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Abstract: The usage of tea polyphenols (TPs) as a natural food additive into non-fermented frozen
dough (NFFD) has rarely been investigated, and results have been controversial. Hence, this study
investigated the effect of TPs at various levels (0, 0.5, 1, and 2%) on the quality of NFFD stored from 0
to 4 weeks. The rheological characteristics, water state, protein, and its microstructure were analyzed
by DSC, LF-NMR, SDS-PAGE, FT-IR, and SEM, respectively. Results showed that the 0.5% TP group
delayed the deterioration of protein and inhibited the water migration in dough throughout the
whole frozen storage period. In addition, the 0.5% TP group enhanced the rheological properties of
NFFD and stabilized the sulfhydryl content and the secondary structure in the gluten network. On
the contrary, opposite phenomena were found in the 1 and 2% TP groups, which might be due to the
induction of excess hydroxyl groups from TPs. In conclusion, our results suggested that a proper
addition of TPs, but not an excessive amount (>1%), exhibited beneficial effects in maintaining the
quality of NFFD during the 4-week frozen storage. Moreover, this paper elucidated the mechanism
of TPs in influencing the protein structure and water state of NFFD during storage and provided new
insight into its application in dough-based foods.

Keywords: tea polyphenols; frozen wheat dough; water distribution; secondary protein structure

1. Introduction

Frozen dough has been widely used as a promising technology for standardizing
product quality and saving costs in dough products during the past few decades [1].
However, the integrity of the gluten network in the dough could be affected by the ice
crystals formed during freezing and their re-crystallization caused by temperature change
during storage [2]. A possible explanation for the deterioration would be the disruption of
disulfide links of gluten, which leads to the depolymerization of high-molecular-weight
gluten proteins [3]. A promising strategy to deal with this issue is to add proper food
additives. Tea polyphenols (TPs) naturally exist in tea leaves and possess several functional
properties [4]. Numerous studies have demonstrated that phenolics could interact with
dough ingredients such as water, gluten proteins, and starch to change the physicochemical
properties of the dough [5–7]. For example, Rui Liu et al. [8] reported that the adding of
oligomeric proanthocyanins could enhance the quality of dough by compacting the gluten
protein network. Meanwhile Wang et al. [9] demonstrated that tannins could modify wheat
flour by combining their hydroxyl groups with the free amino groups of the gluten and
non-gluten proteins.

Foods 2023, 12, 80. https://doi.org/10.3390/foods12010080 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12010080
https://doi.org/10.3390/foods12010080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0003-3959-8102
https://orcid.org/0000-0002-7334-2808
https://doi.org/10.3390/foods12010080
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12010080?type=check_update&version=1


Foods 2023, 12, 80 2 of 12

In the last decade, investigations on adding TPs to fermented frozen dough have
received substantial attention by scientists. It was reported that the volume and hardness
of fermented frozen dough were either reduced [10] or increased [11] by TPs due to
different mechanisms. However, studies regarding the effect of TPs on NFFD were rarely
investigated, and results were controversial. It was reported that TPs enhanced the stability
of the dough and promoted the formation of gluten networks [12], while another study [11]
showed that TPs hindered the development of gluten networks by breaking disulfide
bonds, which led to a poor dough quality. Thus, more studies should focus on this area to
draw a conclusion on how TPs influence the NFFD’s quality and explain the underlying
mechanisms. Furthermore, most traditional Chinese dough products are made from non-
fermented dough, particularly dumplings and noodles, which are widely consumed in
northern China [13]. There is an urge to meet the increasing demand of NFFD products as
the population continuously grows and the pace of work life accelerates.

Therefore, the aims of this work were to investigate the effect of TPs on the water
state and protein structure of NFFD. The NFFD was prepared by adding TPs at different
levels (0–2%), and the rheological characteristics, molecular weight distribution of protein,
sulfhydryl content, protein secondary structure, frozen water content, and microstructure
of the NFFD from 0 to 4 weeks were all carefully examined. This study would advance
the use of TPs in NFFD and offer fresh insights into their transformation into effective
dough-freezing agents.

