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Abstract: Blockchain techniques have been introduced to achieve decentralized and transparent
traceability systems, which are critical components of food supply chains. Academia and industry
have tried to enhance the efficiency of blockchain-based food supply chain traceability queries.
However, the cost of traceability queries remains high. In this paper, we propose a dual-layer index
structure for optimizing traceability queries in blockchain, which consists of an external and an
internal index. The dual-layer index structure accelerates the external block jump and internal
transaction search while preserving the original characteristics of the blockchain. We establish an
experimental environment by modeling the blockchain storage module for extensive simulation
experiments. The results show that although the dual-layer index structure introduces a little
extra storage and construction time, it significantly improves the efficiency of traceability queries.
Specifically, the dual-layer index improves the traceability query rate by seven to eight times compared
with that of the original blockchain.
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1. Introduction

Ensuring food safety is crucial to maintaining people’s quality of life. The food
supply chain consists of the entire process of food production: processing, distribution,
consumption, and disposal [1,2]. However, the lack of transparency and traceability can
lead to large-scale food fraud affecting millions of people [3]. Transparency can enhance
consumers’ confidence in food quality and safety, and traceability can be used to verify
compliance with the food circulation process and prevent contamination or fraud in the
supply chain [4]. Therefore, it is essential to ensure the transparency and traceability of the
historical data in the food supply chain.

Traceability enables stakeholders to track products from the farm to the fork, ensuring
safety and high quality [5]. Traceability queries for historical data can trace products in
the supply chain and track the circulation of products [6]. For example, in the food supply
chain, consumers can use traceability queries to obtain the source of food-related issues and
any subsequent health problems they may have experienced. By providing a clear view of
the entire supply chain, traceability helps to quickly identify issues, isolate contaminated
products, and prevent the further spread of contamination or fraud.

Traditional centralized traceability systems have several issues, such as data monopoly,
low security, untrustworthiness, low efficiency of data sharing, lack of transparency, and
difficulty in meeting the needs of modern society [7]. Blockchain provides a new solution
for traceability systems. The distributed storage structure of blockchain ensures the authen-
ticity and integrity of information. Moreover, the decentralized platform and consensus
mechanism prevent malicious tampering with information collection and circulation [8].

Blockchain can be broadly defined as a distributed database that shares and main-
tains data consistency. It consists of a connected sequence of blocks that store data in
a block-and-chain structure. Transactions with timestamps are protected by public key
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encryption and verified by the community. There are four key features of blockchain.
Firstly, it is decentralized. Transactions can be conducted between any two clients in the
network without a central server or a third-party agent. Secondly, blockchain is persistent.
Transactions cannot be altered after being verified and recorded [9]. Thirdly, blockchain is
anonymous. Users can generate one or multiple anonymous addresses to conduct transac-
tions, effectively avoiding personal identity exposure. Finally, blockchain is auditable. With
every transaction being authenticated and recorded with a timestamp, users can track and
verify records from any node in the network, enhancing the traceability and transparency
of the stored data [10]. For a more detailed introduction to blockchain technology and its
applications in the supply chain, please refer to the review article by Sunny et al. [11].

Blockchain provides traceability capabilities [12]. In the storage structure of a blockchain,
the block header data contain the hash value of the previous block, which can be used to
retrieve the previous block and enable retrospective query functionality through traversal.
However, blockchain is not optimized for traceability or conditional queries, resulting in
extremely low query efficiency [13]. To query records, blockchain has to traverse all records
to generate the final query results [14]. Many blockchain systems, such as Fabric, Ethereum,
and Parity, distinguish the current and historical state of data. Data related to various events
are written in the form of key–value pairs. For key k, the data include the latest pair of the
current state of k and all pairs of the historical state of k. The collection of current states
for all keys is denoted as state-db, while the collection of the historical states is denoted
as history-db. The history-db data are time-dependent in nature, and analysis of these
data can generate valuable business insights and support various use cases [10]. In this
study, we treated the query method of obtaining these historical data as traceability queries.
Notably, traceability queries in the native blockchain must be conducted by traversing
blocks, which is time-consuming.

Current research has mainly focused on blockchain conditional query optimizations,
involving two research directions. The first is enriching the query function and improving
the query efficiency with external databases. However, these approaches lose blockchain
security and require additional storage management and cost. The second one is altering the
block structure to achieve lower storage space overhead and keep the security mechanism.
Generally, a blockchain traceability query includes two phrases: an internal block query
and an external block jump. The internal block data query searches the data according
to given query conditions, for example, the produce ID within a block. The external
block jump searches the previous block that contains the corresponding historical records.
Improvements in the conditional query can optimize the internal block query performance
but not the external block jump. Therefore, the current blockchain conditional query
optimization methods comprehensively cannot boost traceability queries.

In this study, we followed the structure alternation direction to optimize the traceability
query performance by introducing a dual-layer index structure. The dual-layer index
structure includes an internal index and an external index. The internal index reconstructs
the storage structure of the block by combining a Merkle tree and a B+ tree to accelerate the
internal block data query. The external index alters the storage structure of the transaction.
It contains a temporary table of traceability objects to realize a direct jump between blocks
according to the traceability target to optimize the external block jump. Through the
combination of the internal index and the external index, the dual-layer index structure not
only optimizes the conditional query of blockchain but also enhances traceability queries
without losing the characteristics of blockchain.

The main contributions of this study are as follows:
(1) We addressed the issue of low traceability query efficiency in blockchain-based

traceability systems and avoided the tamper resistance loss caused by introducing external
databases. Our solution ensures both efficient querying and the integrity of the blockchain.

(2) The dual-layer index accelerates the two steps of traceability data retrieval, namely
internal block search and external block jump. It comprehensively and effectively improves
traceability query efficiency.
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(3) The experimental results demonstrate that the dual-layer index structure improves
traceability query efficiency by approximately seven to eight times compared with that of
the native Merkle tree, making it suitable for blockchain-based traceability systems.

(4) We abstracted the storage layer of blockchains to build a blockchain storage module,
providing a tool for stimulation experiments, in which we identified the jump cost between
blocks in the traceability process as a factor affecting traceability efficiency, providing ideas
for the subsequent optimization of traceability efficiency.

The organization of the paper is as follows: Section 2 summarizes related studies,
including blockchain-based food supply chain studies, general supply chain studies, and
blockchain-related query efficiency optimization approaches. Section 3 presents the method-
ology in our research. Section 4 describes the design of the dual-layer index structure in
detail, and Section 5 illustrates the operations of the dual-layer index. Section 6 shows the
experimental setup and results. Section 7 presents the discussion of our findings, including
experimental result analysis, a comparison with related methods, implementation details,
and a summary of the assumptions and limitations of our method. Section 8 concludes
the paper.

2. Related Studies

The traditional centralized traceability system in the food supply chain lacks trans-
parency and traceability. In contrast, blockchain technology has the potential to meet the
transparency and traceability requirements of the food supply chain. However, the trace-
ability query efficiency in blockchain can be a limiting factor for the overall efficiency of the
food supply chain. This section introduces existing supply chain optimization methods
based on blockchain and demonstrates the feasibility of using blockchain technology in the
food supply chain. Furthermore, this section discusses optimization methods that rely on
external databases and structural changes and compares their advantages and differences
with those of the approach proposed in this paper.

2.1. Food Supply Chain Based on Blockchain

Prashar et al. [15] proposed a blockchain-based solution that eliminates the need for a
secure centralized structure, resulting in a transparent, accurate, and traceable supply chain
system. Damoska Sekuloska et al. [16] developed a three-layer model for a smart local
food supply chain that enhances food accessibility, traceability, and safety. Zhang et al. [17]
developed a trusted traceability system for grain and oil food using the Hyperledger
Fabric framework. The system addresses issues related to low data security and poor data
sharing while also improving traceability accuracy. Kechagias et al. [4] demonstrated an
application that improves product traceability for producers by leveraging Ethereum to
provide a secure, transparent, and efficient solution for tracking and tracing products in
the supply chain.

The above studies have confirmed that blockchain technology provides a feasible tech-
nical solution for the food supply chain, which can improve the traceability, transparency,
and safety of the food supply chain. However, the goals of the above studies slightly differ
from ours. In this study, we tried to optimize the performance of traceability queries in the
blockchain-based food supply chain while keeping the blockchain features.

