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Abstract: To assess and predict the food safety risk of benzopyrene (BaP) in edible oils in China, this
study collected national sampling data of edible oils from 20 Chinese provinces and their prefectures
in 2019, and constructed a risk assessment model of BaP in edible oils with consumption data. Initially,
the k-means algorithm was used for risk classification; then the data were pre-processed and trained
to predict the data using the Long Short-Term Memory (LSTM) and the eXtreme Gradient Boosting
(XGBoost) models, respectively, and finally, the two models were combined using the inverse error
method. To test the effectiveness of the prediction model, this study experimentally validated the
model according to five evaluation metrics: root mean square error (RMSE), mean absolute error
(MAE), precision, recall, and F1 score. The variable-weight combined LSTM-XGBoost prediction
model proposed in this paper achieved a precision of 94.62%, and the F1 score value reached 95.16%,
which is significantly better than other neural network models; the results demonstrate that the
prediction model has certain stability and feasibility. Overall, the combined model used in this
study not only improves the accuracy but also enhances the practicality, real-time capabilities, and
expandability of the model.

Keywords: risk assessment; LSTM; XGBoost; risk prediction; edible oil; BaP

1. Introduction

Edible oil plays an indispensable role in daily life, enhancing the taste of food when
frying and providing us with essential fatty acids. China is a large consumer of edible oil,
with consumption reaching about 35.11 million tons in 2019 [1]. As China’s economy con-
tinues to develop steadily and rapidly, coupled with population growth, improved living
standards, and accelerated urbanization, people’s consumption demand for edible oil will
continue to grow steadily. In addition, the consumption landscape changed significantly
with the onset of the COVID-19 epidemic. Quarantine and extended holiday initiatives
were carried out across the country in response to the sudden spread of the epidemic. This
led to many families stockpiling necessary living materials, including edible oil, which saw
a corresponding increase in household consumption. Edible oil, being an essential item
in Chinese kitchens, was particularly affected. In this article, edible oil generally refers to
edible vegetable oil, edible animal oil, and edible oil products.

BaP is a polycyclic aromatic compound known for its toxic effects on the reproductive,
blood, heart, nervous, and immune systems, and its ability to induce various cancers [2]. It
is widespread in the environment, present in the atmosphere, surface water, sediment, soil,
food, and fatty tissues, and can enter the food chain through various pathways, including
biotransformation, impacting the metabolic processes of organisms. Some relevant studies
have reported the addition of medicinal oil to extra virgin olive oil as a way to poten-
tially mitigate BaP contamination, thereby improving health benefits and extending shelf
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life [3–6]. Therefore, the accurate determination of BaP content in edible oils is essential to
assess their quality and safety and to safeguard the health of those who consume them [7].

The presence of BaP can be attributed to various sources [8,9]. One common route
of BaP intake in humans is through the consumption of vegetable oil [10,11] which can
contain a large amount of BaP-contaminated residues. Such contamination can occur during
mechanical harvesting, transportation, and processing of the oilseeds, as these activities
can lead to the oilseeds directly contacting pollutants, thus triggering the migration of
BaP into the edible oil. In order to improve the oil yield and increase the aroma of the
finished oil, such as peanut oil and sesame oil, the seeds are often fried before pressing,
and the pressing process involves heating. This heating phenomenon during the vegetable
oil pressing process, particularly when using the hot-pressing method, can produce a
series of chemical reactions due to the high temperature, which may directly lead to the
production of BaP, a carcinogen in edible oil [12]. In addition to direct contamination,
there is also indirect contamination, such as asphalt contamination. Asphalt contains
polycyclic aromatic hydrocarbons (PAHs), and farmers may contaminate soybeans by
drying them on asphalt roads, resulting in oil pressed from these contaminated soybeans
containing BaP [13,14].

