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Abstract: Traditional methods for detecting foodstuff hazards are time-consuming, inefficient, and
destructive. Spectral imaging techniques have been proven to overcome these disadvantages in
detecting foodstuff hazards. Compared with traditional methods, spectral imaging could also
increase the throughput and frequency of detection. This study reviewed the techniques used to
detect biological, chemical, and physical hazards in foodstuffs including ultraviolet, visible and
near-infrared (UV-Vis-NIR) spectroscopy, terahertz (THz) spectroscopy, hyperspectral imaging, and
Raman spectroscopy. The advantages and disadvantages of these techniques were discussed and
compared. The latest studies regarding machine learning algorithms for detecting foodstuff hazards
were also summarized. It can be found that spectral imaging techniques are useful in the detection of
foodstuff hazards. Thus, this review provides updated information regarding the spectral imaging
techniques that can be used by food industries and as a foundation for further studies.
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1. Introduction

Legal requirements stipulate that foods must meet specific safety standards [1]. How-
ever, issues regarding food safety persist. Food contamination is a common food safety
issue that can occur during production, transportation, distribution, or storage, reducing the
functional properties and nutritional values of foods and resulting in foodborne illnesses
among consumers [2]. Generally, food contamination can be summarized as follows:

• Biological contamination: Bacteria and fungi are common biological contaminants in
foods. For example, Bacillus cereus is a type of foodborne pathogen known to cause
health problems, and thus, its detection is vital in foods [3,4]. Furthermore, the early
detection and identification of aflatoxin are similarly critical to prevent its entry into
food chains [5].

• Chemical contamination: Pesticide residues in agricultural products are the primary
chemical contamination that could cause serious health problems. Moreover, food
adulteration and fraud have caused public concern worldwide [6]. For example,
benzoic acid and melamine are commonly added to wheat flour and milk powder,
respectively. Imitation and fake food materials are usually introduced for economic
purposes [7]. However, their health consequences can be lethal. Thus, the screening
and identification of food authenticity are significant for consumers. Furthermore,
harmful organic substances, such as 5-hydroxymethylfurfural (5-HMF) and acrylamide
in heat-processed foods, are also common chemical contaminants.

• Physical contamination: Exogenous foreign substances (from glass pieces to wood
chips, stones, and metal pieces) that are not intended to be food components commonly
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affect food safety [8]. Moreover, endogenous foreign bodies in foods (such as fish
bones and nutshell fragments) are also hazardous to consumers. Thus, detecting
foreign bodies is vital for assuring food safety [9].

Such issues are of growing concern, especially in label-free and non-branded foods, and
drive the demand for fast and reliable methods to detect foodstuff hazards [10]. Traditional
analytical and detection techniques including high-performance liquid chromatography
(HPLC), mass spectrometry (MS), and enzyme-linked immunosorbent assays (ELISA) are
not suitable for non-destructive detection in food industries [11]. In addition, these methods
tend to be high-cost, labor-intensive, inefficient, and time-consuming [12]. Thus, rapid,
accurate, and non-destructive food safety inspection demand has increased [13]. In terms of
specificity, sensitivity, simplicity, low cost, rapidity, and non-destructivity, spectral imaging
techniques are effective tools for evaluating food safety [6].

This review provides critical insight into the challenges and development trends in
spectral imaging techniques for detecting foodstuff hazards. Detection methods using vari-
ous spectral imaging techniques (ultraviolet, visible and near-infrared (UV-Vis-NIR) spec-
troscopy, terahertz (THz) spectroscopy, hyperspectral imaging, and Raman spectroscopy)
are discussed from the three abovementioned perspectives (biological contamination, chem-
ical contamination, and physical contamination). Machine learning algorithms were carried
out to establish regression and classification models for detecting foodstuff hazards. The
main objectives of this review were: (1) to discuss recent advances in various spectral
imaging techniques in the detection of hazards in foods; (2) to compare the advantages and
disadvantages of these techniques; and (3) to provide suggested detection techniques for
specific hazards.

2. Spectral Imaging Techniques

Humans can only naturally observe objects within the visible spectral region (wave-
lengths of approximately 380–780 nm) [14]. The information in other spectral areas, such as
near-infrared (NIR) and mid-infrared (MIR), can only be collected using sensors. Spectrum
information in UV-Vis-NIR regions usually contains sensitive information regarding the
vibration of molecular bonds. Thus, it can detect biological and chemical hazards in foods.
At the same time, imaging information effectively detects physical hazards. Therefore,
features of spectral imaging techniques should be considered according to the specific study
and application requirements. The advantages and disadvantages of the most common
spectral imaging techniques are listed in Table 1.

Table 1. Features of spectral imaging techniques that are used in the detection of foodstuff hazards.

Techniques Advantages Disadvantages References

UV-Vis-NIR
spectroscopy

Easy operation, rapidity, non-destructivity, in
situ, online, low cost, and portability

No imaging information and
excessive noise [15,16]

NIR spectroscopy
Easy operation, rapidity, non-destructivity, in

situ, online, wide spectral range, and rich
information on chemical bonds and groups

No imaging information [15,17]

THz spectroscopy
Rapidity, reliability, non-destructivity,

non-ionization, and with spectral
fingerprinting characteristics

High cost, strong absorption of THz
radiation due to water, scattering effects,
limited penetration, limited sensitivity,

and low LOD

[9,12]

Hyperspectral imaging
Rapidity, real time, non-destructivity, high
spectral resolution, and a combination of

spectral and imaging information

Complicated image analysis and
redundant information [8,16,18]

Raman spectroscopy
High specificity, high sensitivity, simplicity,

non-sensitivity to water, and evident Raman
fingerprint of target attributes

Limited to very small sample volumes
and inability to acquire information from

large surface areas
[6,16,19]
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• UV-Vis-NIR spectroscopy has numerous advantages including easy operation, ra-
pidity, non-destructive operation, in situ application, online application, low cost,
and portability. Thus, it can be used to detect biological and chemical contamination.
However, only spectrum information can be obtained using such a technique, not
imaging information [15–17].

• THz spectroscopy covers the spectral region of 0.03–3 mm. It is used mainly to
detect chemical and physical contamination because of its rapidity, reliability, non-
destructivity, non-ionization, and spectral fingerprinting characteristics. However, the
disadvantages of this technique include its high cost, the strong absorption of THz
spectroscopy radiation due to water, scattering effects, limited penetration, limited
sensitivity, and low limit of detection (LOD) [9,12].