2. Materials and Methods
2.1. Materials

A commercial medium-gluten wheat flour was purchased from Yihai Kerry Arowana
Cereals, Oils & Foodstuffs Co., Ltd. (Zhoukou, China). The ash, moisture, wet gluten,
and crude protein were measured to be 0.42%, 12.79%,11.75%, and 37.56%, respectively
(calculated on a wet basis). TPs (mainly composed of ECG, EGC, EGCG, EC, etc.) were
purchased from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). The edible
salt was purchased from Hubei Salt Group, Ltd. (Xiaogan, China). All chemicals and
reagents were of at least analytical grade. Ultrapure water with a resistivity of 18.2 MΩ·cm
was used in all experiments.

2.2. Preparations of the Dough

Briefly, 500 g wheat flour, 225 g ultrapure water (20–25 ◦C), and 5 g edible salt were
mixed and kneaded at a low speed (4 min) and then a top speed (8 min) in a vertical
two-speed dough mixer (H20F, Guangdong Lifeng Machinery Manufacturing Co., Ltd.,
Shenzhen, China) until the gluten network formed. The mixed dough was then allowed to
stand for 30 min. The addition levels of TPs were 0% (control), 0.5%, 1%, and 2% of the
flour weight. The dough was cut evenly into small pieces of 60 g each. After that, they were
wrapped in polyethylene bags and stored at −18 ◦C for 0 to 4 weeks. The NFFD was then
taken out at different storage times for analyzing the change in protein and water state; the
scheme of the following works are shown in Figure 1.

2.3. Rheology Tests

The thawed NFFD samples’ rheological properties at 0–4 weeks were characterized by
a DHR-2 controlled stress rheometer (TA instruments, New Castle, DE, USA). The dough
was frozen for 1.5 h and then defrosted at 25 ◦C for 1.5 h before testing (the samples from
week 0 were examined after being quickly frozen and then thawed). A piece of dough
was loaded between the two 25 mm parallel plates at a 0.5 mm gap. The excess edges of
samples were cut and then conditioned for 5 min. A frequency sweep test at a range of 0.1
to 10 Hz was performed to evaluate the rheological variations of each sample [14]. All tests
were at 25 ◦C, with a fixed strain of 0.5% within the linear viscoelastic region. The storage
modulus (G′) and loss modulus (G′′) were then calculated at a 1 Hz frequency.
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Figure 1. Scheme of experimental design. The protein structure was analyzed by FT−IR, SDS−PAGE,
SEM, etc., and the water state was analyzed by LF−NMR and DSC. TP: Tea Polyphenol.

2.4. SDS-PAGE

SDS-PAGE analyses were conducted with the separation gel (10%) and concentrated
gel (5%) as described by Zhang et al. [15] Briefly, the NFFD at both 0 and 4 weeks was
freeze-dried and ground into powder, 50 mg of which were mixed with a buffer containing
0.125 mol/L Tris-HCl, 2 mg/mL SDS, 20 mg/mL glycerol, and 0.01 mg/mL Bromophenol
Blue. The mixture was then reacted for 3 h at room temperature and centrifuged at
10,000× g (4 ◦C, 20 min). After that, the supernatant was put into a 100 ◦C water bath for
5 min and then loaded on the electrophoresis gel at a fixed 15 mA current. The voltages of
concentrated and separation gel were 80 V and 100 V, respectively. The gels were stained
with 1 g/L Coomassie Brilliant Blue R-250 and then decolorized in a solution consisting of
800 mL distilled water, 100 mL glacial acetic acid, and 100 mL methanol. Each experiment
was independently carried out three times.

2.5. Determination of Free Sulfhydryl Groups

The free SH content was determined as previously reported [16]. Briefly, 50 mg of the
prepared dough powder were dispersed in 1 mL of the 0.2 M Tris-Gly buffer (pH 8.0, 8 M
urea, and 3 mM 5,5′ -Dithiobis-2-nitrobenzoic acid) and diluted to 10 mL with the buffer
after adding 4.7 g of guanidine hydrochloride to make the reaction solution.