2.2. Other Supply Chain Based on Blockchain

Kong et al. [18] proposed BCSChain based on blockchain for the ceramic supply chain
system. BCSChain aims to address the issues of transparency and security prevalent in tra-
ditional ceramic supply chains. Hader et al. [19] introduced a novel traceability framework
for the textile supply chain based on blockchain technology. This framework allows a trans-
parent information-sharing platform among all supply chain members. Abdallah et al. [20]
proposed a blockchain-based framework for the online sale of pharmacutical products.
The system keeps track and informed about sale transactions and ensures secure payment
dispersal and medicine delivery. Liu et al. [21] developed a financial management platform
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that merges blockchain and supply chain technologies. By utilizing blockchain credit
transfer, information sharing, data traceability, and tamper-proof features, this platform
aims to solve critical issues such as the inability to transfer core enterprise credit.

Several researchers have proposed new solutions that leverage the unique charac-
teristics of blockchain. The results of these studies have demonstrated that blockchain
can effectively address the security and traceability issues inherent in traditional supply
chain systems.

2.3. Optimization Methods Based on External Database

One direction is to integrate database techniques into blockchain. Helmer et al. [22]
proposed EternityDB, integrating database functions into blockchains via intelligent con-
tracts, in which databases and data are moved to the blockchain. However, copying and
storing such large databases on each node of a peer-to-peer network not only wastes stor-
age space but also increases storage pressure and creates cost problems. BigChainDB [23]
combines document-based NoSQL database functions to achieve the fast query and reli-
ability of blockchain but lacks SQL support. Muzammal et al. [24] proposed ChainSQL,
which supports SQL operations. However, like BigChainDB, their actual data reside in an
off-chain database. Namely, users must trust their connected peers and ensure the database
stores accurate data because the query results might not be consistent with the blockchain.

Another direction is to embed middleware in the blockchain to support database
operations. Zhou et al. [25] proposed Ledgerdata to improve the query efficiency of super
ledger blocks and transactions by adding data analysis middleware to Hyperledger Fabric.
However, its application scope is limited to Fabric. Li et al. [26] proposed EtherQL, a
query layer on the blockchain, which provides an efficient query primitive to expand query
function and improve query efficiency. Fa et al. [27] further expanded and enhanced the
query expansion function. However, this approach requires that the server always returns
correct results, which is too restrictive in real-world scenarios. Peng et al. [14] proposed a
Verifiable Query Layer (VQL) that adopts a three-tier architecture, including the underlying
blockchain system, middleware layer, and application layer. The middleware provides
efficient and verifiable query services to ensure the authenticity of the query results of
the blockchain. However, the MongoDB introduced by the middleware layer still needs
additional management, leading to storage overhead.

Optimizing the query efficiency of blockchains using external databases can lead
to the loss of the security characteristics of the blockchain. Additionally, it introduces
storage management costs and reduces transparency in the food supply chain, which are
unacceptable. As a result, some researchers have proposed optimization strategies based
on structural alteration to address these issues. Namely, these strategies improve query
efficiency while maintaining the security and transparency characteristics of the blockchain.

2.4. Optimization Methods Based on Structure Alternation and Novel Data Forms

Introducing external query structures to alter the blockchain structure is an essential
method for improving the performance of blockchain queries. Ma et al. [28] designed a
blockchain-based log system with lightweight, compatible modules for existing blockchain
platforms. This system employs a hierarchical timestamp structure that enables efficient
range queries on timestamp fields. Ren et al. [29] proposed a Bitcoin-based model for
Internet of Things data queries that uses the dual-combination Bloom filter (DCOMB)
query method. This method transforms the hash computing capacity used for Bitcoin
mining into query computing power, enhancing transaction query proficiency.

Another direction for optimizing the efficiency of blockchain is to improve the storage
structure of blocks. Pei et al. [30] introduced an indexing technique based on Merkle
Semantic Trie. They extracted semantic information from the data in the chain to construct
an indexed structure on the consensus chain, allowing for the real-time and effective query
of data on and off the chain. Niu et al. [31] improved the efficiency of transaction search
by reorganizing the blockchain and constructing an index structure using prefix tree and
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ODS technology. This scheme enables efficient, privacy-preserving transaction queries
based on the transaction hash and address, even for lightweight clients. He et al. [32]
proposed the T-Merkle tree, a novel blockchain storage structure that improves the design
of the Merkle tree, reduces storage costs, and enhances query efficiency. Xu et al. [33]
proposed the MPT-Chain tree, combining the characteristics of the Patricia tree and Merkle
tree. MPT-Chain guarantees distributed index consistency and query result accuracy.

The inherent characteristics of blockchain, including transparency and traceability, are
crucial to food supply chains. Our research idea is based on optimizing the traceability
query of historical data by modifying the storage structure of the blockchain while retaining
its fundamental characteristics. To achieve this, we reconstructed the storage structure of
block data and added both internal and external indices.

In contrast to previous methods [30–33], our approach not only enhances query effi-
ciency by adding indices within each block but also complements this with external indices.
We further leveraged index fields in a temporary traceability table and leaf nodes within
blocks to facilitate jumping to the destination block and avoid sequential queries, further
improving the traceability query speed.

The other optimization direction is to utilize novel data forms. New and emerging data
formats can potentially improve the analysis process [34]. The storage format of products
in the supply chain can be simplified as spatiotemporal data, where temporal data record
the time of product changes, and spatial data record the flow direction of products. With
spatiotemporal data, the system can support context queries, and anomalies in supply can
be easily found. Differently, in this study, we mainly focused on traceability performance
rather than context queries.

In summary, our approach provides an efficient solution for blockchain-based trace-
ability systems that ensures both querying efficiency and the integrity of the blockchain.

3. Methodology

In this section, we describe our research methodology, including our motivation,
chosen approach, idea overview, and experimental design.

3.1. Motivation

Blockchain technology is known for certain key characteristics, including distribution,
decentralization, security, nontampering ability, and traceability, that can effectively address
the trust issues experienced with traditional traceability systems. However, these benefits
can be limited by the inefficient querying capability of the blockchain system. Therefore,
our research objective was to develop an optimization approach to enhance the efficiency
of blockchain traceability queries.

3.2. Chosen Approach

Previous research can be categorized into two directions: incorporating an external
database for efficient querying through database technology and introducing an index
structure to enhance efficiency by modifying the block structure. However, using an exter-
nal database raises security concerns and undermines the security features of blockchain.
This violates the security requirements of supply chain traceability systems. Instead, we
propose introducing an index structure and modifying the blockchain structure to enhance
query efficiency while maintaining the fundamental characteristics of blockchain.

3.3. Idea Overview

The data traceability process in blockchain involves two steps: traversing all blocks to
find the target block and then searching all data within that block. To optimize these steps,
we propose a dual-layer index structure that limits the number of traversed blocks and the
amount of data traversed within blocks. The dual-layer index structure utilizes an external
index to facilitate external block jumps and an internal index to enable internal block query.
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3.4. Experimental Design

We used a quantitative analysis method to evaluate the effectiveness of our proposed
dual-layer index structure in improving query efficiency through experimental validation.
Because using index structures may introduce time and space overhead, we designed
comparison experiments to evaluate the performance of the dual-layer index structure
against that of the native block structure in terms of time overhead, space overhead, and
query efficiency. To account for variations in data amount and block size, we created
an experimental dataset with varying values of these parameters. Similarly, we create
another experimental dataset that varies the block depth to investigate its impact on query
efficiency. In addition, we constructed a large-scale dataset and multiple complex scenarios
to validate the performance of the dual-layer index under more complicated condition
scenarios. Based on the experimental results, we analyzed the impact of the data amount
and block size on the time and space overhead of the dual-layer index structure as well as
the influence of data amount, block size, and block depth on query efficiency. We evaluated
the performance improvement of the traceability query using the dual-layer index structure
from these results and identified its applicable scenarios and limitations.

4. Dual-Layer Index Structure

The block storage structure of blockchains is designed to ensure data accuracy through
Merkle trees or their variants [35], because any modification to the block structure alters
the header hash value, causing a mismatch with the next block. Moreover, transaction
existence is verified by expanding the “light nodes” in a public blockchain environment [36].
Typically, the Merkle tree is integrated into the transaction data of a block, which consists of
two main parts: block header and block body. The block header consists of the hash value
of the previous block (preHash), the Merkle tree root, and the hash value of the current
block (curHash). The block body contains the Merkle branch segment. Traceability queries
can be performed by recursively searching for the previous block, starting from the last
block that contains the newest traceability transaction using preHash. However, given
the high search cost associated with scanning all blocks, this approach severely limits the
performance of the traceability query system.