• Hyperspectral imaging combines spectral and imaging features to detect biological,
chemical, and physical contamination in foodstuffs. In addition, the spatial imaging
features provide the visualization of objects, thus enhancing visual clarity in detection.
However, image processing and data analysis are highly complicated in hyperspectral
imaging, and the cost is higher than spectroscopy techniques. In food contamination
detection, researchers prioritize spectroscopy techniques when imaging information is
not required [8,16,20].

• Raman spectroscopy is used to detect biological, chemical, and physical contamination
because of its high specificity, high sensitivity, simplicity, non-sensitivity to water, and
evident Raman fingerprint of target attributes. However, this technique is usually
limited to small sample volumes [6,16,19].

Proper spectral imaging techniques should be used according to their advantages
and disadvantages to obtain satisfactory detection results. The appropriate applications
of spectral imaging-based methods for detecting foodstuff hazards are listed in Table 2
including the detection of biological, chemical, and physical contamination using UV-Vis-
NIR spectroscopy, THz spectroscopy, hyperspectral imaging, and Raman spectroscopy. As
is evident in Table 2, spectral imaging-based techniques combined with chemometrics have
been shown to detect hazards in foodstuffs effectively.

Table 2. Applications of spectral imaging-based techniques for foodstuff hazards detection.

Foods Techniques Hazards Models and
Algorithms Results References

Corn kernels UV-Vis-NIR
spectroscopy Aflatoxin RF Training: 95.3%;

Testing: 94.8% [21]

Wheat kernels Vis-NIR
spectroscopy Toxigenic fungi PCA, LDA, and

PLS

Different fungal strains: 75–100%,
Different infection levels:

88.3–100%,
Rp

2 = 0.89

[22]

Peanut kernels Vis-NIR
spectroscopy Aflatoxin B1 SNV, random frog,

and PLS-DA

Full wavelengths: 88.57% and
92.86%;

Selected wavelengths: 90% and
94.29%

[23]

Corn FT-NIR
spectroscopy Aflatoxin B1 ACO, NSGA-II,

and BPNN
The best correlation coefficient in

prediction: 0.9951 [24]

Hami melon Vis-NIR
spectroscopy

Pesticide residues
(chlorothalonil,

imidacloprid, and
pyraclostrobin)

1D CNN, CNN,
PLS-DA, and SVM

Identification accuracies of 1D
CNN in test sets:

95.83% for four-class;
99.17% for two-class

[25]
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Table 2. Cont.

Foods Techniques Hazards Models and
Algorithms Results References

Rough, brown,
and milled rice

NIR
spectroscopy

Pesticide residues
(chlorpyrifos-

methyl)

PLS, mean
centering, SNV,

MSC, and
derivative

Quantitative detection:
R2 = 0.702–0.839 for rough rice,
0.722–0.800 for brown rice, and

0.693–0.789 for rough rice;
Qualitative detection: correct
classification = 77.8–92.6% for

rough rice, 79.6–88.9% for brown
rice, and 94.4–100% for milled rice

[26]

Strawberries NIR
spectroscopy

Pesticide residues
(boscalid and

pyraclostrobin)

PLS, PCA, 1st and
2nd derivative,
MSC, and SNV

Correlation coefficients: 0.93 for
boscalid and 0.83 for

pyraclostrobin
[27]

Chinese kale,
cabbage, and

chili spur
pepper

NIR and MIR
spectroscopy

Pesticide residues
(profenofos)

PLS, 1st derivative,
and SNV

R2 = 0.97 for Chinese kale, 0.88 for
cabbage, and 0.96 for chili spur

pepper
[28]

Honey NIR
spectroscopy 5-HMF

MSC, SNV, 1st and
2nd derivative,
Savitzky-Golay

smoothing, PCR,
and PLS

The best result: Rp
2 = 0.98 and

RPD = 3.3
[29]

Potatoes Vis-NIR
spectroscopy Acrylamide

SNV, MSC,
Savitzky-Golay
filtering, 1st and
2nd derivative,

feature
standardization,

sequential forward
selection (SFS), NB,
LDA, SVM, KNN,
PLS, RF, quadratic

discriminant
analysis (QDA),

extreme learning
machine (ELM),

decision tree (DT),
boosted tree (BT),

and neural
network (NN)

Classification of LDA: 92% [30]

Bok choi NIR
spectroscopy Chlorpyrifos

Savitzky-Golay
smoothing, mean
normalized, SNV,

baseline correction,
MSC, 1st

derivative, 2nd
derivative,

PLS-DA, SVM,
ANN, and
PC-ANN

The best accuracy, precision,
recall, and F1-scores: 1.0 [31]

Rice powder THz Pesticide residue
(carbendazim)

SVM, PLS, and
SVR

Qualitative detection: 100%;
Quantitative detection: R = 0.9978 [32]

Wheat flour THz Benzoic acid GRNN, BPNN,
and PCA Correlation coefficient: 0.85 [33]
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Table 2. Cont.

Foods Techniques Hazards Models and
Algorithms Results References

Milk powder THz Melamine PLS and MLR R2 = 0.98 for PLS and 0.97 for
MLR

[34]

Wheat flour THz

Pesticide residues
(6-

Benzylaminopurine,
2,6-

Dichlorobenzonitrile,
and imidacloprid)

BPNN, SVR, GA,
and PSO

The best correlation coefficients:
0.9913, 0.9948, and 0.9923 [35]

Sausages THz Foreign materials
(aluminum shards) PCA and DA 98.3–100% [36]

Wheat grain THz

Foreign bodies (a
stone, a metal
screw, a glass

fragment, and a
wood chip)

Linear low-pass
filtering and
non-linear
anisotropic
diffusion

/ [37]

Sugar and milk
powder THz Foreign substances

(insects) / / [38]

Zizania
latifolia, rice,

and maize
THz

Pesticide residues
(2,4-dichloro

phenoxy acetic
acid)

AsLS, AirPLS,
Backcor, and

BEADS
/ [39]

Walnuts THz
Endogenous

foreign bodies
(shells)

PCA Classification: 95% [9]

Chocolate bars,
dried laver, red

ginseng, and
walnuts

THz

Foreign bodies
(metal washer,
rubber band,

pepper seed, and
polystyrene pieces)

/ Well discriminated [40]

