et al. [13], Baik and Mittal [28],
and Sweat [12] (Table 5), and the comparison of the calculated thermal conductivities based
on the heat flow direction is shown in Figure 5. A moisture content of 60, 65, and 70% and
temperatures of 60 and 130 ◦C were chosen, as these temperatures covered the domain in
which all literature models used were valid.
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Figure 5. Thermal conductivity of high-moisture extruded samples as a function of mass water
fraction and heat flow direction using different theoretical and experimental models. (A) Parallel
model: Heat flow direction parallel to fibers. (B) Series model: Heat flow direction in series to fibers.
Solid lines correspond to values at a temperature of 60 ◦C; dashed lines correspond to values at a
temperature of 130 ◦C. Refs. [12,13,20,28].

Figure 5 clearly shows that the thermal conductivity differed for the parallel (Figure 5A)
and series models (Figure 5B), and a dependency existed between thermal conductivity
and water content. Thus, thermal conductivity increased with increasing water content,
except for the values obtained from the model of Wallapapan et al. [13]. Here, a slight
decrease in thermal conductivity at a high mass water fraction (Xw = 0.60–0.70) could be
observed. As this model is valid for the water content of 9.2 to 39.1% (w.b.), the decrease
could be due to the extrapolation to a water content of 70%.
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Furthermore, the various models depicted different temperature dependencies. The
models of Sweat [12] based on meat and fish products and the model of Wallapapan
et al. [13] based on defatted soy flour were not temperature sensitive neither for the
parallel nor the series model (Table 5 and Figure 5A,B). The thermal conductivity calculated
using Equation (6) with the calculated thermal diffusivity of Baik and Mittal [28] showed
negligible temperature dependency, which could be attributed to the low sensitivity of
the temperature term of the thermal diffusivity used (Figure 4). In contrast, the thermal
conductivity calculated using Equation (6) with the calculated thermal diffusivity of Choi
and Okos [20] showed a clear temperature dependency.

In the parallel model, the prediction models of Choi and Okos [20] and Baik and
Mittal [28] depicted similar temperature sensitivities, with higher thermal conductivity
values for Choi and Okos’ model (Figure 5A). Thus, values of 0.477 W/m ◦C at 60 ◦C
and 60% moisture and 0.519 W/m ◦C at 60 ◦C and 70% moisture could be calculated. At
60 ◦C, the thermal conductivity based on the regression equation of Baik and Mittal [28]
ranged from 0.354 to 0.400 W/m ◦C at 60% moisture and 70% moisture, respectively. The
temperature dependence of Choi and Okos’ model [20] is enhanced in the serial model,
where the heat flow is perpendicular to the multilayered fibrous structure.

Hence, differences become apparent when comparing the parallel and serial mod-
els. For the serial model (Figure 5A), the thermal conductivities calculated by Choi and
Okos [20] were close to the models of Sweat [12] for meat and fish products and Baik and
Mittal [28] for tofu. Both products have a defined texture, although tofu has a spongy
texture rather than a fibrous texture compared to HMMA products. Baik and Mittal [28]
were able to find good comparability of experimental results with the serial model in their
studies. The models of Wallapapan et al. [13] and Sweat [12] were structure independent,
and the thermal conductivity calculated via the mathematical relationship (Equation (6))
between density, specific heat, and thermal diffusivity did not include any directional heat
flow dependence.

Baik and Mittal’s thermal diffusivity equation is based on experimental data on tofu,
and Choi and Okos’ thermal diffusivity model is based on experimental data on various
water-containing foods. Figure 5 depicts a significantly higher thermal conductivity using
the prediction equation for thermal diffusivity of Choi and Okos [20] than the prediction
model of Baik and Mittal [28]. Calculating the thermal conductivity via Equation (6) with α
derived from Choi and Okos [20] using our measured cp and apparent density values, the
thermal conductivity was 0.54 W/m ◦C at Xw = 0.60 and T = 60 ◦C.

In comparison, a thermal conductivity value of 0.36 W/m ◦C could be determined at
Xw = 0.60 and T = 60 ◦C for the thermal conductivity prediction with Equation (6) when α
was calculated via Baik and Mittal [28].

The comparison of different models for predicting the thermal conductivity of HMESs
leads to the conclusion that its thermal conductivity could be calculated using the model of
Baik and Mittal [28] or Equation (6) with our generated data and the thermal diffusivity
from Baik and Mittal [28]. The model of Baik and Mittal [28] should be chosen over the
other literature models, as this model is based on tofu and thus closer to HME products
than the model of Choi and Okos [20], which is based on various high-moisture food
products. Moreover, unlike the models of Wallapapan et al. [13] and Sweat [12], this model
is temperature dependent.

The model from Baik and Mittal could certainly be used to calculate the thermal
conductivity of HME products, however, experimentally derived models, like our model,
which is based on experimental data, should be prioritized because of their higher accuracy.
Therefore, further research, such as simulation of the HME process, should be conducted
using our model, as it is closest to the product to be studied.

4. Conclusions

The aim of this study was to determine data-driven prediction models for the thermo-
physical properties, specific heat capacity (cp), and apparent density (ρ) of high-moisture
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extruded samples with different sensory-evaluated textures and water contents and to
mathematically describe their thermophysical properties based on experimental data. The
derived models were compared to non-HME-based literature models that were based:
(i) on food constituents and thus cover a broad range of food products, (ii) on soy pro-
tein ingredients, or (iii) on meat or fish products, which are supposed to be mimicked by
HME [4,12,13,20,23,27,28,34]. Currently, there are no models in the literature that math-
ematically describe thermophysical properties such as specific heat capacity, apparent
density, thermal diffusivity, and thermal conductivity for high-moisture extruded products.
Therefore, one breakthrough established in this study was the implementation of multilin-
ear regression models describing the thermal properties specific heat capacity and apparent
density for HME samples. The thermal diffusivity (α) and the thermal conductivity (k)
were calculated based on literature models and generic equations (Equation (6)), including
our data-driven models for cp and the apparent density.

It can be concluded that the models from Baik and Mittal [28], due to their product-
related similarity (based on tofu), led to similar results in comparison to our models. Thus,
using experimentally and data-driven models which are process or product dependent has
the advantage of much higher accuracy in comparison to, e.g., theoretical food models or
generic models.

The results of our study demonstrate the applicability of simple models, utilizing
experimental data, for estimating thermophysical properties of HMESs. It is important
to note that the validity of these models is limited to the narrow range of tested water
content. However, considering the significance of the 60–70% water content domain in
the HME process, these simple models hold potential for optimizing HME operations.
Consequently, further investigations are warranted to reinforce and expand upon these
promising findings. Additionally, these findings could help to understand the texturization
effect during HME in the future and to produce HME samples with defined textures by
implementing the thermophysical property models derived within this study in numerical
simulations to investigate the texturization and structure formation effect in the cooling
die.

Similar approaches using thermophysical properties of plant-based proteins to eval-
uate and predict their behavior during HME are detailed and discussed in Högg and
Rauh [30]. In the mentioned study, the focus is on untreated plant-based proteins that were
not high-moisture extruded.
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