Jiang et al. [15] conducted a health risk assessment of 75 randomly collected edible oils
from Shandong Province, China, to evaluate the presence and hazards of PAH contamina-
tion, using Incremental Lifetime Cancer Risk (ILCR) as an evaluation metric. Their results in-
dicated a widespread PAH contamination among the samples. Jang et al. [16] estimated the
chronic daily exposure to BaP for the total population group and the consumer-only group
using food consumption data from the fifth Korean National Health and Nutrition Exami-
nation Survey in 2011. Ref. [17] investigated 303 edible oils from Korea and used Margins
of Exposure (MOEs) to understand the contamination levels of PAHs in them. Li et al. [18]
used ILCR for assessing the risk of BaP in doughnuts. Gelavizh Barzegar et al. [19] used
Monte Carlo simulations to characterize the daily intake MOEs and ILCR of edible oils
sold in southwestern Iran. Bomi Kang et al. [20] employed MOEs to assess the risk of
PAHs in Korean edible oils and found that despite the detection of PAHs, their effects on
human exposure were not significant. The above studies only assessed the safety risk of
BaP residues in edible oils by a single evaluation index and did not combine it with relevant
food consumption data.

In recent years, the widespread use of deep learning prediction models in various
fields, such as stock ticket price prediction [21–23], short-term traffic flow prediction [24–26],
and urban air pollutant concentration prediction [27–29], has been enabled by the rapid
development of artificial intelligence. Deep learning prediction models are also appli-
cable to the requirements of food safety risk prediction. Jiang et al. [30] utilized deep
learning to grade and predict the safety risk level of carbofuran pesticide residues in veg-
etables in China. Jiang et al. [31] proposed a risk prediction model for veterinary drug
residues in freshwater products in China based on transform. Wang et al. [32] predicted
the risk hazard of heavy metals in processed grain products using a voting integrated deep
learning approach.

In this study, we used the national sampling data of BaP in edible oil in China in 2019
and the weekly consumption data of edible oil in each prefecture-level city as the basis
for the in-depth calculation of evaluation indicators to build the data set. Firstly, we used
the k-means algorithm to classify the evaluation indicators of edible oil by risk level, and
then predicted the safety risk assessment indicators of edible oil in each prefecture-level
city using the variable-weight combined LSTM-XGBoost prediction model, and classified
these indicators according to the pre-defined risk level. The model proposed in this paper
provides scientific and technical assistance for government regulatory authorities to monitor
the safety of edible oils more effectively.
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2. Materials and Methods
2.1. Materials
2.1.1. Data Source

The data of BaP residues in edible oils in this study were obtained from the sampling
data of the State Administration of Market Supervision of China 2019, covering 20 provinces,
and contains a total of 12,826 samples. The consumption data of edible oils were obtained
from the National Bureau of Statistics China Statistical Yearbook 2020. According to the
national standard of China “Food Safety National Standard Limits of Contaminants in
Food” (GB 2762-2017) [33], the maximum limit value of BaP in edible oil is 10 µg/kg.

2.1.2. Data Pre-Processing

In this study, the substitution method recommended by the World Health Organization
(WHO) [34] was used for samples below the detection limit of the method. When the
proportion of non-detects was less than or equal to 60%, the results of all samples with
detection results less than the LOD were calculated as 1/2 of the LOD. When the proportion
of non-detects was greater than 60%, the results of all samples with assays less than the
LOD were calculated as the LOD. Since the data of samples with undetected BaP residues
in this study were much lower than 60%, the undetected BaP levels in this study were
calculated as 1/2 of the LOD value. LOD is the minimum limit of detection for BaP in
edible oils according to the database used in this study and was taken as 0.2 µg/kg [35].

3. Food Safety Risk Grading Assessment and Prediction Model

Considering that this study focused solely on the contamination status of BaP in edible
oils and based on the basic principles of food safety risk assessment and sampling data of
food products, three assessment indexes were selected for the risk assessment of edible oils:
ILCR, MOE, and the Nemerow Integrated Pollution Index (NIPI).