To support fast traceability queries, a dual-layer index structure is proposed. The
dual-layer index structure consists of an external index and an internal index. The external
index allows for direct jumps between traceability-related blocks, while the internal index
enables fast transaction data queries inside a block. Utilizing both the external and internal
index, the dual-layer index structure can significantly improve the query efficiency of
blockchain-based traceability systems.

4.1. External Index Design

Using the food supply chain as an example, each product is assigned a unique identi-
fier, such as a string of bar codes, QR codes, or other forms stored within the blockchain.
Additionally, each transaction within the blockchain is assigned a unique TransactionID,
which can be used to differentiate between transactions. In a native blockchain, traceabil-
ity query information is accessed by comparing the TransactionID and cross-referencing
product identifiers to identify the desired information. In the dual-layer index structure, a
TraceID is used to query the blockchain. The TraceID is the storage form of the product
identifier mentioned earlier. The term “TraceID” is used interchangeably with “product
identifier” to improve clarity.

He et al. [32] proposed a T-Merkle tree and showed that intermediate nodes could
store the necessary data by modifying the node storage structure. Based on this idea, we
achieve part of the external index in the block body. The external index consists of two
parts: an item inside the blocks of the blockchain and a temporary traceability object table.
The leaf nodes of a block with the external index contain more comprehensive data than
the native structure, including TransactionID, TraceID, Time, preTraceHash, Transaction,
and Hash. preTraceHash refers to the hash value of that specific block, where the previous
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transaction data with the same TraceID are stored. By means of preTraceHash, we can
directly jump to the previous block location containing the transactions with the same
TraceID. A temporary traceability object table is introduced to find the newest traceability
block when we update a block or conduct a traceability query. By changing the storage
structure in the blockchain, sequential retrieval in the traceability query becomes a direct
jump to the traceability-related blocks.

The external index overview is shown in Figure 1. Figure 1a shows the Merkle tree
with the external index item. The leaf node (T1) stores TransactionID, TraceID, Time,
preTraceHash, Transaction, and Hash. Both the intermediate node (H12) and root node
(H1234) compute and store their own hash from the hash of their child nodes. Figure 1b
shows a temporary table that stores the TraceID, TransactionID, and preTraceHash. By
maintaining this temporary traceability object table, the initial traceability block can be
quickly located.

TransactionID TraceID Time preTraceHash Transaction Hash

T1 T2 T3 T4

H12 H34H34

H1234

(a) External Index Item in Blocks

Trace ID Transaction ID preTraceHash

1 1 5413b3d· · ·
2 2 584b92f· · ·
3 3 dcd42ac· · ·
4 4 bb3fb5c· · ·
5 5 96342ac· · ·
· · · · · · · · ·

(b) temporary traceability object table

Figure 1. External index overview.

Compared with the native Merkle tree, a Merkle tree with the external index structure
shown in Figure 1 directly stores hash values at the leaf nodes, resulting in a shallower
tree. This approach can accelerate the process of block jump during a traceability query by
including the block hash value preTraceHash in the leaf node and maintaining the tempo-
rary traceability object table of traceability objects. However, implementing this external
index structure for different blockchain types (e.g., Bitcoin, Ethereum, and Hyperledger
Fabric) requires additional steps, such as adding temporary traceability tables and fields to
transaction data.

In summary, the implementation of the external block index involves two parts:
altering the storage structure of block internal transaction data and adding preTraceHash
in the leaf node to enable a direct jump, and creating a temporary table to facilitate the fast
retrieval of the newest traceability blocks to enhance the traceability query speed.

4.2. Internal Index Design

The B+ tree was shown to improve the speed of sequential lookup and support fast
queries while reducing disk I/O [37]. Given the advantages of both the B+ tree and Merkle
tree, we designed an MB+ tree (Merkle and B+ Tree) to support efficient traceability queries
in the block. The MB+ tree leverages the tamper-proof features of Merkle trees to enable
fast verification of blocks while also taking advantage of the efficient query and location
capabilities of B+ trees to perform efficient searches of transaction data within blocks.
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As shown in Figure 2a, the MB+ tree has all the characteristics of the B+ tree and the
Merkle tree.

(1) In the B+ tree, keywords connect non-leaf nodes to their corresponding child nodes.
Similarly, in the MB+ tree, TraceID is used as the keyword. (2) In the Merkle tree, leaf
nodes store data, while other nodes store the hash of their child nodes. However, in the
MB+ tree, the leaf node stores additional information, such as the TraceID, namely, the
keyword required by the B+ tree, the preTraceHash required by the external index, and the
hash value calculated by all the leaf node fields. The nonleaf nodes in the MB+ tree store
pointers to their child nodes, keyword ranges, and hash values calculated by hashing all
child nodes.

(b) The Leafnode of MB+ Tree in Bitcoin

1 1 Time 2093b3d· · · Data Hash

(c) The Leafnode of MB+ Tree in Fabric

1 1 Time 2093b3d· · · Data

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

p1 2 p2 4 p3 6 H1-6 p1 7 p2 10 H7-10

p1 6 p2 10 H1-10

(a) MB+ Tree Structure Overview

BlockBody

BlockHead

MB+RootPreBlockHash ...

BlockNumBlockVersion TimeStamp

Figure 2. Block structure with internal index.

Specifically, in the MB+ tree, there are two types of nodes: leaf nodes and intermediate
nodes (including the root node). Leaf nodes in the MB+ tree are responsible for storing all
data. An example of the MB+ leaf node in Bitcoin is shown in Figure 2b, which consists
of TransactionID, TraceID, Time, preTraceHash, Transaction, and Hash. The intermediate
and root nodes in the MB+ tree (Figure 2a) are responsible for storing keyword information
(2, 4, 6, 7, and 10), pointers (p1, p2, and p3), and hash values (H1–6) composed of keyword
information, pointers, and child nodes.

In summary, based on the Merkle tree, we used the characteristics of the B+ tree
to construct the MB+ tree to build the internal index. The keyword information and
pointers are stored in the root and intermediate nodes. The leaf nodes store the block
hash value (preTraceHash) of the previous traceability information and the fields of the
TraceID as external index structures. By utilizing the pointers and keyword information,
the traceability transaction data can be quickly located within a block.

Due to the different internal storage structures of specific blockchain architectures, such
as Bitcoin, Ethereum, and Hyperledger Fabric, the internal indices of the three blockchains
are discussed below.
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In Bitcoin, the MB+ tree is utilized as shown in Figure 2a. The native Bitcoin leaf node
stores transaction data, while the intermediate nodes, including the root node, store hash
values. The MB+ tree leaf node, shown in Figure 2b, contains the TransactionID, TraceID,
Time, Transaction, preTraceHash, and Hash. Additionally, the intermediate node stores a
pointer that can point to the subnode and the keyword information representing the storage
range of the su-node. Moreover, the leaf nodes are sequentially arranged and connected
with a chain pointer. This design enables sequential data retrieval in the block based on the
order of the TraceID.

The difference between using the MB+ tree in Ethereum and Bitcoin lies only in some
of the data categories at the head of the block. However, the final MB+ tree data structure
is the same as that for Bitcoin.

In Hyperledger Fabric, the FB+ tree is utilized as shown in Figure 2c. Similar to Bitcoin,
the leaf node stores transaction data with additional details of signatures and transaction
proposals. However, in contrast with Bitcoin, it no longer stores hash values. Figure 2c
demonstrates the transaction content with additional details regarding the signature and
transaction proposal. The intermediate and root nodes are responsible only for storing
keyword information and pointers, with the keyword information represented by TraceID.

In summary, the implementation of the internal block index is primarily based on the
features of the B+ tree, which was enhanced to form the MB+ tree. In the MB+ tree, the root
and intermediate nodes store keyword information and pointers. The leaf nodes store the
block hash value of the block where the previous traceability object is located along with
an external index structure containing TraceID. Using pointers, the MB+ tree enables rapid
retrieval of traceability transactions from a block.