Fish THz

Endogenous
foreign bodies (fish

bones) and
exogenous foreign
substances (metal,

plastic, and
wooden

toothpicks)

CARS, UVE, SPA,
PLS-DA, LDA, and

SVM
The best detection result: 99.56% [41]

Pistachio
kernels

Hyperspectral
imaging Aflatoxin B 1

SNV,
Savitzky-Golay

smoothing, PCA,
LDA, and SMLR

Classification: 92.5% (calibration)
and 91% (validation);

Prediction: higher than 0.91
(calibration and validation)

[42]

Wheat kernels Hyperspectral
imaging Deoxynivalenol PLS, LDA, PCA,

and SNV

Full cross-validation: Rcv
2 = 0.72;

Independent validation:
Rp

2 = 0.27;
Correct classification accuracy:

62.7%

[11]

Maize kernels Hyperspectral
imaging Aflatoxin B1

PLS-DA, KNN,
PCA, PLS, MSC,

SNV, and
Savitzky-Golay

smoothing

Classification: 98.2%;
Prediction: Rcv

2 = 0.82 [43]
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Table 2. Cont.

Foods Techniques Hazards Models and
Algorithms Results References

Peanut kernels Hyperspectral
imaging Aflatoxin B1

1D modified TCN,
1D TCN, 1D LSTM,

and 1D CNN

The best accuracies: 99.60% in
training and 99.26% in testing by

1D modified TCN
[44]

Lettuce Hyperspectral
imaging

Pesticide residues
(fenvalerate and

dimethoate)

LS-SVR, CARS,
RF-RFE, SPA, and

SNV

CARS-SPA-LS-SVR (fenvalerate):
Rp

2 = 0.8890;
RF-RFE-SPA-LS-SVR

(dimethoate): Rp
2 = 0.9386

[45]

Fresh-cut
potato slices

Hyperspectral
imaging

Sulfur dioxide
residue

SVM, PCA, 2nd
derivative, and
Savitzky-Golay

smoothing

Full wavelengths: 98.75% in
calibration and 95% in prediction;
Selected wavelengths: 99.38% in

calibration and 92.50% in
prediction

[46]

Garlic chive Hyperspectral
imaging

Pesticide residues
(λ-cyhalothrin,
trichlorfon, and

phoxim)

1D CNN, KNN,
LDA, NB, RF, and

SVM

1D CNN: 98.5% in training and
97.9% in testing [47]

Beef Hyperspectral
imaging

Veterinary drug
residues

(metronidazole,
ofloxacin,

salbutamol, and
dexamethasone)

CNN, MLP, SVM,
RF, CARS, PCA,

and DWT

Overall accuracies: 91.6%, 88.6%,
87.6%, and 86.2% [48]

Chicken meat Hyperspectral
imaging Bone fragments PCA Detection accuracy: 93.3% [8]

Seaweed Hyperspectral
imaging

Insect, shrimp
shell, thread,

feather, and plastic
bag

The proposed
algorithm and

SVM

The proposed algorithm: 95%;
SVM: 79% [49]

Broiler breast
meat

Hyperspectral
imaging

Foreign materials
(polymer, wood,

and metal)

Fusion model,
PCA,

Savitzky-Golay
smoothing, Gap

Segment 2nd
derivative, and

SNV

Classification accuracies of
2 × 2 mm2: 95%, 95%, and 81%;

Classification accuracies of
5 × 5 mm2: 100%, 100%, and

100%

[50]

Chinese
hickory nuts

Hyperspectral
imaging

Endogenous
foreign bodies

(shell fragments)

2D CNN-LSTM,
KNN, SVM, and

PCA

2D CNN-LSTM obtained the best
overall classification accuracy of

99%.
[51]

Soy protein
meat

Hyperspectral
imaging

Foreign bodies
(polylactic acid,
polypropylene,
polyethylene

terephthalate, and
polyvinyl chloride)

SNV,
Savitzky-Golay
smoothing, 1st
derivative, 2nd

derivative, MSC,
PCA, SPA, CARS,

LDA, KNN,
BP-ANN, and

SVM

MSC-PCA-SPA-SVM obtained the
best classification accuracy:

95.00%
[52]
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Table 2. Cont.

Foods Techniques Hazards Models and
Algorithms Results References

/ Raman
spectroscopy

Foodborne
pathogens

(Escherichia,
Listeria, Vibrio,
Shigella, and
Salmonella)

GA, PSO, and
ANN

The average accuracies: 0.89
(GA-ANN) and 0.93 (PSO-ANN);
The best identification rate: 0.96

[53]

Edible oils Raman
spectroscopy Aflatoxin B1 CNN and RNN

Qualitative detection: 100%;
Quantitative detection: Rp

2 = 0.95
and RPD = 4.86

[54]

Maize Raman
spectroscopy Aflatoxin B1 BOSS, VCPA,

CARS, and SVM Rp
2 = 0.9715 and RPD = 5.8258 [55]

Edible oils Raman
spectroscopy Adulterated oils

PCA-linear
regression

(PCA-LNR), L1
penalty-LNR, L2

penalty-LNR,
elastic net

penalty-LNR, PLS,
PCA-RF, RF,

PCA-boosting, and
boosting

R2 = 0.984 for olive oil
adulterated with soybean oil and
0.910 for avocado oil adulterated

with canola oil

[56]

Wheat flour
Raman

hyperspectral
imaging

Benzoyl peroxide,
alloxan

monohydrate, and
L-cysteine

SAM, ICA, and
Kruskal-Wallis test

Correlation coefficients: 0.985,
0.985, and 0.987 [10]

Fish fillets
Raman

hyperspectral
imaging

Fish bones FRSTCA and
SVDD Classification accuracy: 90.5% [57]

Non-dairy
powdered

creamer

Raman spectral
imaging Melamine SMA and SID Correlation coefficient: 0.99 [6]

Milk solution Raman
imaging

Melamine, sodium
thiocyanate, and

lincomycin
hydrochloride

DWT Detection sensitivities: 0.1, 1, and
0.1 mg/kg [58]

3. Applications
3.1. UV-Vis-NIR Spectroscopy

UV-Vis-NIR spectroscopy covers the spectral wavelengths of 10–2500 nm
(UV: 10–380 nm, Vis: 380–780 nm, and NIR: 780–2500 nm). Generally, UV-Vis-NIR spec-
troscopy is used to detect biological and chemical hazards in foods. The schematic diagram
of the reflectance spectrum and the transmittance spectrum can be seen in Figure 1a,b.
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3.1.1. Biological Contamination