3.1. Evaluation Indicators
3.1.1. Carcinogenic Risk Factor Method

ILCR [18,36–38] is the increased likelihood of developing cancer over a lifetime due to
exposure to potential carcinogens. It is commonly used to assess the carcinogenic risk of a
pollutant to humans and is calculated as:

ILCRBaP =
C× TEF× Ir× Ep× SF× CF

BW× TA
(1)

where ILCR is the Incremental Lifetime Cancer Risk that evaluates the carcinogenic risk
of contaminants to humans; C is the concentration of chemical contaminants in edible
oil, and the median BaP content in edible oil, mg/kg, is used in this study; TEF is the
toxicity equivalence factor of BaP, TEF = 1; Ir is the daily intake of edible oil, kg/d; Ep is
the exposure frequency, 365 d/a; Ed is the duration of exposure over the average human
lifespan, 70 a (25,550 d); SF is the BaP carcinogenicity slope factor, 7.3 kg·d/mg; CF is
the conversion factor, 10−6 mg/ng; BW is the body weight, 60 kg; and TA is the average
exposure time to chemical pollutants, 70 × 365 d.

With reference to the interval of potential carcinogenic risk between 10−6 and 10−4 pro-
posed by the US Environmental Protection Agency (US EPA) for ILCR [39], the carcinogenic
risk is divided into three categories: ILCR < 1 × 10−6, the carcinogenic risk is negligible;
1 × 10−6 ≤ ILCR ≤ 1 × 10−4, the carcinogenic risk is acceptable; and ILCR > 1 × 10−4, the
carcinogenic risk is not negligible.



Foods 2023, 12, 2241 4 of 17

3.1.2. Margin of Exposure Method

The MOE method [17,40] is used to evaluate the risk of BaP intake in the population,
using the toxicity endpoint of primary hepatocellular carcinoma [41]. The calculation
formula is as follows:

MOE =
BMDL10

Exp
(2)

where BMDL10 is the toxicity reference point, referring to the lower limit of the 95%
benchmark dose confidence interval for a 10% incidence of hepatocellular carcinoma in
animal toxicology experiments; this value is 0.07 mg/(kg·BW) for BaP.

Exp =
Fi × Ci

BW× 1000
(3)

where Exp refers to the daily intake of BaP per kilogram of body mass due to the consump-
tion of edible oils; Fi refers to edible oil consumption, kg/d; Ci refers to the average content
of BaP in edible oil, µg/kg; and BW refers to the body mass, taken as 60 kg. According to
the “Report on the Nutrition and Chronic Disease Status of Chinese Residents (2015)” [42],
the average body mass of Chinese residents is 60 kg.

According to the recommendations of the European Food Safety Authority (EFSA) [43]:
MOE > 10,000 is of very low health risk and does not require attention in public health,
while MOE < 10,000 is of some health risk and requires attention.

3.1.3. Nemerow Integrated Pollution Index

The NIPI [44] reflects the characteristics of food contamination. Based on the sampling
data of each province, the integrated contamination index was applied to calculate the
contamination level of each sample, and the expression is as follows:

NIPI =

√
P2

max(i,j) + P2
ave(i,j)

2
(4)

where NIPI is the integrated pollution index of food j in province i; Pmax(i,j) is the maximum
value of pollution index of food j in province i; and Pave(i,j) is the average value of pollution
index Pi,j of food j in province i.

Pi,j =
Xi,j

Sj
(5)

where Pi,j is the contamination index of food j in province i; Xi,j is the detection value of
BaP content in food j in province i (mg/kg); and Sj is the national limit standard of BaP in
food j (mg/kg), taken as 0.01 mg/kg here.

3.2. Food Safety Grading Based on k-Means

The k-means clustering algorithm is a commonly used method of cluster analysis that
divides a data set into k clusters so that the data points within a cluster are as similar as
possible, while those between clusters are as different as possible. In the food safety risk
classification, the three evaluation indicators of edible oil (ILCR, MOE, and NIPI) were
clustered and analyzed as a way to assess the safety risk level of edible oil in different
prefecture-level cities in each province over time. By dividing the food samples into
different clusters, food samples with similar characteristics can be placed in the same cluster,
thus providing more refined and targeted control measures for food safety management.
The specific process of the algorithm is shown in Figure 1.

(1) Select k objects from the data as the initial clustering centers;
(2) Calculate the distance from each clustering object to the cluster center to divide

the clusters;
(3) Calculate each clustering center again;
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(4) Calculate the standard measure function until the maximum number of iterations is
reached and then stop; otherwise, continue the operation.

Figure 1. Flowchart of k-means clustering algorithm.