5. Dual-Layer Index Operation

To take advantage of the dual-layer index structure, we altered the storage structure
in Bitcoin, Ethereum, and Hyperlegder Fabric. Both Bitcoin and Ethereum use MB+ trees
to store transaction data. Meanwhile, the FB+ tree is used in Hyperledger Fabric. The
critical difference between the FB+ and MB+ trees is that the former no longer stores the
hash value and omits the process of calculating the hash value, while most other structures
remain unchanged. All three improved blockchains share the same external index structure.
Therefore, creating and querying these indices are similar. In this section, we only consider
Bitcoin as an example to illustrate the operations of the dual-layer index.

5.1. Dual-Layer Index Creation

During index creation, if the amount of data does not reach a predefined threshold,
the data are initially stored in a cache table. The threshold is the maximum amount of
transaction data a block can contain. Once we have enough initial data, a new block is
created and linked to the previous block in the blockchain. The creation of the dual-layer
index structure involves the creation of internal and external indices. In the following
sections, we describe these two creation processes in detail.

5.1.1. Internal Index Creation

The creation of the internal index involved creating an MB+ tree, in which nodes are
arranged in an order set M. Building an MB+ tree includes three steps:

(1) When the first transaction is inserted into a new block, the system queries the
temporary traceability object table associated with the external index structure of the block
to obtain preTraceHash. Next, the system embeds the transaction data and preTraceHash
into a leaf node, which becomes a root node later in the new block. During this process,
the leaf node hash value Lea f NodeHash is calculated based on the TransactionID, TraceID,
Time, preTraceHash, and Transaction.

(2) When the other transaction data are inserted, the system queries the temporary
traceability object table associated with the external index structure to obtain preTraceHash.
The system embeds the transaction data into a leaf node and determines their insertion
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position based on the TraceID. If the number of keywords in the current node is less than
or equal to |M| − 1, the insertion is completed. Otherwise, the leaf node must be split into
left and right leaf nodes. The left leaf node contains the data stored in the first |M|/2 leaf
nodes, and the right leaf node stores the remaining data. The middle keyword, located
at position |M|/2 + 1, is assigned to the parent node’s keyword. The parent node’s left
pointer points to the left leaf node, and its right pointer points to the right leaf node.

(3) For the intermediate node, if the number of keywords is less than or equal to
|M| − 1, then the insertion is complete. Otherwise, the system must split the middle
node into two intermediate nodes. The left intermediate node contains the first |M− 1|/2
keywords, and the right node contains the remaining |M| − (|M− 1|/2) keywords. The
middle keyword, located at position |M|/2, is assigned to the parent node’s keyword.
The parent node’s left pointer points to the left intermediate node, and the right pointer
points to the right intermediate node. The current node pointer is set to the parent node,
and the system returns to Step (2) to insert the next transaction until all transactions are
inserted. For hash values stored in intermediate and root nodes, the system uses the
Pointers, ChildNodeHashs, and TraceID to calculate the hash value. The system uses the
blockchain version number, block index number, timestamp, difficulty calculation, the hash
value of the previous block, and MB+ tree root to calculate the current block hash.

5.1.2. External Index Creation

Each transaction inserted in the block must have a TraceID attribute. When we create
the external index, the temporary traceability object table is first queried. If TraceID does
not exist, then the TraceID is inserted into the temporary traceability object table. If the
TraceID exists, we must update preTraceHash in the table pointing to the block with the
newest traceability transaction.

To facilitate queries, we store the temporary traceability object table in a B+ tree. The
insertion operation is similar to establishing an MB+ tree inside the block. Therefore, we do
not further elaborate on the insertion algorithm’s operation.

5.2. Dual-Layer Index Query

The query process of the dual-layer index structure is divided into two parts, internal
and external index query. The internal index queries the data in blocks, and the external
index queries the temporary traceability object table. The overall traceability query process
consists of two steps:

(1) We first query the temporary traceability object table according to the TraceID to
find the latest transaction location. If the TraceID does not exist, an empty result is returned.
Otherwise, the block with preTraceHash is searched.

(2) While searching the MB+ tree of the block, we try to find a leaf node with the same
TraceID. Firstly, we determine whether the current node is a leaf node. If it is not a leaf node,
the search is continued in the subtrees according to the relationship between the TraceID and
the keyword of the current node. Then, if a leaf node is found, preTraceHash is evaluated.
If preTraceHash is empty, the transaction in the leaf node is stored in the result set, which is
returned to the client. Otherwise, Step (2) is executed according to preTraceHash.

6. Experiments

In this experiment, we compared the original non-layer index and the dual-layer index
structure in terms of construction cost and traceability query efficiency. In this section, we
introduce the software and hardware environment used during the experiment. Then, the
experimental design and experimental results are presented.

6.1. Environment Setup

The native blockchain involves various complex components, such as consensus and
cryptography. We want to clarify that these topics were beyond the scope of this study.
Therefore, we built a simulation platform to conduct our experiment for the following reasons:
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(1) The dual-layer index aims to alter the blockchain storage layer, not the entire
blockchain framework. If the original blockchain framework was used, the cost of the
whole system must be considered, including node consensus, block synchronization, etc.
This would introduce more factors that could influence the analysis of experimental results.

(2) There is currently no available block storage module that solely focuses on blockchain
storage, highlighting the need for this research.

6.2. Dataset Setup

The aim of the experiment was to evaluate the effectiveness of the dual-layer index
structure and explore the factors that impact its construction time, storage, and query
performance. Because these factors are related to the blockchain structure and not to the
specific features of blockchain data, we generated the dataset used in the experiments. To
simulate block data, the data format was designed to match that of the Bitcoin format,
including a block header and body. The internal fields of the block header are consistent
with Bitcoin’s, and the block’s internal structure is based on the MB+ tree. The specific
attribute values of the transaction stored in the block did not affect the study purpose and
were set as fixed-length random strings.

The amount of data is the most intuitive factor that affects query efficiency. We consid-
ered the number of traceability transactions, namely, the data amount, as the influencing
factor and recorded it as di. The datasets used for our experiment are shown in Table 1.

Table 1. Configuration of data amount.

d1 d2 d3 d4 d5 d6 d7 d8

104 105 2× 105 5× 105 106 2× 106 5× 106 107

Traceability queries consist of two steps, namely, data query within blocks and jumping
between blocks. As such, the amount of traceability transaction data within blocks also
affects the efficiency of the query. Therefore, the amount of traceability data within blocks,
namely, the block size, is another influencing factor and is denoted as bj. The block size is
shown in Table 2.

Table 2. Configuration of block size.

b1 b2 b3 b4 b5 b6 b7 b8

102 2× 102 5× 102 8× 102 103 1.5× 103 2× 103 5× 103

The dataset is denoted as dibj. Combined with different data amounts and block sizes,
dibj has different block depths. The block depth refers to the total amount of blocks within
the blockchain.

6.3. Experiment Setup

To assess the impact of the dual-layer index on both construction and query per-
formance, we conducted four series of experiments. Each series consisted of two parts:
evaluating the dual-layer index and comparing the dual-layer index with the non-layer
index implementation, which was the native Bitcoin implementation.

(1) Block Construction Cost Experiment

We compared the block construction cost of the dual-layer index with the native Bitcoin
block construction cost in two aspects: construction time and block storage usage. The experi-
ment was divided into two groups. The first group consisted of dibj i ∈ {1, 2, 3, 4, 5, 6, 7, 8} and
j ∈ {3, 5, 7} to verify the influence of the data amount on the block construction. The second
group consisted of dibj i ∈ {3, 5, 7} and j ∈ {1, 2, 3, 4, 5, 6, 7, 8} to verify the impact of the
block size on the block construction. (2) Data Amount Influence Experiment
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We aimed to evaluate the influence of the data amount on traceability query efficiency.
In the beginning, we focused on the dual-layer index structure only. The datasets used were
dibj, where i ∈ {1, 2, 3, 4, 5, 6, 7, 8} and j ∈ {3, 5, 7}. Then, we compared the traceability
query efficiency between the dual-layer index structure and the non-layer index structure.
The datasets used were dib5, where i ∈ {1, 2, 3, 4, 5, 6, 7, 8}. For all these cases, the query
execution time was recorded for result analysis. In this experiment, the traceability query
consisted of 1000 transactions. In each dataset, these data were randomly distributed.

