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Abstract: Traditional kombucha is a functional tea-based drink that has gained attention as a low or
non-alcoholic beverage. The fermentation is conducted by a community of different microorganisms,
collectively called SCOBY (Symbiotic Culture of Bacteria and Yeast) and typically consists of different
acetic acid bacteria and fermenting yeast, and in some cases lactic acid bacteria that would convert
the sugars into organic acids—mostly acetic acid. In this study, the effect of including a Pichia kluyveri
starter culture in a kombucha fermentation was investigated. P. kluyveri additions led to a quicker
accumulation of acetic acid along with the production of several acetate esters including isoamyl
acetate and 2-phenethyl acetate. A subsequent tasting also noted a significant increase in the fruitiness
of the kombucha. The significant contribution to the aroma content shows the promise of this yeast
in future microbial formulations for kombucha fermentations.
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1. Introduction

Kombucha is a traditional Chinese tea-based drink that has gained significant popu-
larity with consumers across the world over the past decade [1]. The global kombucha tea
market has also shown enormous growth in recent years and will continue to grow healthily
over the next five years with a projected compound annual growth rate of 24.8%, which
corresponds to a value of USD 10.26 billion in 2028 [2]. Traditional kombucha combines
a unique sweetness and sourness along with the expected tea notes and is considered a
functional beverage. This implies that kombucha has potential health benefits, though these
claims are yet to be substantiated with clinical data [3–5]. Kombucha has also garnered
attention due to its low or no alcohol content which has become an important consideration
among a growing number of consumers [6–8]. In addition to its industrial-scale fermenta-
tions, kombucha is also a popular homemade drink, with many households experimenting
with alternative substrates other than tea [9].

The starting substrate of a traditional kombucha fermentation consists of a black or
green tea that is sweetened (mostly with sucrose) [10]. The microflora responsible for
the fermentation is usually obtained from a previous fermentation and consists of the
microorganisms found in the cellulose-rich pellicle as well as the liquid (or soup) part of the
kombucha. This microflora is collectively called by the acronym SCOBY, which stands for
‘symbiotic culture of bacteria and yeast’ and consists of a core microflora of yeast, acetic acid
bacteria and sometimes lactic acid bacteria. Yeasts often isolated from kombucha include,
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but are not limited to, members from the genera, Brettanomyces, Candida, Saccharomyces,
Schizosaccharomyces and Zygosaccharomyces [11,12]. The acetic acid bacteria include members
from Acetobacter, Gluconobacter and Komagataeibacter [13] whereas Lactococcus spp. and
Lactobacillus spp. represent the main lactic acid bacteria isolates [14]. SCOBY drives the
main fermentation process, which is to convert the sugars to organic acids. First, the yeast
converts the sugars to ethanol, whereafter the bacteria (especially the acetic acid bacteria)
oxidize the ethanol to acetaldehyde and then to acetic acid. Minor acids, such as gluconic
acid, glucuronic acid and lactic acid, might also be produced during the fermentation while
tea polyphenols might also be modified [15].

It is quite clear that the microbial composition of SCOBY plays an all-encompassing
role in all outcomes of a kombucha fermentation. Researchers have started to investigate the
effect of adding both bacterial and yeast starter cultures to a kombucha fermentation which
has shown marked differences in the antioxidant and aroma content of the beverage [16,17].

The film-forming yeast Pichia kluyveri has been used as a starter culture for the pro-
duction of many foodstuffs including wine [18–20], chocolate [21,22] and beer [23,24].
P. kluyveri was shown to possess remarkable alcohol acetyltransferase activity as its ad-
dition to a fermentation led to a dramatic increase in acetate esters levels. These esters
include ethyl acetate (imparting a nail polish odor), isoamyl acetate (banana), 2-phenethyl
acetate (roses), 3-sulfanylhexyl acetate (passion fruit) and several terpene acetates, all of
which are important aroma determinants in beverages [25–27].

From a microbial point of view, it can be said that the kombucha matrix and the
traditional manufacturing process do not represent optimal growth conditions for the
microorganisms contained. Due to factors such as oxygen limitation, low pH values,
nutrient gradients and tea phytochemicals, traditional kombucha fermentations can last
between one and three weeks and thus complicates the standardization of a kombucha
fermentation. Therefore, possibilities to accelerate the process without sacrificing product
quality are of interest. In this context, the present study investigated the impact of adding a
P. kluyveri starter culture, a yeast not commonly found as part of a SCOBY, to a traditional
kombucha fermentation.