The contamination of foodstuffs by biological hazards, such as bacteria and fungi,
can happen at any time between production and consumption. Spectral reflectance has
been investigated for the detection of biological contamination in foods. For example,
Tao et al. [23] used visible and near-infrared (Vis-NIR) spectroscopy to detect the surface
contamination of peanut kernels with aflatoxin B1. Partial least squares-discriminant
analysis (PLS-DA) based on total spectral absorbance was carried out to detect different
contamination levels in the peanut kernels. The best detection accuracies were 88.57%
and 92.86%, with 20 and 100 ppb thresholds, respectively. In addition, the random frog
was investigated to identify effective wavelengths. PLS-DA models were built again,
obtaining overall accuracies of 90% and 94.29%, with 20 and 100 ppb as the classification
thresholds, respectively. These improved detection accuracies indicated that selected
wavelengths perform better than full wavelengths. This study demonstrated that Vis-NIR
spectroscopy could effectively classify peanut kernels contaminated by aflatoxin B1, thus,
had the potential for use in large-scale online detection and non-destructive screening. In
another study, Cheng et al. [21] used UV-Vis-NIR spectroscopy to classify corn kernels
contaminated by different aflatoxin levels. The random forest (RF) classification model was
built to identify contaminated samples, achieving overall accuracies of 95.3% and 94.8% in
the training and testing sets, respectively. Moreover, the wavelengths 390, 540, and 1050 nm
were found to play vital roles in the classification. This study, thus, concluded that UV-Vis-
NIR spectroscopy could be used in the classification of single corn kernels contaminated by
aflatoxin. Fourier transform near-infrared (FT-NIR) spectroscopy was also used to detect
aflatoxin B1 in corn [24]. After pre-processing by SNV, ant colony optimization (ACO) and
NSGA-II algorithms were investigated to select characteristic wavelengths. Based on the
selected wavelengths, the NSGA-II-back propagation neural network (NSGA-II-BPNN)
obtained the best result with a correlation coefficient of 0.9951 in prediction. This study
showed that the NSGA-II algorithm could obtain effective wavelengths for predicting
aflatoxin B1 in corn.

In addition to aflatoxin, the detection of toxigenic fungi in wheat kernels via Vis-NIR
spectroscopy has also been reported. Shen et al. [22] applied principal component analysis
(PCA) and linear discriminant analysis (LDA) to identify infected samples, and the LDA
obtained accurate classification rates of 75–100% for different fungal strains (Fusarium and
Aspergillus) as well as 88.3–100% for different infection levels. In addition, the partial least
squares (PLS) model was carried out to predict colony counts in wheat kernels, with a
coefficient of determination in prediction (Rp

2) of 0.89 and a residual predictive deviation
(RPD) of 3.03, indicating the excellent performance of the prediction model [59]. Thus,
this work proved Vis-NIR to be an effective tool in the early detection of toxigenic fungi
contamination in wheat grains and introduced a novel approach for reducing the risk of
mycotoxin entry into food chains.

3.1.2. Chemical Contamination

Because of the molecular vibration of chemical groups such as C-H, N-H, and O-H,
spectroscopy, especially for NIR, has been widely used in chemical contamination in food-
stuffs. Pesticide residues and their metabolites in foods commonly cause adverse effects on
humans [27]. Thus, Vis-NIR spectral reflectance was carried out to detect pesticide residues
(chlorothalonil, imidacloprid, and pyraclostrobin) on the surface of Hami melon [25]. In
this study, a one-dimensional convolutional neural network (1D CNN) was used to identify
the samples contaminated by the pesticide residues, obtaining classification accuracies of
95.83% for four-class samples (control, chlorothalonil, imidacloprid, and pyraclostrobin)
and 99.17% for two-class samples (with and without pesticide residues). The results based
on 1D CNN outperformed those obtained by CNN, PLS-DA, and support vector machine
(SVM) models. Moreover, Sankom et al. [28] used FT-NIR combined with Fourier transform
mid-infrared (FT-MIR) spectroscopy to detect profenofos residues in Chinese kale, cabbage,
and chili spur pepper. The original spectral absorbance data were pre-processed via 1st
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derivative and SNV. The PLS models based on FT-NIR subsequently obtained the best
prediction results with R2 of 0.97 for Chinese kale, 0.88 for cabbage, and 0.96 for the chili
spur pepper, thus showing the potential of FT-NIR spectroscopy as a promising screening
tool for the detection of pesticide residues in vegetables. NIR spectroscopy was also carried
out to detect boscalid and pyraclostrobin in strawberries [27]. After pre-processing (1st
and 2nd derivative, multiplicative scatter correction (MSC), and standard normal variate
(SNV)), the spectral absorbance data were used to build PLS models, subsequently obtain-
ing correlation coefficients in the prediction of 0.93 for boscalid and 0.83 for pyraclostrobin.
In another study, Rodriguez et al. [26] used NIR spectroscopy to detect chlorpyrifos-methyl
pesticide residues in rough, brown, and milled rice. They built PLS models based on the
spectral absorbance data pre-processed by mean centering, SNV, MSC, and derivatives.
Though only one type of pesticide (chlorpyrifos-methyl) was identified, the results were
promising, with R2 of 0.702–0.839 for rough rice, 0.722–0.800 for brown rice, and 0.693–0.789
for rough rice obtained. Furthermore, qualitative detection effectively achieved classifi-
cations of 77.8–92.6% for rough rice, 79.6–88.9% for brown rice, and 94.4–100% for milled
rice. The chlorpyrifos on bok choi was also detected using NIR spectroscopy [31]. The
researchers used different machine learning algorithms (PLS-DA, SVM, artificial neural
network (ANN), and principal component-artificial neural network (PC-ANN)) to identify
chlorpyrifos on bok choi. Finally, the accuracy, precision, recall, and F1-scores were 1.0
for PLS-DA, SVM, and PC-ANN algorithms on the unknown dataset. The results demon-
strated that NIR spectroscopy combined with machine learning effectively detects pesticide
residue. All of these findings proved the effectiveness of NIR spectroscopy in detecting
pesticide residues in foods.