An aliquot of the solution (1 mL) was mixed with 50 uL Ellman’s reagent, 4 mL 8 M
urea, and 5 M guanidine hydro-chloride solution, and the mixture was allowed to stand at
room temperature for 20 min. The absorbance was measured at 412 nm, and the calibration
curve with reduced glutathione ranging from 0–1 mM/L was used to convert it into the
content of free sulfhydryl groups. Each determination was measured three times.

2.6. FT-IR

A Nicolet iS5 FTIR instrument (Thermo, Waltham, MA, USA) was used to characterize
the secondary structures of protein in the NFFD at both 0 and 4 weeks, at a resolution of
4 cm−1 [17]. The freeze-dried NFFD was ground into powder, thoroughly mixed with KBr
(1:100 w/w), and pressed into thin slices, then scanned at a range of 4000–400 cm−1 with a
total of 32 scans. The baseline correction of amide I band (1600–1700 cm−1) was performed
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with both OMNIC and Peakfit 4.0 software, and the curve was fitted by Gaussian smooth
deconvolution to calculate the distribution of secondary structures of the protein.

2.7. Freezable Water Content

The freezable water content in NFFD was investigated by a Q2000DSC (TA, USA),
according to Xin and coworkers [18], with slight modifications. NFFD samples at 0–4 weeks
were thawed at room temperature, weighed approximately 15 mg, and sealed in an alu-
minum DSC pan. The NFFD sample was then cooled to −30 ◦C with liquid nitrogen,
equilibrated at −30 ◦C for 5 min, and scanned at a heating rate of 5 ◦C/min from −30 ◦C
to 30 ◦C. The moisture content and enthalpy of each sample were determined in triplicate.
The freezable water content (CFW) in NFFD was calculated as follows:

CFW =
∆Hm

∆Hi×WA
(1)

where CFW is the content (%, wet basis) of freezable water in NFFD, ∆Hm is the melting
enthalpy, ∆Hi is the fusion enthalpy of ice (334 J/g), and WA is the moisture content (%,
wet basis).

2.8. LF-NMR

Proton relaxation analyses were performed by NMI20-040 V-1 NMR spectrometer
(Niu Mai Electronic Technology Co., Ltd., Suzhou, China) according to Lu et al. [19]. T2
relaxation time was analyzed at a 1H resonance frequency of 20 MHz. A slice (5.0 ± 0.01 g)
from the NFFD was cut and put into an NMR test tube. Then, the tube was placed in
the center of a radio frequency coil in the permanent magnetic field at 32 ◦C. T2 was
measured by parameters set for the Carr–Purcell–Meiboom–Gill (CPMG) sequence as
follows: successive scans = 3000 ms, echo number = 2000, echo time = 0.2 ms, and scan
number = 8. Each NFFD sample was measured three times. Carr–Purcell–Meiboom–Gill
(CPMG) pulse sequences were fitted by T2-fit program.

2.9. SEM

An S-3000 N SEM instrument (Hitachi, Tokyo, Japan) was used to characterize the
microstructures of NFFD samples at both the 0th and 4th week, with some modifications
according to Tang et al. [20]. The NFFD samples were freeze-dried then cut into small slides
(0.5 cm × 0.5 cm × 0.5 cm). They were then coated with gold sputtering and observed at
2000 times amplification with 10 KV accelerating voltage.

2.10. Statistical Analysis

All experiments were conducted three times, and the data were analyzed by one-way
ANOVA using Duncan’s test using the software SPSS 19 (SPSS Inc., Chicago, IL, USA).
Data were expressed as mean ± standard deviation at a significance level of p < 0.05.