3.3. Food Safety Risk Level Prediction Model

Considering that food sampling data are time-series and non-linear, we selected the
LSTM model and XGBoost which have been frequently applied to such problems and
have achieved better results. However, the LSTM model is a neural network model and
the XGBoost model is a tree model. The principles of the two models differ greatly and
the correlation of the prediction results is weak, so this study used these two theories to
propose a food safety risk level prediction model that combines the LSTM model and the
XGBoost model together to improve the overall prediction accuracy of the model, as shown
in Figure 2. The results of this model are weighted using the inverse error method, a process
that has been shown to significantly improve the accuracy of the combined model.

Figure 2. Flow chart of the variable-weight combined LSTM-XGBoost prediction model.
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3.3.1. LSTM Model

LSTM [45,46], also known as Long Short-Term Memory, is a variation of the traditional
RNN, which can effectively capture the semantic association between long sequences and
mitigate the gradient disappearance or explosion phenomenon compared with classical
RNN. The structure of LSTM is complex; it includes an input layer, a hidden layer, and an
output layer, each with many cells. Every cell in the hidden layer has memory cells, and
the input gate, forgetting gate, and output gate collectively determine the output value.
The internal structure of one of the hidden layer cells is shown in Figure 3 below.

Figure 3. Hidden layer cell of LSTM model.

In the figure, xt is the input value at moment t; Ct is the memory cell at moment t; ht
is the hidden cell at moment t; ft is the forgetting gate at moment t; it is the input gate at
moment t; ct is the candidate memory cell at moment t; Ot is the output gate at moment t;
and tanh and σ are both activation functions.

The forgetting gate, with inputs from the previous module output ht−1 and the current
time input data xt, determines how much of Ct−1 is retained or forgotten from the previous
cell module input. The input gate decides which new inputs can be retained to Ct, while the
output gate, with control of Ot, determines what information is output and what needs to
be transferred to the next module. The mathematical principle is to multiply the long-term
memory input Ct−1 at t− 1 by a forgetting factor ft. The forgetting factor is calculated from
the short-term memory ht−1 as well as the event information xt.

The formula for the calculation process of the forgetting gate is as follows:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(6)

The input gate determines the amount of input xt saved to the unit state Ct at the
current moment, and it determines the corresponding new attribute information in this
unit module for the attribute information discarded in the forgetting gate, and adds it to
supplement the discarded attribute information. The mathematical principle is to accept

the long-term memory it from the forgetting gate and the short-term memory
∼
Ct from the

learning gate and then directly merge the two. The computational procedure for the input
gate is given by:

it = σ
(

W f ·[ht−1, xt] + b f

)
(7)

∼
Ct = tanh(WC·[ht−1, xt] + bC) (8)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (9)

The current output gate Ot determines the extent to which the state of the control unit
Ct is input to the current output value ht. The mathematical principle is that Ot is obtained
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using a Sigmoid function, and Ot is multiplied by tanh(Ct) to obtain the final output ht.
The output is calculated by the formulas

Ot = σ(Wo·[ht−1, xt] + bo) (10)

ht = ot × tanh(Ct) (11)

3.3.2. XGBoost Model

The XGBoost model [25,47,48], which improves upon the Gradient Boosting Decision
Tree (GBDT) model, utilizes a second-order Taylor expansion, unlike the traditional GBDT
model which only uses a first-order Taylor expansion. This tends to complicate the GBDT
model and makes it prone to overfitting. The XGBoost model incorporates features such
as regularization, learning rate, column sampling, and the approximation of optimal
splitting points, all of which help in preventing overfitting. XGBoost, being an integrated
model comprising multiple trees, derives its prediction for a sample from the aggregate
of the predicted values of each tree for that sample. The equation of the XGBoost model
is as follows:

ŷi = ∑k
k=1 fk(xi) (12)

where k is the total number of trees; fk(xi) is the prediction result of the kth tree for the ith
xi; and ŷi is the prediction result of the XGBoost model for the ith sample.

The objective function is expressed as.

Obj(θ) = ∑n
i=1 l(yi, ŷi) + ∑k

k=1 Ω( fk) (13)

where l(yi, ŷi) denotes the training error of indicator sample xi in the original sample
and ∑k

k=1 Ω( fk) denotes the regularization term of the kth tree to prevent overfitting
of the model.