Besides pesticide residues, the harmful organic substances in heat-processed foods are
also hazardous to humans. For example, 5-HMF is carcinogenic to humans. Thus, Apriceno
et al. [29] detected 5-HMF content in honey using NIR spectroscopy and obtained an Rp

2

of 0.98. The excellent result indicated that the NIR spectroscopy technique has the potential
to can act as an early warning against the critical 5-HMF threshold in food industries.
However, this study only investigated 41 samples, which might affect the stability of
the models. Acrylamide, a neurotoxin with carcinogenic properties, is another common
harmful organic substance in fried and baked foods. Smeesters et al. [30] classified different
levels of acrylamide in potatoes using Vis-NIR spectroscopy and obtained the classification
of 92% by LDA. These studies provided a reference for the large-scale detection of harmful
organic substances in food processing industries.

3.2. THz Spectroscopy

THz spectroscopy covers the spectral wavelengths of 0.03–3 mm (frequency of
0.1–10 THz), which locates in another spectral region different from Vis-NIR. The vibration
and rotational energy levels of most biological molecules, such as DNA, protein, and amino
acids, are located in this spectral range [60], making THz spectroscopy useful in detecting
toxic and harmful compounds, antibiotics, and foreign bodies in foods [12]. The schematic
diagram of the THz spectroscopic imaging system can be seen in Figure 2. This review
listed some typical studies regarding food contamination (chemical and physical) detection
using THz spectroscopy.

3.2.1. Chemical Contamination

Benzoic acid is sometimes used to preserve certain foods. However, long-term con-
sumption of this chemical additive can cause cumulative poisoning in the liver [33]. Thus,
various studies have used THz spectroscopy to detect benzoic acid in wheat flour. Gener-
alized regression neural network (GRNN) and back propagation neural network (BPNN)
models were built based on orthogonal PCA scores transformed from THz spectra, and
the GRNN model obtained the best detection result with a correlation coefficient of 0.85
in the prediction [33]. Melamine can increase the protein content in foods and is, thus,
commonly used as an illegal additive in milk powder [18], making detecting melamine
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highly significant for food safety. Therefore, Sun et al. [34] detected melamine in milk
powder using THz spectroscopy, building a multiple linear regression (MLR) model based
on a pair of variables at 2.04 and 2.34 THz, as suggested by correlation analysis. The
researchers then compared MLR with the PLS model based on full spectral wavelengths.
They found that the MLR model performed excellently, obtaining a correlation coefficient
of 0.97 and demonstrating that THz spectroscopy helps detect melamine in milk powder.
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Furthermore, THz spectroscopy is also effective in detecting pesticide residues in foods.
For example, Qin et al. [32] applied THz time-domain spectroscopy to detect pesticide
residue (carbendazim mixtures) in packaged foods. This study investigated different
weight ratios of carbendazim in polyethylene and rice powder, and pure carbendazim,
polyethylene, and rice powder were subsequently effectively classified. It was shown
that SVM performed excellently in the qualitative detection of carbendazim when the
weight ratio was low. In addition, when PLS and support vector regression (SVR) were
performed to detect carbendazim mixtures, the best result was obtained by SVR with the
R of 0.9978. These findings proved that THz time-domain spectroscopy also effectively
detects pesticide residue in packaged foods. Using THz spectroscopy, Qu et al. [39] detected
pesticide residues (2,4-dichloro phenoxy acetic acid) in Zizania latifolia, rice, and maize.
Four baseline correction methods (asymmetric least squares (AsLS) smoothing, adaptive
iteratively reweighted penalized least squares (airPLS), background correction (Backcor),
and baseline estimation and denoising with sparsity (BEADS)) were carried out to eliminate
spectral baselines. The results showed that the detection limit and accuracy of 2,4-dichloro
phenoxy acetic acid residues were improved by baseline correction. In another study, THz
spectroscopy was carried out to detect three pesticides (6-benzyl amino purine, 2,6-dichloro
benzonitrile, and imidacloprid) in wheat flour [35]. BPNN with parameter optimization
(genetic algorithm (GA)) and wavelength selection (particle swarm optimization (PSO))
obtained the best prediction results with correlation coefficients in the prediction of 0.9913,
0.9948, and 0.9923 for 6-benzyl amino purine, 2,6-dichloro benzonitrile, and imidacloprid,
respectively. This study demonstrated the feasibility of THz spectroscopy in detecting
pesticides with low concentrations.

3.2.2. Physical Contamination

Due to its non-destructivity, non-ionization, and spectral fingerprinting characteristics
advantages, THz spectroscopic imaging was also used to detect endogenous contamina-
tion in a complex food matrix [9]. The endogenous foreign bodies in walnuts were first
detected according to kernels and shells’ typical absorption spectrum features, and the
classification accuracy of PCA achieved higher than 95%. The results showed that THz
spectroscopic imaging could effectively identify shell contamination among walnut kernels.
Shin et al. [38] analyzed the optical features (refractive index and absorption coefficient)
of food materials (sugar and milk powder) and foreign substances (insects) in the THz
frequency range. The absorption coefficients increased as the frequency increased, and the
refractive indices decreased. Finally, foreign substances were identified based on the optical
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features of the food matrix and insects. Jiang et al. [37] detected foreign bodies (a stone,
a metal screw, a glass fragment, and a wood chip) in wheat grain using THz reflection
imaging. Image pre-processing (linear low-pass filtering) was carried out to improve the
visual contrast between the foreign bodies and the grain samples. Ultimately, foreign bodies
in the grain were detected and identified, thereby confirming the value of the THz reflection
imaging technique. In another study, Wang et al. [36] detected foreign materials (aluminum
shards) in sausages using THz spectroscopic imaging. The locations of contamination in
the sausages were identified based on typical spectra, PCA, and discriminant analysis
(DA), among which the correct classification rates of DA were up to 98.3–100%. This study
provided a new technique for detecting foreign materials in foods.

Moreover, Ok et al. [40] inspected food quality (in chocolate bars, dried laver, red
ginseng, and walnuts) using a large-scan-area sub-THz imaging system, in which foreign
bodies (metal washers, rubber bands, pepper seeds, and polystyrene pieces) were well
discriminated. The foreign bodies in fish were also detected using THz imaging and
spectroscopy [41]. Both endogenous foreign bodies (fish bones) and exogenous foreign
substances (metal, plastic, and wooden toothpicks) in fish were investigated in this study.
Competitive adaptive reweighting sampling (CARS), uninformative variable elimination
(UVE), and successive projections algorithm (SPA) were carried out to identify valuable
features. Then, PLS-DA, LDA, and SVM were established to detect foreign bodies in
fish. Finally, the best detection result was obtained by CARS-SVM with an accuracy rate
of 99.56%.