2. Materials and Methods
2.1. Fermentation Set-Up

The SCOBY used in the study comprised a pellicle from a previous kombucha tea
fermentation of roughly equal size, as well as the liquid part (called the ‘soup’) of the
ferment. The soup from a previous fermentation comprised 10% of the volume of the
new fermentation. The starting material for the kombucha fermentation consisted of
boiled water, 2 g/L black tea (Echte Ostfriesische Mischung, Broken Silber, Thiele Tee,
Emden, Germany) and 50 g/L food-grade sucrose (Südzucker, Mannheim, Germany).
The sucrose was dissolved in reverse-osmosis water and the black tea was added in a tea
strainer after approximately 5 min of infusion. The infusion was cooled down to room
temperature prior to sucrose addition. A commercial Pichia kluyveri strain, VINIFLORA®

FROOTZEN® (Chr. Hansen Holding A/S, Hørsholm, Denmark) was used in the study.
A 50 mL preculture was grown overnight in liquid YEPD (10 g/L yeast extract, 20 g/L
glucose, and 20 g/L peptone) whereafter the cells were collected via centrifugation, washed
with phosphate-buffered saline (PBS) and resuspended in an appropriate amount of the
tea–sucrose mixture. It was then inoculated into the sweetened tea–SCOBY mixture at
a cell concentration of approximately 1 × 107 cells/mL. The kombucha fermentations
were carried out in 1.7 L beakers covered with sterilized linen cloth. P. kluyveri was also
inoculated into the sweetened-tea substrate without the addition of a SCOBY. Fermentations
were incubated at room temperature without shaking. Samples were taken daily for HPLC
analysis, while spectrophotometric analysis was conducted on Day 0 and Day 4, GC–MS
analysis was carried out on Day 4.
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2.2. Sensory Analysis

After the fourth day of the fermentation, kombucha samples were pasteurized by
placing the samples in a water bath at 80 ◦C for 5 min, whereafter the samples were cooled
and filtered through a coffee filter. Samples were stored for 4 days at 4 ◦C and brought to
room temperature shortly before sensory evaluation. For this purpose samples were tasted
in 80 mL scale in one session and characterized using an already established descriptive
analysis scheme for sour fermented beverages in a non-blinded manner [28]. The panel of
six consisted of two trained sensory experts and four tasters with relevant experience in
tasting sour fermented beverages with an average age of 31.7 ± 6.3 and a male to female
ratio of 1:2.

2.3. Analysis of Kombucha Samples

Standard operating procedures established by the analysis team at the Department of
Microbiology and Biochemistry and the Department of Beverage Technology at Geisenheim
University were followed in order to analyze the composition of the Kombucha fermentations.

2.3.1. High-Performance Liquid Chromatography (HPLC)

The concentrations of the organic acids, ethanol as well as the sugars fructose, glucose
and sucrose of the samples taken daily were determined with HPLC, based on a method
previously described [29].

2.3.2. Gas Chromatography–Mass Spectrometry (GC–MS)

The concentrations of the major acetate esters of samples taken on Day 4 were deter-
mined using headspace gas chromatography coupled with mass spectrometry as outlined
previously [30].

2.3.3. Phenolic Content Determination

The Folin–Ciocalteu method was used with 50 mL of the samples taken on Day 0
and Day 4 as described previously [31]. A photometric automatic analyzer ARENA 20XT,
(Thermo Scientific, Waltham, MA, USA) and the software Arena V.7.2AR1 was used.

2.4. Statistical Analyses

Fermentations were conducted in triplicate. A one-way analysis of variance followed
by a Tukey post-test was used to compare the aroma compound concentrations of the differ-
ent treatments. Analysis was performed using GraphPad-Prism® Version 5.03 (GraphPad
Software, San Diego, CA, USA). Significant differences between samples for each sensory
attribute were determined via un-paired Student’s t-test in Microsoft Excel 2013 (Microsoft
Cooperation, Redmond, WA, USA).

3. Results and Discussion
3.1. Fermentation Parameters

A traditional black tea-based kombucha fermentation was conducted and the effect of
adding a P. kluyveri starter culture to the fermentation was investigated.