(3) Block Depth Influence Experiment

According to the equation DataAmount = BlockSize× BlockDepth, we used the block
depth to represent dibj. We recorded the block depth as pi. The datasets used for this
experiment are shown in Table 3. Then, we recorded the number of transactions for the
traceability querying, namely, the query case, as qj. The datasets used for this experiment
are shown in Table 4.

In this experiment, we aimed to analyze and compare the influence of block depth on
query efficiency. To increase the depth of the block, we quantified the data to be queried
and then added non-queried data to create a new dataset. Specifically, we utilized the
dataset piqj, where i ∈ {1, 2, 3, 4, 5, 6, 7, 8} and j ∈ {1, 2, 3}, to evaluate and analyze the
traceability query based on the block index method. Additionally, we selected pi, where
i ∈ {1, 2, 3, 4, 5, 6, 7, 8}; and qj, where j ∈ {2}, to verify the traceability query based on the
dual-layer index and non-layer index methods.

Table 3. Configuration of block depth.

p1 p2 p3 p4 p5 p6 p7 p8

101 1× 102 2× 102 5× 102 103 2× 103 5× 103 5× 104

Table 4. Configuration of query case.

q1 q2 q3

5× 102 1× 103 2× 103

(4) Block Size Influence Experiment

In this experiment, we compared and analyzed the effect of block size on query effi-
ciency. Specifically, we utilized the dataset dibj, where i ∈ {3, 5, 7} and j ∈ {1, 2, 3, 4, 5, 6, 7, 8},
to evaluate and analyze the traceability query based on the block index method. Addi-
tionally, we utilized the dataset dibj, where i ∈ {5} and j ∈ {1, 2, 3, 4, 5, 6, 7, 8}, to verify
the traceability query based on the dual-layer index and non-layer index methods. We
then analyzed and compared the execution time of these methods. The distribution of the
traceability data was similar to that in (2).

(5) Extreme Case Experiment

In this experiment, the aim was to evaluate the effectiveness of the dual-layer index
structure with a large data amount. Thus, the large data amount was the influential factor,
denoted as Di. The set of large data used in this experiment is listed in Table 5.

Table 5. Configuration of large amounts of data.

D1 D2 D3 D4

2× 107 5× 107 108 2× 108

(6) Complex Scenario Experiment

In real-world supply chain applications, different suppliers may provide raw ma-
terials with varying prices and qualities, which are mixed in batches to produce final
products. During this process, there exist disassembly and assembly operations, which
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further complicate the traceability of the supply chain [38–40]. In the food supply chain,
traceability entails the capacity to monitor and trace food, feed, food-producing animals, or
substances intended for use in food or feed throughout all stages of production, processing,
and distribution. As the supply chain involves several intermediaries between the initial
grower of the food material and the end consumer, it is vital to document information on
the movement of food items through intermediate processes.

During the intermediate processes, there can be a one-to-many or many-to-one re-
lationship. This phenomenon is denoted as transaction bifurcation, where products are
synthesized or decomposed. To address this issue at the application level, the correspond-
ing upstream product source should be added to the product attribute. However, if the
product attribute is restricted, a solution is sought at the index structure level. Namely, we
need to modify the content of TraceID in the dual-layer index structure.

In our experiment, we investigated the one-to-many and many-to-one relationships
between the upstream and downstream products. For the one-to-many relationship, we
added extra suffix identifiers to the TraceID to differentiate between different downstream
products. For many-to-one relationships, we included extra separators within the TraceID to
distinguish between various upstream product sources. To account for the impact of trans-
action bifurcation, we denoted it as an influencing factor (Fi). The amount of bifurcation
shows the number of upstream products involved in synthesis or the number of down-
stream products generated from decomposition. Table 6 presents the bifurcated dataset
employed in our experiment. Additionally, we specified a fixed traceability length of 10,
which could reflect the number of intermediaries involved in the bifurcation phenomenon.

Table 6. Configuration of bifurcation amount.

F1 F2 F3 F3

1 2 3 4

6.4. Experimental Results and Analysis

This section provides details of our experimental results and analysis. In the experi-
ments, we imported the generated dataset into two simulation systems: one based on the
native blockchain architecture and the other based on the dual-layer index structure. In
these simulation systems, blocks were stored as individual files on the disk, corresponding
to a single file. The construction process involved writing the relevant datasets into the
simulation systems and building the blocks accordingly. The traceability query process
was performed by traversing all data or querying traceability objects based on the index.
To clearly illustrate the experimental result, we introduced three indicator functions:

• C(L,M): block construction time on dataset L with index typeM. While importing
the dataset into the simulation system, we calculated the block generation time by
obtaining the operation system’s timestamp.

• S(L,M): storage of the simulation system on dataset L with index typeM. Once
the data set was imported into the simulation system, we calculated the block storage
occupancy by obtaining the storage size of the block files in the simulation system.

• T(L,M): execution time of traceability queries on dataset Lwith index typeM. After
importing the dataset into the simulation system, we conducted traceability queries
on the simulation system and calculated the time required for traceability queries by
obtaining the operation system’s timestamp.

In the above indicators,M ∈ {D,N}, in which D indicates the dual-layer index, and
N indicates the non-layer index, namely the original blockchain structure. The dataset L
refers to dibj or piqj.
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6.4.1. Index Construction Cost Experiment

(1) Construction Time Result

The results regarding the block construction time with the dual-layer index are pre-
sented in Figure 3a,b. It can be observed that C(dibj,M) significantly increases with
increasing i but gradually decreases with increasing j, with a diminishing rate of change.
Therefore, we concluded that for a fixed block size, the data amount has a substantial
impact on the block construction time. An increase in data amount leads to a longer block
construction time. This is because the dual-layer index introduces time overhead, including
maintaining temporary traceability tables and adding internal index fields. On the other
hand, the block size has a weaker influence on construction time. When the data amount is
constant, as block size increases, block construction time decreases. Because the data field
of the block header is fixed and does not change with the block size, the larger the block
size, the smaller the number of blocks under the same data amount, and the smaller the
fixed block header. The smaller fixed block header reduces the time consumption, whereas
a larger fixed block header increases the construction time consumption.
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Figure 3. Experimental result regarding block construction time with dual-layer index under (a) dif-
ferent data amounts and (b) different block sizes; construction time comparison of the dual-layer
index and non-layer index under (c) different data amounts and (d) different block sizes.

A comparison of the construction time between the dual-layer index and non-layer
index is shown in Figure 3c,d. Normally, C(dibj,D) is about 2.7 times larger than C(dibj,M).
Thus, we concluded that constructing a block with the dual-layer index takes approximately
2.7 times longer than that of a non-layer index block when the data size is kept constant.
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This is because the MB+ tree within the dual-layer index block needs to acquire data from
the temporary traceability table and update it during the construction process.

(2) Block Storage Result

The results for block storage usage are presented in Figure 4a,b. It can be observed
that S(dibj,M) significantly increases as i increases. On the other hand, S(dibj,M) remains
constant as j changes. Therefore, we concluded that, for a fixed block size, the data
amount has a substantial impact on block storage use. This is because the dual-layer index
introduces storage overhead, including the temporary traceability table and internal index
fields. When the data amount is constant, the block size has little effect on the storage
space needed after building the block. This is the influence of the fixed block header fields.
The smaller the block, the larger the number of block headers, which increases the storage
consumption. Otherwise, it reduces storage consumption.
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Figure 4. Experimental result of block storage usage of the dual-layer index under (a) different data
amounts and (b) different block sizes; storage comparison of the dual-layer index and non-layer
index under (c) different data amounts and (d) different block sizes.

The comparison of block storage usage between the dual-layer index and non-layer
index is shown in Figure 4c,d. It can be observed that S(dibj,D) is slightly larger than
S(dibj,N ). Hence, we drew the conclusion that blocks with the dual-layer index take up
slightly more storage space than blocks without the index for the same amount of data.
The reason for this is that the root nodes and intermediate nodes of the MB+ tree in the
dual-layer index block add pointer and keyword information based on the non-layer index
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tree. Additionally, the leaf nodes of the dual-layer index block add an external index and
maintain a temporary traceability table, resulting in more storage space usage.

6.4.2. Data Amount Influence Experiment

In this experiment, T-Dual-Layer (dibj) was used for querying based on the block index
and T-non-layer (dibj) was used for query based on the non-layer index under the dibj test
data set.