3. Results and Discussion
3.1. Effect of TP on the Rheological Behavior of NFFD

To study the rheological behavior of dough with TPs during frozen storage, the storage
modulus (G′) and loss modulus (G′′) of the dough were determined at 0–4 weeks. As shown
in Figure 2, the dough samples showed typical solid viscoelastic rheological behavior at all
weeks, as the values of G′ were generally higher than that of G′′. The values of G′ and G′′

for the 0.5% TP group were the highest among all groups during the whole storage duration,
while the G′ and G′′ values decreased in the 1 and 2% TP groups in a dose-dependent
manner. These results indicated that 0.5% TP contributed to the polymerization of wheat
gluten and enhanced the gluten strength of the dough, which was in accordance with the
findings of Pan et al. [10]. TPs would help to increase the dough’s toughness and elasticity,
as well as its tenderness when in an appropriate quantity [21]. However, higher levels
of TPs (1–2%) would lead to an opposite phenomenon, since excessive TPs in the dough
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system not only dilute the gluten protein network, but also introduce a significant amount
of hydroxyl groups, which reduces the hydrogen bonding connection between starch chains
and inhibits their recrystallization and retrogradation [22].

Foods 2022, 11, x FOR PEER REVIEW 5 of 13 
 

 

All experiments were conducted three times, and the data were analyzed by one-way 

ANOVA using Duncan’s test using the software SPSS 19 (SPSS Inc., Chicago, IL, USA). 

Data were expressed as mean ± standard deviation at a significance level of p < 0.05. 

3. Results and Discussion 

3.1. Effect of TP on the Rheological Behavior of NFFD 

To study the rheological behavior of dough with TPs during frozen storage, the stor-

age modulus (G′) and loss modulus (G″) of the dough were determined at 0–4 weeks. As 

shown in Figure 2, the dough samples showed typical solid viscoelastic rheological be-

havior at all weeks, as the values of G′ were generally higher than that of G″. The values 

of G′ and G″ for the 0.5% TP group were the highest among all groups during the whole 

storage duration, while the G′ and G″ values decreased in the 1 and 2% TP groups in a 

dose-dependent manner. These results indicated that 0.5% TP contributed to the polymer-

ization of wheat gluten and enhanced the gluten strength of the dough, which was in 

accordance with the findings of Pan et al. [10]. TPs would help to increase the dough’s 

toughness and elasticity, as well as its tenderness when in an appropriate quantity [21]. 

However, higher levels of TPs (1–2%) would lead to an opposite phenomenon, since ex-

cessive TPs in the dough system not only dilute the gluten protein network, but also in-

troduce a significant amount of hydroxyl groups, which reduces the hydrogen bonding 

connection between starch chains and inhibits their recrystallization and retrogradation 

[22].  

 

Figure 2. Effect of TPs on G′ (A) and G″ (B) of the NFFD (0.1–10 Hz frequency, 25 °C) at 0–4 weeks. 

3.2. Effect of TP on Protein Bands in NFFD 

The SDS-PAGE patterns of NFFD containing 0–2% TP at both 0 and 4 weeks are 

shown in Figure 3. As presented, the protein in the NFFD did not become visible or dis-

appear during the frozen storage. The intensity of protein bands at around 72 kDa (Area 

1) was increased when 0.5% TP was added compared with the control (0%); however, it 

was weakened when more TPs were added at both the 0th and 4th weeks. This phenom-

enon might be attributed to the epigallocatechin-3-gallate in TPs that is capable of com-

bining with gluten, thus stabilizing the protein structure [21]. This result was consistent 

with previous findings that TPs revealed a modest increase in protein at around 72 kDa 

at low concentrations [23], while high levels of TPs would lead to the exchange of the 

Figure 2. Effect of TPs on G′ (A) and G′′ (B) of the NFFD (0.1–10 Hz frequency, 25 ◦C) at 0–4 weeks.

3.2. Effect of TP on Protein Bands in NFFD

The SDS-PAGE patterns of NFFD containing 0–2% TP at both 0 and 4 weeks are shown
in Figure 3. As presented, the protein in the NFFD did not become visible or disappear
during the frozen storage. The intensity of protein bands at around 72 kDa (Area 1) was
increased when 0.5% TP was added compared with the control (0%); however, it was weak-
ened when more TPs were added at both the 0th and 4th weeks. This phenomenon might be
attributed to the epigallocatechin-3-gallate in TPs that is capable of combining with gluten,
thus stabilizing the protein structure [21]. This result was consistent with previous findings
that TPs revealed a modest increase in protein at around 72 kDa at low concentrations [23],
while high levels of TPs would lead to the exchange of the sulfhydryl/disulfide bond in
the gluten network and gradually cause depolymerization of the gluten, which would
degrade into lower-molecular-weight proteins [24], such as α, β-gliadins (26–43 KDa) [25].
In addition, the protein band intensity at 55–72 kDa (ω-gliadins) decreased as the frozen
storage duration increased. The depolymerization of high-molecular-weight proteins might
be due to the destruction of covalent and non-covalent interactions between gliadin and
glutenin polymers [26]. The mechanical force that is created by the formation of ice crystals
in the NFFD would be another reason for the depolymerization, since the mechanical force
could break down the gluten network [27]. Moreover, the study also showed that TPs could
increase the stability ofω-gliadins [23], which is consistent with our present study.