Figure 1A illustrates the accumulation of acetic acid during the first four days of
fermentation. While little sugar has been used during this period in any of the samples, we
observed a clear increase in acetic acid levels with the added P. kluyveri after three days of
incubation, which reached approximately 2.5 g/L after four days. This is in concurrence
with previous reports that P. kluyveri additions to a fermentation result in higher levels of
acetic acid albeit in other food matrices, such as grape must and cacao bean [18,21]. We did
not observe gluconic or glucuronic acid in any of our samples.
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Figure 1. Influence of a Pichia kluyveri starter culture on the total sugar, acetic acid content (A) and total
phenolic content (B) of the kombucha fermentation as determined via HPLC and spectrophotometric
methods. Values are the average of three replicates. The error bars indicate the standard deviation.

No ethanol concentration above 0.5% v/v could be measured (results not shown)
which could allude to the strong microbial activity of the acetic acid bacteria within the
SCOBY that would consume all available ethanol whilst only producing acetic acid. The
fermentations without any SCOBY (i.e., the tea + P. kluyveri fermentations) displayed
little activity during the four-day-long fermentation as no acetic acid could be detected,
which confirms the negligible growth that P. kluyveri has on sucrose as a carbohydrate
substrate [32]. P. kluyveri thus relies on the invertase activity of SCOBY to utilize the
monomers glucose and fructose as carbohydrate source.

Figure 1B shows the difference in total phenolic content from the onset of the fermen-
tation until Day 4. There was no difference in the phenolic content with the addition of
P. kluyveri, implying it has a minimal impact on these components, although closer inspec-
tion on the specific species of phenolic components is warranted to rule out any changes
to the profile of the phenolic components. The fermentations without any SCOBY also
showed a similar increase in phenolic content after four days and could suggest that the
increase is not microbiologically induced. The increase in phenolic content is consistent
with a kombucha fermentation as the increase in acid content and the enzymatic action of
the members of the SCOBY lead to the release of more phenolic compounds [33,34].

3.2. Aroma Components from the Kombucha Fermentation

Table 1 shows the acetate ester content measured in the kombucha fermentations after
four days. Three acetate esters (ethyl acetate, isoamyl acetate, and 2-methylbutyl acetate)
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were only detected in the samples where P. kluyveri was added whereas the 2-phenethyl
acetate levels were 47 times higher than the fermentations without P. kluyveri. Interestingly,
the fermentations without a SCOBY also produced 2-phenethyl acetate which could be
ascribed to the trace amounts of glucose and fructose present in the food-grade sucrose, or
a certain proportion that hydrolyzes into the monomers under the acidic conditions, that
allows for limited amount of growth. Apart from the ethyl acetate, all other acetate esters
far exceeded their respective odor threshold range.

Table 1. Acetate ester content of the kombucha products. Values are the average of three
replicates ± standard deviation. Odor threshold range obtained from [35]. Different levels of signifi-
cance (p < 0.01) are indicated with different letters.

Compound Odour Threshold Range
(mg/L) 1 Tea + SCOBY Tea + SCOBY + P. kluyveri Tea + P. kluyveri

Ethyl acetate (mg/L) 7.5–60 ND 2 11.2 ± 4.5 ND
Isoamyl acetate (µg/L) 0.25–1.8 ND 2136.7 ± 312.6 ND

2-Methylbutyl acetate (µg/L) 1.6 ND 254.8 ± 37.8 ND
2-Phenethyl acetate (µg/L) 0.03–1.8 12.4 ± 0.6 a 567.5 ± 27.4 b 71.6 ± 22.3 a

1 based on [36], 2 ND—Not detected.

3.3. Sensorial Analysis

A small-scale sensorial analysis was conducted on the kombucha prepared with
and without the addition of a P. kluyveri starter culture. In general, the addition of the
Pichia starter culture led to accelerated beverage fermentation. This can be seen from the
decrease in the attributes ‘bitter’ and ‘tea-like’ and the increase in the attributes ‘sour’,
‘full-bodied’, ‘carbonation’, ‘fruity/ester’, ‘characteristic flavour’ and generally better rating
(Figure 2). Of note was the expected increase in the fruitiness of the kombucha with the
P. kluyveri addition. From the view of industrial production and quality assurance aspects,
the addition of P. kluyveri could be an interesting possibility to better control and accelerate
the fermentation process.
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asterisks (* p < 0.05, ** p < 0.005).
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4. Conclusions

This work shows the remarkable impact that P. kluyveri addition has on the aroma
composition of a traditional kombucha fermentation. Its proven acetate ester production
capability could thus be transferred to fermentation settings where it is not commonly
found and could ultimately be used as a tool to direct the aroma profile and accelerate the
kombucha fermentation process. The advantage of using P. kluyveri is that it provides a
strong “fruity” flavor without the use of artificial flavorings.
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