Figure 5a shows the traceability query time of the dual-layer index (T(dibj,D)), where
i ∈ {1, 2, 3, 4, 5, 6, 7, 8} and j ∈ {3, 5, 7}. It is observed that with the increase in i, T(dibj,D)
also increases. This indicates that for a fixed block size, the larger the amount of data,
the more time required for a traceability query based on the dual-layer index. This is
because the larger the data amount under a fixed block size, the larger the number of blocks.
The query case is more likely to be distributed across multiple blocks, resulting in more
time-consuming jumps through external indices.

Figure 5b shows a comparison of the traceability query time between the non-layer
index(T(dibj,N )) and dual-layer index, where i ∈ {1, 2, 3, 4, 5, 6, 7, 8} and j = 5. We
can see that T(dibj,D) is always smaller than (T(dibj,N )). When j = 5, T(dibj,D) ≈
7.5× T(dibj,N ). It shows that the efficiency of traceability queries based on the dual-
layer index is much higher than that of the non-layer index.
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Figure 5. Experimental result of the influence of data size. (a) query time of dual-layer index under
different data amounts; (b) query time comparison of dual-layer index and non-layer index under
different data amounts.

6.4.3. Block Depth Influence Experiment

Figure 6 shows the traceability query time of the dual-layer index (T(piqj,D)), where
i ∈ {1, 2, 3, 4, 5, 6, 7, 8} and j ∈ {1, 2, 3}. It can be observed that with the increase in i,
T(piqj,D) is unchanged under different j values. This indicates that, for a fixed query
case, the traceability query time is independent of the block depth based on the dual-layer
index. This is because the external index records the latest trace object. No matter how
much data are appended, the index query directly starts from the last place where the
trace object appears. It can also be observed that T(piqj,D) increases with increasing j.
This indicates that the more data in the query case, the more time the traceability query
takes. This is because, at the same block depth, more data in the query case lead to a longer
query process.
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Figure 6. Query Time of the dual-layer index with different block depths.

Table 7 compares the traceability query execution time between the non-layer index
and dual-layer index for various block depths. From the table, it is evident that, except for
the first case (BlockDepth = 10), the execution time for the dual-layer index is consistently
lower than that for the non-layer index for the same block depth. This is because as the
block depth increases, the blockchain becomes longer. However, the dual-layer index
avoids a one-by-one block query through the block jump process. Thus, increasing the
length of the blockchain does not affect the traceability query time of the dual-layer index
for specific target data queries. On the other hand, because queries on the non-layer index
require a block-by-block comparison, the traceability query efficiency decreases as the
length of the blockchain increases.

Table 7. Query time comparison of dual-layer index and non-layer index for different block depths.

Block Depth 10 100 200 500 1000 2000 5000 10,000

non-layer Index (s) 0.686 6.04 11.975 30.003 58.634 115.321 284.665 658.633
Dual-Layer Index (s) 0.998 0.992 0.99 1.001 0.995 0.993 0.994 0.997

6.4.4. Block Size Influence Experiment

Figure 7a illustrates the effect of block size on the traceability query time of the dual-
layer index. As the results show, as j increases, T(dibj,D) also proportionally increases,
indicating that larger block sizes result in longer traceability query times for the dual-layer
index. This is because larger block sizes increase the number of jumps between blocks,
which slows the query.

Figure 7b compares the traceability query time between the non-layer index and the
dual-layer index for different block size configurations. Notably, the traceability query
time T(dibj,D) is consistently lower than T(dibj,N ). Moreover, when i is kept constant,
T(dibj,N ) decreases as j increases while T(dibj,D) increases. This observation suggests
that the traceability query efficiency of the non-layer index improves as block size increases.
The traceability query efficiency of the dual-layer index decreases for larger block sizes for
a given amount of data. This is because the dual-layer index structure primarily optimizes
the block jump process. As the data amount increases, the number of blocks decreases, and
the time required for block jumps in the traceability query process of the non-layer index
structure decreases, thereby reducing the optimization effect of the dual-layer index on
traceability queries.
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Figure 7. Experimental result of the influence of block size. (a) Query time of dual-layer index for
different block sizes; (b) Query time comparison of the dual-layer index and non-layer index for
different block sizes.

6.4.5. Extreme Case Experiment

Table 8 presents the query time, construction time, and storage occupation of the dual-
layer index structure for various large datasets. Our experimental findings suggest that
even with large data amounts, the query time, construction time, and storage occupation
of the dual-layer index structure exhibit linear variation. This indicates that the dual-
layer index structure can efficiently process large data amounts, as demonstrated by our
experimental results.

Table 8. Query time, construction time, and construct storage of dual-layer index with different
data amounts.

Data Amount 2 × 107 5 × 107 108 2 × 108

Query Time (s) 165.816 423.128 816.563 1655.432
Construction Time (s) 1579.213 3910.875 7936.125 17,136.263
Construct Storage (GB) 6.58 14.13 29.16 61.59

6.4.6. Complex Scenario Experiment

Table 9 presents the execution time of traceability query under complex scenarios such
as the one-to-many scenario and the many-to-one scenario.

Table 9. Query time comparison of one-to-many and many-to-one for different bifurcation factors.

Bifurcation Factor 1 2 3 4 5

One-To-Many 0.124 0.118 0.102 0.136 0.122
Many-To-One 0.135 1.545 42.598 469.312 3289.885

In the one-to-many scenario, the query time remains constant for different bifurca-
tion factors. This finding reveals that the traceability time in a one-to-many scenario is
independent of the bifurcation factor when the traceability length is constant. This can be
attributed to the fact that in a one-to-many relationship, the initial product can be perceived
as gradually decomposing into subproducts. Despite the number of subproducts generated,
the traceability from any subproduct always returns to the same length and, ultimately,
back to the source product, thereby keeping the query time unchanged.

In the many-to-one scenario, the query time increases with the increase in the bifur-
cation factor. This finding indicates that the traceability time in the many-to-one scenario
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positively correlates with the bifurcation factor when the traceability length is constant. In
a many-to-one relationship, the product is perceived as gradually merging with multiple
raw materials. The presence of multiple raw materials requires searching for upstream
raw materials based on the final merged product, which necessitates multiple backtracking.
The larger the number of bifurcation factors, the more raw materials are involved, and the
more backtracking is required, leading to an increase in the query time.

In practical production activities, it is common to find one-to-many and many-to-
one relationships in supply chains. However, mixed queries are local traceability queries
involving one-to-many and many-to-one relationships. Thus, the fundamental principles
remain unchanged.

7. Discussion

This section starts with a summary of our experimental results. Then, we illustrate
the implementation scenarios of the dual-layer index structure in a practical environment.
Furthermore, we compare our work with other blockchain-based supply chain traceability
research. In the end, we discuss the assumptions and limitations of our method.

7.1. Discussion of Experimental Results

The construction of a dual-layer index structure incurs additional time and space
overhead. Based on the experimental results presented in Section 6.4.1, we concluded that
the 2.5 to 3.4 times more time overhead is required for constructing a dual-layer index
structure compared with the original blockchain structure. However, the gap in time over-
head narrows as the block size increases. Similarly, the space overhead is 1.1 to 1.2 times
greater than that of the original blockchain structure, and the gap decreases as the block
size increases. Though there is overhead, constructing a dual-layer index structure can
significantly enhance the efficiency of traceability queries. As seen from the experimental
results in Sections 6.4.2 and 6.4.4, the traceability query efficiency under the dual-layer
index structure is 7.1 to 7.9 times higher than that of the original blockchain when the
traceability data account for a certain proportion (set at 10% in this experiment) of the total
data. The gap in query efficiency increases as the block size decreases. In contrast, the
experimental results in Section 6.4.3 show that the query efficiency under the dual-layer
index structure is determined by the amount and distribution of traceability data rather
than the total amount of data. The experimental results in Section 6.4.5 indicate that the
dual-layer index structure can efficiently process large amounts of data, as demonstrated
by the linear variation observed in the query time and storage occupation for varying
dataset sizes. Section 6.4.6 shows the query time is independent of the bifurcation factor
in the one-to-many scenario. In contrast, the query time increases with the increase in
the bifurcation factor in the many-to-one scenario. In a one-to-many scenario, the trace-
ability from any subproduct always returns to the same length and ultimately back to the
source product; in a many-to-one scenario, the presence of multiple raw materials requires
multiple backtracking, which can be interpreted as multiple traceability queries.