Ω( fk) = γT +
1
2

λ∑T
j=1 ω2

j (14)

where T is the number of leaf nodes in each tree; ω2
j is the weight of the jth leaf node; and γ

and λ are coefficients, which need to be adjusted for the parameters in practical applications.

3.3.3. LSTM Model Construction

In this study, LSTM and Dropout were chosen for the hidden layer to build two layers
to prevent overfitting.

As shown in Figure 4, the model, in terms of parameter settings, includes one input
layer, two hidden layers, and one output layer. The default sigmoid activation function
serves as the activation function, and the LSTM uses 7 as its Timesteps. The model selects
Mean Absolute Error (MAE) as its loss function and adopts the Adam optimization algo-
rithm for network training. The initial learning rate is set to 0.05, with a gradient threshold
set to 1. The output layer employs a fully connected layer to reduce the dimensionality of
the results. Upon obtaining the prediction data, the model performs inverse normalization,
thereby obtaining the final prediction results.

Figure 4. LSTM model construction.



Foods 2023, 12, 2241 8 of 17

3.3.4. XGBoost Model Construction

The XGBoost model was built starting with the tuning of the tree parameters. The
parameters are initialized based on the default values. The choice of parameters refers to
the Mean Squared Error (MSE) as the loss function and Gamma as the objective function.
When using the XGBoost model for temporal prediction, it is necessary to consider the
following algorithmic parameters:

Learning_rate: The learning rate boosts the model’s robustness by reducing the
weights at each gradient descent step, and the value typically ranges from 0.01 to 0.2.
If the value is too low, it might cause underfitting in the model.

Gamma: A node only splits if the value of the loss function decreases post-split.
Gamma determines the minimum decrease in the loss function required to split the node.
The larger this parameter, the more conservative the algorithm will be, as a larger gamma
value necessitates a more substantial decrease in the loss function before the node can split,
reducing the likelihood of node splitting during tree generation.

Subsample: This parameter determines the proportion of random samples for each tree.
By lowering this value, the algorithm will be more conservative and prevent overfitting.
However, setting this value too low can lead to underfitting. It generally ranges between
0.5 and 1, with 0.5 representing an average sampling.

Colsample_bytree: This parameter is utilized to control the percentage of columns
sampled randomly for each tree (each column corresponds to a feature).

Max_depth: This is the maximum depth of the tree, typically set between 3 and 10. A
larger value allows the model to quickly identify the features of local samples, but it also
increases the likelihood of overfitting and slows down the model’s training speed.

3.3.5. Model Tuning Method

In the model tuning stage, this study employed ten-fold cross-validation combined
with a grid search approach. Firstly, the cross-validation is used to assess the model’s
performance, followed by a grid search to select the optimal parameters. The ten-fold
cross-validation initially splits the edible oil data set into ten non-overlapping segments.
Nine of these are used as training segments and one as a testing segment to enhance the
model’s performance by reducing the variance in data partitioning.

Grid search, a commonly used method for parameter tuning, applies an exhaustive
search method. After a set of hyperparameters is provided, an exhaustive search is carried
out among all the hyperparameter combinations, aiming to select the optimal set from
all combinations.

Given the differences in data across provinces, each province’s indicators were tuned
separately during the tuning session. Following this, the experiment was conducted; the
tuning results are depicted in Figure 5.

Figure 5. XGBoost model tuning results.
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3.3.6. The Inverse Error Method

The prediction results of each single model are obtained by the LSTM model and
XGBoost Model, and for the analysis results, the following formula is applied for the
inverse error method analysis to process the LSTM and XGBoost time series data.

ft = ω1 f1t + ω2 f2t, t = 1, 2, . . . , n (15)

ω1 =
ε2

ε1 + ε2
(16)

ω2 =
ε1

ε1 + ε2
(17)

where ωi denotes the weight coefficient, fit denotes the prediction data of LSTM and
XGBoost, and ε1 and ε2 refer to the LSTM and XGBoost errors, respectively.