3.3. Hyperspectral Imaging

Hyperspectral imaging is more powerful than spectroscopy techniques since it can
also provide spatial information. Unlike spectral sensing, it can simultaneously provide
spectral (from Vis to NIR) and imaging information (covering hundreds or thousands
of wavebands). Thus, each pixel in the hyperspectral image has continuous spectrum
information. However, hyperspectral imaging is more complicated than spectroscopy, and
its parameters (such as moving speed, exposure time, and the vertical distance between the
camera and samples) must be set before image collection. After that, the raw images must
be calibrated using white and dark reference images based on Equation (1). The schematic
diagram of the hyperspectral imaging system can be seen in Figure 3.

Icalibrated =
Iraw − Idark
Iwhite − Idark

(1)
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3.3.1. Biological Contamination

Due to the advantages of hyperspectral imaging, it performs well in detecting bio-
logical contamination in foods. For example, using hyperspectral imaging, Chakraborty
et al. [43] detected aflatoxin B1 in maize kernels, a common mycotoxin and human car-
cinogen. PLS models were built to predict aflatoxin B1 concentrations in maize kernels
naturally contaminated by Aspergillus flavus. After data pre-processing (via MSC and
SNV), two classification models (PLS-DA and K-nearest neighbor (KNN)) were developed
to classify the samples contaminated by different concentrations of aflatoxin B1. The PLS
model acquired a good prediction result with the Rcv

2 of 0.82, while the KNN model,



Foods 2023, 12, 2266 12 of 19

based on raw data, obtained the best classification accuracy of 98.2%. In the PCA score
plot, the samples with low contamination levels (25, 40, and 70 ppb) were far from highly
contaminated samples (200, 300, and 500 ppb).

Furthermore, the pixel-wise classification of the maize kernels developed via KNN
and the aflatoxin B1 concentration distribution image based on PLS were close to the
results obtained via HPLC. Overall, these results demonstrated that hyperspectral imaging
could play an essential role in classifying maize kernels contaminated by aflatoxin B1 and
predicting aflatoxin B1 concentration. In another study, hyperspectral imaging was used to
detect and classify different levels (5, 10, 20, 30, and 50 ppb) of aflatoxin B1 contamination in
pistachio kernels [42]. PCA showed that the control samples were far from all contaminated
samples, and overall classification accuracies of 92.5% calibration and 91% validation were
obtained via LDA. Moreover, stepwise multiple linear regression (SMLR) prediction models
were used to obtain correlation coefficients in calibration and validation higher than 0.91
and, additionally, five wavelengths (708, 771, 892, 915, and 941 nm) were identified via
PCA-loading, which also played vital roles in the aflatoxin B1 classification and prediction.
The results of this study, thus, demonstrated that hyperspectral imaging is effective in
the preliminary screening of pistachio kernels. A one-dimensional modified temporal
convolutional network (1D modified TCN) based on hyperspectral imaging was also
used to detect aflatoxin B1 in peanut kernels [44]. Four models (1D modified TCN, one-
dimensional temporal convolutional network (1D TCN), one-dimensional long short-term
memory (1D LSTM), and 1D CNN) were investigated, and 1D modified TCN achieved the
best accuracies with 99.60% in training and 99.26% in testing.

In addition to aflatoxin, deoxynivalenol has also caused growing concern because of
its prevalence in wheat. Thus, Femenias et al. [11] carried out hyperspectral imaging to
detect and classify wheat kernel contamination by deoxynivalenol. The PLS models built
using spectral reflectance information obtained an Rcv

2 of 0.72 in full cross-validation and
an Rp

2 of 0.27 in independent validation. Moreover, the correct classification accuracy in
the validation set of 62.7% was obtained via LDA for two categories of the samples. This
work, thus, demonstrated the power of hyperspectral imaging in deoxynivalenol screening.

3.3.2. Chemical Contamination

Besides biological contamination, this technique has also been used to detect chemical
contamination in foods. For example, pesticide residues such as fenvalerate and dimethoate
in lettuce leaves were detected by hyperspectral imaging [45]. After pre-processing via
SNV, CARS, random forest-recursive feature elimination (RF-RFE), and SPA were carried
out to identify valuable wavebands, and least-squares support-vector regression (LS-SVR)
was subsequently built to predict the fenvalerate and dimethoate content. The CARS-SPA-
LS-SVR achieved an Rp

2 of 0.8890 for fenvalerate, while the RF-RFE-SPA-LS-SVR achieved
an Rp

2 of 0.9386 for dimethoate. In another study, the pesticide residues (lambda (λ)-
cyhalothrin, trichlorfon, and phoxim) on garlic chive leaves were detected using shortwave
infrared hyperspectral imaging, with pure water used as the control [47]. The signal-to-
noise ratio (SNR) was improved by modified mean filtering (MMF), and outliers were
eliminated using the isolated forest algorithm. The researchers subsequently explored
the effectivity of different classification models (1D CNN, KNN, LDA, Naive Bayes (NB),
RF, and SVM). They found that 1D CNN obtained the best classification results, with
98.5% in training and 97.9% in testing, thus providing a reliable tool for detecting pesticide
residues on garlic chive leaves. In another study, Bai et al. [46] compared the performance
of hyperspectral imaging with that of the spectroscopy technique. They detected sulfite
dioxide residue on the surface of fresh-cut potato slices using hyperspectral imaging and
NIR spectroscopy. The results showed that SVM based on whole hyperspectral imaging
provided classification accuracies of 98.75% in calibration and 95% in prediction. After that,
the Savitzky–Golay algorithm was investigated to identify effective wavelengths, achieving
corresponding classification accuracies of 99.38% in calibration and 92.50% in prediction.
Selected wavelengths tend to provide slightly lower classification accuracy in prediction
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than full wavelengths. However, the model based on selected wavelengths was simpler
and faster, and the hyperspectral imaging produced better classification results than the
NIR spectroscopy. It proved hyperspectral imaging also effectively detects sulfite dioxide
residue on fresh-cut potato slices.