In general, the dual-layer index structure changes the process of obtaining traceability
data by replacing block traversal in the original blockchain with external block jumps
based on the external index and fast queries within blocks based on the internal index. The
dual-layer index reduces query time and improves query efficiency for traceability data.
Although constructing the index incurs some time overhead and requires slightly more
storage space, the benefits of improving query efficiency for traceability data far exceed
these costs.

7.2. Implementation Discussion

The internal index requires modifications of the block structure of blockchains, which
makes it impractical to directly implement the dual-layer index in practical applications.
Two scenarios for the implementation of the dual-layer index structure are proposed.
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• For a novel food supply chain, the initial step is to modify the MB+ tree block structure.
This alteration is imperative for storing the internal index and a part of the external
index. Following this, the location for storing the external index must be determined.
Three main options exist: (1) If a blockchain system supports a state database, such
as Fabric, Ethereum, or Partiy, the external index can be stored within this database.
(2) Another option is to make use of a special block that is designated for external
index storage, but this may lead to query time overhead. (3) Alternatively, an external
database can be introduced to store the external index, though this approach may
introduce security and tampering problems. In the end, to ensure the maintenance of
the system, an intelligent contract must be created that writes the traceability data and
effectively maintains the dual-layer index structure.

• For an existing food supply chain, the first step is to create a novel blockchain envi-
ronment that supports the dual-layer index feature. Subsequently, the traceability
data should be exported from the original supply chain system and imported into the
novel blockchain system. However, this process may entail a cross-chain operation.
If the underlying blockchain systems are identical, a data transformation intelligent
contract would be necessary. Otherwise, the traceability data have to be exported to
local storage and imported to the novel blockchain system later. However, the use of
local storage for data exporting poses potential issues. The absence of adequate data
protection mechanisms may result in tampering problems.

To illustrate the implementation details, we introduced a case study based on the
European food supply chain, a blockchain system for ensuring traceability, as described
in [41]. The system allows consumers to reconstruct the entire history of a product up to
its origin to verify its health and quality through a simple QR code scan. The general agri-
cultural food supply chain consists of all activities at different stages, namely, production,
processing, distribution, and consumption. The proposed solution considers the continuity
of different stages and events in the supply chain. Following the four stages mentioned
above, the case study was a rice supply chain.

(1) In the production stage, farmers add crop information to the blockchain, including
the seed source, production site, fertilizer use, harvest time, product batch, etc. At this stage,
a TraceID is defined, which can be defined based on the production site and production
batch. Rice produced in the same location and batch is assigned the same TraceID.

(2) In the processing stage, processors first store transaction records with farmers on
the blockchain, including information on both the parties and the traded items. Then,
processors need to store information about the rice in the drying, cleaning, and storage
processes, including the product batch, use of chemicals, impurity content, removal rate,
inventory number, product source, storage time, quality inspection report, product category,
product quantity, etc. In the processing stage, rice may undergo branching or merging due
to different storage and processing batches. For example, rice with different TraceIDs may
be stored under the same conditions, or rice with the same TraceID may undergo different
processing batches. In this case, the TraceID of the branching product can be identified by
adding an additional identifier. The TraceID of the merged product can be separated by a
delimiter, indicating that the merged result comes from rice with multiple TraceIDs.

(3) In the distribution stage, distributors first store transaction records with processors
on the blockchain, including information on both parties and the traded items. Distribu-
tors then record transportation details, tracking information, storage conditions (such as
temperature and humidity), and transportation time. All transactions between distributors
and retailers, as well as all relevant information, are written into the blockchain platform.
In this stage, packaged rice may also undergo branching or merging due to the different
transportation processes. The handling of the TraceID at this stage is the same as in the
processing stage.

(4) In the consumption stage, detailed information about each bag of rice is recorded,
including its current quality, expiration date, and storage conditions. The TraceID from the
distribution process is used in this stage and is recorded on the bar code attached to the
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final product packaging. Customers who purchase the rice can scan the bar code to obtain
the TraceID and trace the origin of the rice.

To analyze this case using a Hyperledger-Fabric-based dual-layer indexing structure,
we needed to make technical modifications to the Hyperledger Fabric blockchain. Based on
the characteristics of Hyperledger Fabric, the main modifications can be divided into three
parts: modifications of the block structure, modifications of interface implementations, and
additional interface implementations.

(1) Modifications of the block structure: The block structure in Hyperledger Fabric
consists of a block header and a block body. The block header does not require any
modifications, and the dual-layer indexing structure only needs to modify the storage
structure of the transaction data in the block body to an MB+ tree structure. External
indices are introduced into the stored transaction data in the block body through two
new fields: TraceID and preTraceHash. Because the Hyperledger Fabric chaincode Query
System Chaincode (QSCC) comes with the GetBlockByHash interface, block data can be
directly retrieved by the block hash. Therefore, the preTraceHash can assist block-to-block
jumping, reducing the modification cost. (a) Users provide the TraceID that is recorded in
the QR code or bar code of the product. The TraceID is stored in the system as product
information is recorded. For example, in the rice supply chain, farmers in the production
stage, processors in the processing stage, distributors in the distribution stage, and retailers
in the consumption stage need to provide the TraceID when recording intermediate product
information on the blockchain. (b) preTraceHash is updated with the temporary traceability
table. Hyperledger Fabric supports a state database, so the table in the dual-layer index
structure is stored in the state database. The table contains information such as TraceID,
TransactionID, and preTraceHash. When a transaction with a corresponding TraceID is
first inserted, the preTraceHash is null. During the Fabric transaction process, the orderer
nodes generate block sorting, and the peer node synchronizes the block data to the state
database. Therefore, the source code of the synchronization process needed to be modified
to synchronize TraceID, TransactionID, and preTraceHash to the state database during
this process.

(2) Modifications of interfaces: Modifications of the block structure affect the interfaces
related to block operations. In Hyperledger Fabric, some interfaces are based on the state
database to obtain data, such as PutState and GetState. Because the storage format of the
state database remains unchanged, these interfaces do not need to be modified. However,
some interfaces are based on block queries in the QSCC, such as GetBlockByNumber,
GetTransactionById, GetBlockByHash, etc. Due to the modifications in the block structure,
the interface implementation of QSCC needed to be modified.

(3) Additional interface implementations: To improve the efficiency of traceability
queries of the dual-layer index structure, an additional traceability query interface needed
to be implemented. The traceability query interface was designed to query the complete
history of a product based on its TraceID. The query process involves two parts: (a) The first
part involves finding the block with the last TraceID based on the temporary traceability
table in the state database, parsing the block data, and searching transactions with the
same TraceID using the MB+ tree query. (b) The second part involves jumping to the
corresponding block for the query based on the preTraceHash. This step is repeated until
the preTraceHash field of the transactions in the result set is null. To integrate these two
steps into a query interface, the first step can be implemented using the Fabric native
interface GetState, as the temporary traceability table is stored in the state database. The
second step can be implemented using the GetBlockByHash interface in QSCC, which
retrieves the corresponding block data and parses the transaction set. By implementing
these two steps in a query interface, users can easily query the complete history of a product
based on its TraceID.

Combining the Fabric transformation based on the dual-layer index structure, we
calculated the transformation cost. Regarding the cost of modifying the code, the dual-layer
index structure involves modifying the block body structure; it is necessary to insert the
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TraceID, TransactionID, and preTraceHash fields of the temporary traceability table into
the synchronous block data. However, in Fabric, changing the block body structure affects
the code modification of the block, including block data storage and query. Therefore, the
following source code needs to be modified: the block body structure, block storage format,
block data synchronization, etc. The modification involves the following packages: com-
mon package, core package, and peer package, resulting in a large range of modifications.
Fabric is a mature blockchain technology with a complete identity authentication mecha-
nism, encryption mechanism, and consensus algorithm. These mechanisms are unrelated
to the block structure, and the dual-layer index structure does not involve modifying the
above mechanisms. Therefore, the code modification introduced by the dual-layer index
structure accounts for a relatively small amount of Fabric source code.