3.3.7. The Variable-Weight Combined LSTM-XGBoost Prediction Model

Considering the substantial differences in principles between the LSTM model, which
is a neural network model, and the XGBoost model, which is a tree model, and the relatively
weak correlation between their prediction results, this study proposed integrating these
two models using the inverse error method to improve the overall prediction accuracy. The
primary process is as follows, and the corresponding flowchart is depicted in Figure 6.

(1) The pre-processed data are input into the LSTM and XGBoost models for predictive
analysis, resulting in the prediction outcomes of each individual model.

(2) The prediction results of the obtained LSTM and XGBoost models are weighted and
combined using the inverse error method to obtain the final prediction results of the
combined LSTM-XGBoost model.

(3) The evaluation metrics RMSE and MAE are utilized to compare each individual model
and the combined model.

Figure 6. LSTM-XGBoost-based variable-weight combined prediction model.
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4. Results and Discussion
4.1. Data Set Processing

The data set used in this study includes three evaluation indicators for edible oils
(ILCR, MOE, and NIPI) for each prefecture-level city in 20 Chinese provinces in 2019. This
data set contains a total of 12,826 records, and the total length of the time series for each
city is 53 weeks. The data were divided in a 6:4 ratio for subsequent analysis or processing.

4.2. Experimental Environment

The computer configurations used for the experiments in this paper are shown
in Table 1.

Table 1. Experimental platform and environmental parameters.

Computer
Information

Operating System Windows 10 64-bit

CPU AMD Ryzen 7 5800H with Radeon
Graphics 3.20 GHz

GPU Nvidia GeForce GTX1650

Memory 16 GB

Toolkit Python 3.7.11

Numpy 1.18.5

Pandas 1.2.2

Keras 2.9.0

Torch 1.8.3

Matplotlib 3.5.3

4.3. Model Evaluation Metrics

In order to scientifically measure the prediction effectiveness of this combined model,
the five evaluation metrics were used to evaluate the model: RMSE, MAE, precision, recall,
and F1 score [49,50].

MAE stands for Mean Absolute Error. It calculates the average absolute difference
between the true and predicted values, preventing the errors from being cancelled out
by positive or negative discrepancies. Generally, the lower the MAE value, the better the
prediction ability of the model.

MAE =
1
n∑n

i=1|yi − ŷi| (18)

RMSE is the abbreviation for Root Mean Square Error. This metric computes the square
root of the averaged squared differences between predicted and actual observations. It is
particularly sensitive to outliers and serves as a robust measure of the predictive capability
of the model.

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (19)

where yi denotes the actual value of a single assessment indicator for week i; ŷi denotes the
predicted value of a single assessment indicator for week i; and n denotes the total number
of data points to be measured.

Precision refers to the proportion of samples with a predicted value of 1 and a true
value of 1 among all samples with a predicted value of 1.

P =
TP

TP + FP
(20)
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Recall, also known as the full rate, refers to the proportion of samples with a predicted
value of 1 and a true value of 1 out of all samples with a true value of 1.

R =
TP

TP + FN
(21)

where TP indicates the number of risk levels that the model correctly predicted and FP
indicates the number of levels that the model predicted that are incorrectly predicted as
being at that risk level. FN indicates the number of levels of that risk level that the model
incorrectly predicted as other risk levels.

The F1 score, also known as the Balanced Score, is defined as the summed average
of the precision and recall. To better evaluate the performance of the prediction model,
this study used the F1 score as an evaluation criterion to measure the comprehensive
performance of the model.

F1 =
2× P× R

P + R
(22)

4.4. Edible Oil Safety Risk Classification and Assessment
4.4.1. Risk Classification

In this study, the k-means algorithm was used to cluster and grade the three-evaluation
metrics (ILCR, MOE and NIPI) in the assessment model. The elbow method was used to
determine the value of k among them, and the core index of the elbow method is Sum of
the Squared Errors (SSE).

SSE = ∑k
i=1 ∑p∈Ci

|p−mi|2 (23)

where Ci is the ith cluster, p is the number of sample points in Ci, mi is the center of mass
of Ci (the mean of all samples in Ci), and SSE is the clustering error of all samples, which
represents the performance of the clustering.