Veterinary drug residues are another common chemical contaminant in foods. Jiang
et al. [48] detected veterinary drug residues (metronidazole, ofloxacin, salbutamol, and
dexamethasone) in beef using hyperspectral imaging. CARS, PCA, and discrete wavelet
transform (DWT) were investigated to reduce the dimensions of the hyperspectral imaging
data. After that, CNN, a multilayer perceptron (MLP), SVM, and RF were built to identify
the veterinary drug residues, and overall accuracies of 91.6%, 88.6%, 87.6%, and 86.2%, re-
spectively, were obtained based on DWT. This study, thus, demonstrated that hyperspectral
imaging is also effective in the detection of veterinary drug residues in foods.

3.3.3. Physical Contamination

All the above studies focused on biological and chemical contamination in foodstuffs
using hyperspectral imaging. Physical contamination in foods is also recognized as a
common food safety issue. Researchers have, for example, investigated hyperspectral
imaging to identify physical hazards in foodstuffs. Using hyperspectral imaging, Lim
et al. [8] detected bone fragments embedded in chicken meat. Five bone fragments with
lengths of approximately 20–30 mm and deboned chicken breast pieces with thicknesses of
3, 6, and 9 mm were investigated in this study. Spectral reflectance covering 987–1701 nm
of the bone fragments embedded in the chicken meat was extracted. After that, PCA
was carried out to visualize the spectral reflectance and, thereby, describe the varieties of
samples. Finally, the chicken breast meat, bone fragments, and embedded bone fragments
were well classified for samples of 3 mm thickness. However, the embedded bone fragments
and chicken breast meat of 9 mm thickness could not be effectively classified.

The subtraction image algorithm (image 1153.8 nm–image 1480.2 nm) was then used
to detect bone fragments in the chicken meat, and an accuracy of 93.3% was obtained.
These findings indicated that hyperspectral imaging could also effectively detect foreign
substances embedded in chicken meat. Endogenous foreign bodies, such as nutshell
fragments, are also consumer safety hazards. Thus, the effectivity of hyperspectral imaging
for identifying Chinese hickory nutshell fragments was investigated by Feng et al. [51]. The
researchers compared a two-dimensional convolutional neural network and long short-
term memory (2D CNN-LSTM), PCA-KNN, and SVM models. Lower classification results
obtained by PCA-KNN and SVM indicated that food safety issues caused by the shell
fragments would increase. However, the 2D CNN-LSTM model provided the best overall
classification accuracy, at 99%. Moreover, visualization images of the foreign bodies (shell
fragments) were produced, which were helpful for detection.

Exogenous foreign objects, such as insects, shrimp shells, thread, feathers, and plastic,
have also been detected in seaweed via hyperspectral imaging. Kwak et al. [49] overcame
the hyperspectral imaging limitation of low-speed inspection by incorporating dimension-
ality reduction and simplified operations. Seaweed and conveyor belts were first classified
using the subtraction method, whereafter the standardization inspection was investigated
to improve results. The proposed algorithm and SVM achieved 95% and 79% detection
accuracies, respectively. Foreign materials (polymer, wood, and metal) in broiler breast
meat were detected using hyperspectral imaging by Chung et al. [50], in which thirty
different types of foreign materials of two different sizes (5 × 5 mm2 and 2 × 2 mm2) were
identified. A fusion model, which combined Vis-NIR and shortwave infrared hyperspectral
imaging, was used to obtain classification accuracies of 95%, 95%, and 81% for polymer,
wood, and metal, respectively, all with the size of 2 × 2 mm2. The corresponding results
were 100%, 100%, and 100% for polymer, wood, and metal, respectively, when the sample
size was 5 × 5 mm2. This study also showed that the fusion model performed better than
the individual Vis-NIR and shortwave infrared-based models by 18% and 5%, respectively.
In another study, the foreign materials (polylactic acid, polypropylene, polyethylene tereph-
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thalate, and polyvinyl chloride) in soy protein meat were detected using hyperspectral
imaging [52]. The hyperspectral transmission images were investigated, and the model
(MSC-PCA-SPA-SVM) obtained the best classification accuracy of 95.00% in the validation.
From this study, the localization of the analogous density foreign matter can be seen clearly
from visualization images.

Another advantage of hyperspectral imaging is that it can provide visualization
images based on spatial information, thereby clearly detecting the distribution of foodstuff
hazards. For example, the visualization images showing the distribution of aflatoxin B1 in
maize kernels [43], surviving Listeria monocytogenes loads in dried eggs [61], and total
colony counts in peach fruit [20] can be seen in Figure 4a–c. The principle underlying
visualization images can be described as follows: Based on the spectral reflectance from
hyperspectral imaging, a prediction model is built. The prediction model can be described
as Y = f(x), where x is the spectral reflectance value, and Y is the chemical value. Each pixel
in the hyperspectral image has a spectral reflectance value; thus, each pixel corresponds
to one chemical value according to the equation. The chemical values of all pixels are
then marked using various colors ranging from blue to red (from low to high). Finally,
a visualization image showing the chemical values (such as the content of hazards in
foodstuffs) is generated, significantly clarifying the detection process.
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Hyperspectral imaging was also combined with other techniques such as electronic
nose in food contamination detection. For example, Liu et al. [62] detected microbial
content, total soluble solids, and titratable acidity in strawberries during decay. The results
showed that the color, total soluble solids, and titratable acidity of infected strawberries
were highly correlated with their microbial content. The SVM models based on principal
components (PCs) performed better than the single dataset of hyperspectral imaging or
electronic nose. The best results (Rp

2) were 0.925 for colony counts, 0.824 for total soluble
solids, and 0.598 for titratable acidity. Furthermore, the visualization of microbial content
distribution was generated using the SNV-SVM model. This study demonstrated the
performance of the combined techniques for evaluating strawberry safety.