Regarding the maintenance cost, after the block structure transformation, the data
stored in the block follow the standard transaction insertion logic without additional
user operation. However, the temporary traceability table must be maintained in real-
time. Specifically, the TraceID of the temporary traceability table needs to be updated
whenever the transaction is inserted. Regarding storage cost, in our study case, the native
Fabric occupies 36.4 GB, while the Fabric with the dual-layer index occupies 45.9 GB,
approximately 1.26 times larger the original block storage cost. This result is consistent
with the general experimental results. Regarding query performance improvement, the
original Fabric stores case data and performs traceability queries. It takes 1534.16 s to
analyze data by traversing blocks, whereas it takes only 375.53 s to use the additional
traceability query interface for traceability queries under the dual-layer index structure.
However, in actual cases, traceability queries require network communication between
clients and the blockchain, which consumes extra time due to network I/O compared with
the experimental results.

7.3. Comparison with Related Methods

We compared the dual-layer index structure with related methods based on method
type, security, sensitive data protection, storage overhead, and traceability query influenc-
ing factors. The comparison results are summarized in Table 10.

Table 10. Comparison results.

Ref Research Object Method Type Security Sensitive Data
Protection

Storage
Overhead

Traceability Query
Influencing Factors

Ours Blockchain Traceability Query Index Blockchain No Low Traceability Length
[42] Blockchain Traceability Query Index Blockchain No Low Data Amount
[43] Blockchain Traceability Query Index Blockchain No Low Data Amount

[26] Blockchain Query External
Database

External
Database No High Data Amount

[14] Blockchain Query External
Database

External
Database No High Data Amount

[44] Application of Supply Chain Application Blockchain Yes Low -
[45] Application of Supply Chain Application Blockchain Yes Low -

In addition to our method, those of Lai et al. [42] and Qin et al. [43] use an index
structure to optimize traceability query efficiency. Lai et al. [42] designed an index structure
independent of the Merkle tree to support efficient intrablock queries and create new fields
in the block header to optimize the interblock query. However, the method of Lai et al.
still needs to traverse all the blocks to compare the added block header fields. The method
of Qin et al. [43] also needs to find the first traceability object by traversing the block.
Moreover, their experiments showed that the efficiency of the traceability query is related
to the total amount of data under their indexing methods. The advantage of our method is
that traceability time is only affected by traceability length.
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Li et al. [26] and Peng et al. [14] achieved the advancement of additional query
middleware in the blockchain, but both studies introduced external database storage,
which may cause security problems.

Martintoni et al. [44] proposed a sensitive data protection strategy based on an authen-
tication mechanism in an alliance chain application. Meanwhile, a more comprehensive
sensitive data management approach was developed by Cha et al. [45], which adopts a key
escrow encryption system for data protection. Notably, the dual-layer index structure only
makes modifications to the blockchain structure to boost the performance of the traceability
query, thereby preserving the inherent features of the blockchain. Therefore, we did not
consider the sensitive data projection in the dual-layer index structure. The aforementioned
data protection strategies are complementary to our method.

7.4. Assumptions and Limitations

After analyzing the characteristics of the dual-layer index structure and reviewing the
experimental results, we identified several assumptions and limitations of this approach.

(1) Assumptions

Firstly, the implementation of the dual-layer index structure requires a transformation
of the blockchain to accommodate changes in the block structure. This transformation
can be directly upgraded for private and alliance chains; however, for public chains, the
requisite technical transformation authority must be obtained.

Secondly, it is recommended to have technical support similar to the state database,
which is readily available in many existing blockchain technologies such as Fabric and
Ethereum. By using a state database, the external index can be stored in it for maintenance,
maximizing the benefits of the dual-layer index structure. However, if a stateless database
is used, there might be a need to store the external index in the block, which could result in
a performance decrease.

Thirdly, the benefits of the dual-layer index structure are particularly evident when
there is a significant user base. It is easy to distribute traceability data across nonadjacent
blocks and enhance the efficiency of queries.

Fourthly, it is essential to determine an appropriate block size. When the total data
amount is fixed, a smaller block size leads to a larger number of blocks. Because each block
contains an MB+ tree structure (internal index), this results in increased overhead storage.
Conversely, a larger block size leads to a higher MB+ tree and reduces the number of blocks
needed. However, the effectiveness of the dual-layer index structure is weakened due to
longer intrablock searches and fewer block jumps during traceability queries. Therefore, it
is necessary to make a trade-off decision.

(2) Limitations

The security and tampering issues of the dual-layer index structure are dependent on
the security features of the underlying blockchain technology. The internal index MB+ tree
retains the properties of the Merkle tree, allowing it to expose data tampering in a timely
manner. Likewise, the temporary traceability tables rely on the storage of the blockchain
itself. Therefore, the dual-layer index structure does not introduce any additional security
risks to the blockchain, and its security is entirely dependent on the reliability of the
underlying blockchain technology.

One potential issue with the dual-layer index structure is the lack of protection mech-
anisms for data privacy, especially sensitive data. The data involved in the supply chain
include not only product traceability information but also private data that only related
enterprises can access, such as transaction information. For competitive enterprises, data
privacy is a crucial issue. The external index uses the self-increasing TraceID as the index’s
primary key. This may lead to the leakage of sensitive data, as tracing all products’ specific
traceability paths can be easily achieved at a low cost (by traversing the external index),
which could expose the cooperative relationships between companies. One solution to this
issue is to introduce other TraceID-encoding schemes or encryption methods to encrypt
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the TraceID. The TraceID could then be accessed through specific decoding means when
tracing the product’s traceability path, which can effectively protect sensitive data and
ensure that only authorized parties can access traceability information.

Under extreme traceability scenarios, the storage cost can sharply increase. When the
total amount of data is fixed, an increase in traceable data leads to an increase in external
index storage costs. Additionally, when there are too many traceability branches, the
TraceID in the external index may contain a large number of repeated prefixes, exacerbating
external index storage costs. In the case of one-to-many traceability, a snowflake-like
pattern may emerge, further increasing storage costs. For many-to-one traceability, using
separators to identify upstream products can make the internal index invalid. To address
these challenges, a new external TraceID index coding method could be introduced. At
the application level, the TraceID of upstream products can be recorded as part of product
attributes. This can help to reduce storage costs and ensure the external index remains
accurate and efficient, even in extreme traceability scenarios.

8. Conclusions

In recent years, food quality and security issues have become increasingly serious.
Ensuring transparency and traceability in the food supply chain is crucial for maintaining
food safety, quality control, compliance, and consumer trust. Compared with traditional
centralized management approaches, blockchain technology offers a better solution with
its decentralized and traceable characteristics.

To this end, we proposed a dual-layer index based on blockchain that can be applied
to supply chain traceability systems, providing an efficient solution to support traceability.
We designed an MB+ tree data structure to improve the internal block index and used a
temporary traceability table as the external block index. Our experiments demonstrated
that the traceability query capability of the dual-layer index is significantly improved, with
an average increase in traceability query efficiency of seven to eight times. Furthermore, we
verified that the dual-layer index structure can function generally under large datasets and
complex scenarios. The results of these experiments demonstrated that the query efficiency
of the dual-layer index structure in complex scenarios still adheres to general patterns and
is only related to traceability length.

To effectively implement the dual-layer index structure for supply chain traceability,
several assumptions must be met, including transformation conditions corresponding to
blockchain technology, support for the state database, a sufficient number of users, and
reasonable block size parameters. Meeting these assumptions is essential to maximize the
benefits of the dual-layer index structure while minimizing overhead costs and ensuring
efficient storage and retrieval of traceability data. The dual-layer index structure also
has some limitations, which need to be addressed. The security of the structure entirely
depends on the underlying blockchain technology, and sensitive data may be exposed if
not protected. The temporary traceability table may reveal the cooperative relationships
between companies, but this can be addressed by encoding or encrypting the TraceID. In
extreme traceability scenarios, the structure may introduce significant storage overhead,
requiring storage data or modifying the TraceID-encoding method at the application level.

In future work, we aim to improve the dual-layer index structure by addressing its
existing limitations. These improvements include enhancing the protection of sensitive
data by incorporating existing sensitive-data-protection methods, developing a new Tra-
ceID encoding method combined with cryptography techniques, and investigating new
storage structures to improve its scalability while maintaining query efficiency. These
enhancements aim to enhance the security, scalability, and efficiency of the dual-layer index
structure, making it more applicable for practical use. Furthermore, we plan to explore
integrating index structures with product attributes in the future, which may involve
incorporating new and emerging data formats. Such integration could help minimize the
storage overhead of additional indices currently in use.
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