The core idea of the elbow method is that as the number of k clusters increases, the
sample division becomes finer, and the degree of aggregation of each cluster gradually
increases, causing the SSE to decrease progressively. When k is less than the true number
of clusters, the decrease in SSE is significant as the increase in k substantially enhances
the degree of aggregation of each cluster. However, when k reaches the true number of
clusters, the returns on the degree of aggregation obtained by further increasing k rapidly
diminish, leading to a sharp decrease in SSE, which then levels off as k continues to increase.
Therefore, the graph of the relationship between SSE and k forms an ‘elbow’ shape, and
the value of k corresponding to this elbow is considered to be the true number of clusters
in the data.

By observing Figure 7, we can see that the elbow corresponds to a k value of
3 (maximum curvature), and the SSE decreases quite significantly from 1 to 2 and from 2 to
3, while the SSE decreases very little from 3 to 4 and even after 4; therefore, the optimal k
value should be 3. The results for each cluster center are shown in Table 2, and the distance
of the cluster center from the origin is calculated based on the specific normalized index.
Then, the risk level is defined as low, medium, or high based on the distance.

Table 2. Clustering centers and ranking of the 3 clusters.

Category ILCR MOE NIPI Sample Size Risk Level

1 0.026709 0.021994 0.047369 9177 Low
2 0.911746 0.001170 0.074586 3095 Medium
3 0.483147 0.000756 0.089037 554 High
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Figure 7. Elbow method to determine k value.

4.4.2. Analysis of Grading Results

The distribution of indicators for the different security risk levels can be analyzed in
Figures 8–10.

Figure 8. Probability density distribution of subgroup 1.

Figure 9. Probability density distribution of subgroup 2.

Figure 10. Probability density distribution of subgroup 3.

Based on the above analysis, the following conclusions can be drawn.

(1) The ILCR values of subcluster 1 were distributed between 0 and 0.1, the MOE was less
spaced and distributed between 0 and 0.001, and the NIPI values were concentrated
between 0 and 0.1, indicating a low risk level;

(2) The ILCR values of subgroup 2 were distributed between 0 and 0.4, the MOE was dis-
tributed between 0 and 0.002, and the NIPI values were less spaced and concentrated
between 0 and 0.2, indicating a medium risk level;

(3) Subgroup 3 had the highest ILCR values distributed between 0 and 0.9, the MOE
values were distributed between 0 and 0.005, and the NIPI values had smaller intervals
and were concentrated between 0 and 0.4, indicating the highest risk level.
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The results of the above analysis show that, for the three indicators of the food safety
risk assessment model, the k-means clustering algorithm can cluster the edible oil safety
risks in each prefecture-level city at different time periods, and the samples could be
divided into three groups, namely, subgroup 1 with a low risk level, subgroup 2 with an
intermediate risk level, and subgroup 3 with the highest risk level. The ILCR values of
subgroup 1 were small, the interval of MOE values was small, and the distribution of
NIPI values was concentrated and small; the ILCR values of subgroup 2 were higher, the
interval of MOE values was larger, and the NIPI values were at an intermediate level; the
ILCR values of subgroup 3 were the largest, the interval of MOE values was also relatively
the largest, and the NIPI values were at a high level. These results can provide targeted
management measures and risk control programs for food safety regulatory authorities.

4.4.3. Predicted Results of BaP Safety Risk Level in Edible Oil

In order to scientifically evaluate the prediction performance of the variable-weight
combined LSTM-XGBoost prediction model in this paper, a comparative analysis was
conducted. Considering that the predictive effect of this combined model will rely heavily
on the predictive power of each single model, we conducted a comparative analysis of the
LSTM model, the XGBoost model, and the variable-weight combined LSTM-XGBoost pre-
diction model, and evaluated the prediction performance of the three models by comparing
the errors between their prediction results and the actual values, and whether the variable-
weight combined LSTM-XGBoost prediction model is superior to the individual models.
We used a single-step prediction method with a step size of seven for the three-evaluation
metrics of edible oils mentioned previously, and performed a preliminary analysis of the
prediction results using RMSE and MAE.