3.3. Effects of TPs on Free Sulfhydryl Contents

Free sulfhydryl groups could influence the elongation, adhesion, and swelling of the
gluten network, thus change the physicochemical properties of the dough [16]. Therefore,
the free sulfhydryl contents were characterized in the NFFD at 0–4 weeks. Results showed
that the free sulfhydryl content was slightly decreased at the 3rd week and significantly
decreased at the 4th week in the 0.5% TP group when compared with the control (0% TP)
(Figure 4), which indicated the protection of the disulfide bond by TPs within the gluten
networks. The ability of TPs to enhance the hydrogen bond, hydrophobic interaction,
and water–solid interaction within the gluten network would lead to increased strength
of the gluten and thus reduce the breakdown of the disulfide bond [23]. However, such
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protection against protein deterioration did not continue with the increase in TP contents,
since an opposite trend of free sulfhydryl content was observed when more TPs were
added (Figure 4, 1–2% TP groups). As discussed in Section 3.1, the introduction of hydroxyl
groups by TP [22] could hinder and reduce the formation of disulfide bonds through the
redox reaction [28], leading to the increase in free sulfhydryl content.
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Figure 4. Sulfhydryl contents of gluten at 0 to 4 weeks, stored at −20 ◦C with various TP additions.
Each experiment was carried out in triplicate. Values with different lower- or uppercase letters differ
significantly among samples, either with the same frozen storage time or TP addition (p < 0.05).

3.4. Effects of TPs on Protein Secondary Structures

To further investigate the effect of TPs on protein structure in the NFFD, the FTIR spectra
of dough samples with 0%, 0.5%, 1%, and 2% TP at both 0 and 4 weeks were recorded (Figure 5).
In the meantime, the proportions of protein secondary structure were calculated through
Peakfit based on the absorption peaks in the 1650–1660 cm−1 (α-helix), 1612–1640 cm−1

(β-sheet), 1662–1670 cm−1 (β-turn), and 1642–1648 cm−1 (irregular curl) regions.
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Figure 5. Infrared spectra of NFFD at both 0 and 4 weeks, stored at−20 ◦C with various TP additions.

Amide I band (1600–1700 cm−1) is one of the most important characteristic bands
to determine protein secondary structure [29]. The characteristic peaks at 1670 cm−1 and
1633 cm−1 show that the interaction of hydrogen bonds in protein molecules leads to β-turn
from the glutamine side chain and β-sheet (Figure 5).

The secondary protein structures were gradually transformed from ordered to disor-
dered when frozen time increased; however, the deterioration could be slightly hindered
by 0.5% TP (Table 1). Different TP addition exhibited significant influence on the protein
secondary structures. The proportion of β-sheet was slightly increased in the 0.5% TP
group and then significantly decreased in the 1 and 2% groups at 0and 4 weeks, respectively
(Table 1), suggesting the protection effect of TPs in proper amounts for the protein structure,
as proved by our results in Section 3.3. The protection effect would disappear when 1 and
2% TP were added. Similar behavior was found in α-helix as presented in Table 1. The
formation of α-helix and β-sheet in the spatial structure of proteins could be promoted by
disulfide bonds [12] and intermolecular hydrogen bonds [23], which were elevated by 0.5%
TP and resulted in the stabilizing of the “grid” protein structure. However, when excess
amounts of phenols diffused into the “grid” structure, the hydrogen bond would be largely
broken, leading to the reduced content of α-helix and β-sheet [9]. As for the β-turn, whose
proportion behaved opposite to β-sheet when different levels of TPs were added, this was
due to their transformation with each other [28].