3.4. Raman Spectroscopy

Raman spectroscopy has been shown to effectively obtain information about molec-
ular structures and the composition of samples [7]. Compared with other techniques,
Raman spectroscopy is not affected by water within the samples and, thus, shows excellent
performance in liquids [19]. Moreover, this technique can be utilized in microanalysis
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when combined with a microscopy system [58]. The schematic diagram of the Raman
spectrometer can be seen in Figure 5.
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3.4.1. Biological Contamination

Raman spectroscopy was applied to detect foodborne pathogens (Escherichia, Listeria,
Vibrio, Shigella, and Salmonella) by Vakilian [53]. The GA and PSO were used to optimize
the architecture of ANNs for detecting the type of foodborne pathogens. Finally, GA-ANN
and PSO-ANN obtained average accuracies of 0.89 and 0.93, respectively. Based on the
Raman spectra of the cells, ATCC 14028 (the strain of Shigella) and ATCC 19112 (the strain of
Listeria bacteria) obtained the best identification rate of 0.96. This study showed that Raman
spectroscopy combined with machine learning could identify foodborne pathogens in foods
by exploring the cells. Raman spectroscopy was also used for detecting other biological
contaminants such as aflatoxin B1 in edible oils [54]. Deep learning algorithms (CNN and
recurrent neural network (RNN)) were investigated to qualitatively and quantitatively
detect aflatoxin B1 in the samples. Both CNN and RNN reached the recognition accuracy
of 100% in identifying the aflatoxin B1 contamination degree of the edible oil, and RNN
outperformed CNN for detecting aflatoxin B1 contamination level with an Rp

2 of 0.95 and
an RPD of 4.86. In another study, Deng et al. [55] further detected aflatoxin B1 in maize
based on Raman spectroscopy. A portable Raman spectroscopy system was applied to
collect spectra information. Three methods (bootstrapping soft shrinkage (BOSS), variable
combination population analysis (VCPA), and CARS) were investigated to identify valuable
wavelengths. Then, SVM was established based on selected wavelengths for detecting
aflatoxin B1 in maize. From the results, it can be found that the characteristic wavelengths
performed better than full wavelengths. Finally, the CARS-SVM model obtained the best
result with an Rp

2 of 0.9715 and an RPD of 5.8258. These studies demonstrated that Raman
spectroscopy effectively detects biological contamination such as aflatoxin B1 in foods.

3.4.2. Chemical Contamination

Raman spectroscopy has also been used to detect adulteration and additives in foods.
For example, melamine, vanillin, and sugar were detected in non-dairy powdered creamer
using Raman spectral imaging [6]. The spectra of the pure components at all concentrations
and the corresponding contribution images were extracted via self-modeling mixture
analysis (SMA), whereafter spectral information divergence (SID) values were used to
identify the pure component spectra. These contribution images produced Raman chemical
images, and binary images of the components at different concentrations were subsequently
generated. Finally, the number of pixels in the binary images of each composition was
highly correlated with the actual component concentrations, and the correlation coefficient
was found to be 0.99 for all components. It indicated that Raman spectral imaging could
effectively identify different components and predict the concentrations in a complex



Foods 2023, 12, 2266 16 of 19

food matrix. In another study, a single-drop Raman imaging technique was proposed
to semi-quantitatively detect multiple hazardous factors (melamine, sodium thiocyanate,
and lincomycin hydrochloride) in a milk solution, with detection sensitivities of 0.1, 1,
and 0.1 mg/kg, respectively [58]. The results of this study demonstrated the effectiveness
of the Raman imaging technique in evaluating milk safety. Moreover, machine learning
based on Raman spectroscopy was used to detect the adulteration of edible oils [56]. Nine
machine learning algorithms (PCA-linear regression (PCA-LNR), L1 penalty-LNR, L2
penalty-LNR, elastic net penalty-LNR, PLS, PCA-RF, RF, PCA-boosting, and boosting) were
established for the adulteration detection. The L2 penalty-LNR proved the best to detect
adulterated edible oils with R2 of 0.984 for olive oil adulterated with soybean oil and 0.910
for avocado oil adulterated with canola oil. This study demonstrated the performance of
Raman spectroscopy for the authentication and detection of contaminants in foods.

Furthermore, Raman hyperspectral imaging was investigated to detect three different
chemical adulterants (benzoyl peroxide, alloxan monohydrate, and L-cysteine) in wheat
flour [10]. Spectral angle mapping (SAM) was used to pre-process the data to distinguish
adulterant pixels from the flour background. The visualization and detection of the adulter-
ant pixels were carried out using binary images that had been converted from SAM images.
The results showed that the proportions of adulterants in the wheat flour calculated using
pixels corresponded to their added concentrations (correlation coefficients: 0.985, 0.985,
and 0.987, respectively) and thereby demonstrated that Raman hyperspectral imaging
is an accurate, effective, and non-destructive technique for detecting the authenticity of
powdered foods.

3.4.3. Physical Contamination

Fish bones, which can be hazardous to consumers, were also detected using Raman
hyperspectral imaging by Song et al. [57]. The Raman spectra differences between fish
bones and meat were investigated, and a fuzzy-rough set model based on the thermal-
charge algorithm (FRSTCA) was established to select optimal wavebands. After that,
support vector data description (SVDD) was established based on the selected wavebands
(961 and 965 cm−1) to detect the fish bones, and the position and distribution of the fish
bones in fish fillets were finally identified. The results showed that fish bones at a depth of
less than 2.5 mm could be effectively detected, with a detection accuracy of 90.5%. It also
provided a reference method for detecting other foreign bodies in foods.

4. Conclusions

This review discussed various spectral imaging techniques for detecting physical,
chemical, and biological hazards in foodstuffs. Studies, such as those reviewed herein, have
shown the use of Vis-NIR spectroscopy, THz spectroscopy, hyperspectral imaging, and
Raman spectroscopy to detect both internal and external contamination of foods. It was
shown that Vis-NIR spectroscopy usually performs well in detecting food biological and
chemical contamination, THz spectroscopy performs well in detecting food chemical and
physical contamination, and hyperspectral imaging and Raman spectroscopy work well
for all types of food contamination. In addition, hyperspectral imaging can provide spatial
imaging information, which is very useful for visualizing hazards in foodstuffs. Raman
spectroscopy can obtain samples’ molecular structures and composition information and,
thus, be utilized in microanalysis. Furthermore, it is effective in liquids since it is not
affected by water within the samples. However, this technique is usually limited to very
small sample volumes.

Consequently, using appropriate spectral imaging techniques is critical in detecting
foodstuff hazards. Significantly, the advantages and disadvantages of spectral imaging
techniques should also be considered. For example, the cost of a Vis-NIR sensor is less than
that of a hyperspectral imaging sensor, and this technique is also easier for data collection
and analysis. Thus, Vis-NIR outperforms hyperspectral imaging when only spectrum
information is required. In the future, smaller, lighter sensors that are more sensitive to
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specific food contamination should be developed. For example, smartphone-based spectral
imaging sensors could be helpful in the fast and portable detection of foodstuff hazards.
Furthermore, more robust and reliable models based on machine learning algorithms
should be studied for high-precision detection.
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