Figures 11 and 12 show the RMSE and MAE values of the food safety risk assessment
indicators predicted by the three models. The result plots show that the evaluation indica-
tors predicted by the combined model proposed in this paper had the smallest RMSE and
MAE values. The RMSE measures the mean error between the model’s predicted and true
values, while the MAE measures the mean absolute error between the model’s predicted
and true values. Smaller RMSE and MAE values imply that the model has a higher predic-
tion accuracy and is better able to adapt to changes in the test data set. We observed that
the variable-weight combined LSTM-XGBoost prediction model had the smallest RMSE
and MAE values compared to the LSTM and XGBoost models alone, indicating that the
combined model can significantly improve the prediction accuracy.

Figure 11. RMSE for ILCR, MOE, and NIPI indicators.
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Figure 12. MAE for ILCR, MOE, and NIPI indicators.

After the models predicted the weekly ILCR, MOE, and NIPI indicators for different
prefecture-level cities in each province, the distance between this rating indicator and the
three clustering centers was measured, and the risk level rating for that week in that city
was determined, and the precision (P%), recall (R%), and F1 scores (F1%) of the risk rating
predicted by the three models were tallied, as shown in Table 3.

Table 3. Experimental results of risk level prediction.

Model P% R% F1%

LSTM 81.23% 78.66% 79.92%
XGBoost 80.08% 82.42% 82.19%

LSTM-XGBoost 94.62% 95.71% 95.16%

The experimental results show that the variable-weight combined LSTM-XGBoost
prediction model proposed in this paper outperforms the other two models in terms of
accuracy, and this model can provide a new approach to aid the government in regulating
risky edible oils. In addition, the F1 value is significantly better than that of a single model.
The F1 value shows that this model is able to balance the accuracy rate and recall rate, so
the government can better capture potential food safety problems based on the model’s
prediction results, target and strengthen the regulation of specific products, specific supply
chain links or specific regions, and optimize resource allocation, thus improving the overall
food safety level.

5. Conclusions

BaP is one of the most representative carcinogens among the more than 20 known
carcinogenic PAHs. Fats and oils containing PAHs can intensify absorption in the intestinal
tract, thus posing a great threat to human health. To reduce dietary intake of BaP, we
should maintain a balanced and diverse diet that includes a variety of fruits and vegetables,
avoid excessive intake of grilled meats, especially charcoal-grilled and smoked meats, and
remove burnt parts of foods. Whenever possible, choose fats and oils rich in monounsat-
urated fatty acids (e.g., canola and olive oils) and polyunsaturated fatty acids (e.g., corn
and soybean oils).

In order to thoroughly assess the safety risk of BaP in edible oils in China and to
carry out precise regulation to effectively protect the health and safety of residents’ food,
we introduced an innovative prediction model, namely, the variable-weight combined
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LSTM-XGBoost prediction model. This model combines two leading algorithms, LSTM
and XGBoost, combining their respective strengths to improve the prediction accuracy; the
LSTM algorithm is a modeling approach that is well suited for handling serial data, which
can effectively capture long-term dependencies in time series; the XGBoost algorithm
is effective at handling nonlinear relationships and high-dimensional data. Therefore,
the variable-weight combined LSTM-XGBoost prediction model has the ability to better
handle data with time-series and high-dimensional features, which helps to improve the
accuracy of prediction. The advantages of this combined model are further enhanced by
the adoption of the inverse error method, which adjusts the combined weights of the model
by optimizing the inverse of the prediction error so that the prediction results of both
algorithms can be optimally combined to further improve the prediction accuracy.

Experimentally, by comparing the variable-weight combined LSTM-XGBoost predic-
tion model with the LSTM and XGBoost models alone, we found that the former performed
better in terms of prediction accuracy, as evidenced by the lowest values of two crucial
metrics, RMSE and MAE. Thus, the variable-weight combined LSTM-XGBoost prediction
model is undoubtedly an efficient and effective way to combine algorithms to provide more
accurate prediction results for data with time-series and high-dimensional characteristics.
More importantly, this model also shows strong utility in food safety risk assessment, and
the experimental results show that its F1 score was as high as 95.16%, which is a good
balance of accuracy and recall. This means that the model is able to meet the high demand
of food regulatory authorities to monitor the safety of edible oils in different prefecture-level
cities in each province and strengthen early warnings and control of food safety, which also
provides guidance in optimization of the allocation of resources, thereby more effectively
preventing the occurrence of food safety risks.
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