Table 1. The effect of TP addition on protein secondary structures in NFFD (n = 3).

Time/Weeks Addition (TP)/%
Secondary Protein Structure

β-Sheet/% Irregular Curl/% α-Helix/% β-Turn/%

0

0 30.02 ± 0.13 c 16.61 ± 0.06 b 37.44 ± 0.08 c 15.93 ± 0.12 b
0.5 30.19 ± 0.04 c 16.23 ± 0.13 a 38.72 ± 0.06 d 14.86 ± 0.07 a
1 28.78 ± 0.08 b 16.50 ± 0.09 b 36.71 ± 0.07 b 18.01 ± 0.14 c
2 27.82 ± 0.11 a 18.39 ± 0.14 c 35.72 ± 0.11 a 18.07 ± 0.21 c

4

0 29.65 ± 0.14 c 16.93 ± 0.11 b 37.02 ± 0.15 c 16.40 ± 0.25 b
0.5 29.81 ± 0.08 c 16.56 ± 0.09 a 38.55 ± 0.16 d 15.08 ± 0.11 a
1 27.61 ± 0.13 b 17.12 ± 0.17 b 36.08 ± 0.08 b 19.19 ± 0.23 c
2 26.59 ± 0.21 a 18.88 ± 0.22 c 35.32 ± 0.21 a 19.21 ± 0.26 c

Values with different letters indicate significant difference among samples at the same frozen storage time
(p < 0.05).
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3.5. Effect of TPs on the Content of Freezable Water of NFFD

Freezable water is a key factor affecting the quality of NFFD because of its ability to
disrupt the protein network when ice crystals are formed [30]. The amounts of freezable
water in the NFFD with different levels of TPs (0–2%) at various storage periods were
characterized by DSC. According to Figure 6, the freezable water contents in dough samples
increased over time from 0 to 4 weeks. This phenomenon was in line with several other
studies [23,31,32] and could be attributed to the development, expansion, and recrystal-
lization of ice crystals in the dough. Those ice crystals further cause the breakdown of the
gluten network, along with weaker intermolecular connections, which in turn leads to the
release of water molecules and consequently increases the amount of freezable water [33].
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Figure 6. The freezable water content of NFFD (%, wet basis) in the presence of TPs (0–2%) at
0–4 weeks. Values with different lower- or uppercase letters differ significantly among samples either
with the same frozen storage time or TP addition (p < 0.05).

In addition, the freezable water content of samples during various frozen times was
decreased in the presence of 0.5% TP when compared with the control and then increased
as the level of TPs increased. The introduction of hydroxyl groups from TPs (0.5% TP)
strengthened the connection between starch and protein molecules and enhanced the
gluten network [9]. Thus, more water molecules would be trapped in the gluten protein
network, leading to the decrease in the freezable water content. This is in accordance
with Wu et al. [12], and these results again confirmed our deduction that the addition of
moderate amounts of TPs would promote the water-holding capacity of the NFFD, thus
reducing the amount of frozen water. However, the excess increase in TP content (1–2%)
would dilute the gluten protein network and result in an opposite phenomenon in the
water-holding capacity of the dough [10].

3.6. Effect of TPs on the Water State of NFFD

The water state and its distribution in the NFFD with TPs (0–2%) from 0–4 weeks
were analyzed by using LF-NMR, and the results are shown in Figure 7. A typical T2
(transverse relaxation time) curve of NFFD was shown in Figure 7A, within which three
proton populations, T21 (0.01–4 ms), T22 (4–75 ms), and T23 (75–205 ms), are represented for
the bound water, immobilized water, and free water, respectively [32].
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To further elucidate the changes in free water distribution in the NFFD, the corre-
sponding peak area and proportion of T23 are shown in Figure 7B,C. The peak area and
proportion of the 0.5% TP group were the lowest among all the groups throughout the
whole frozen duration from 0 to 4 weeks, indicating that the content of free water was
the lowest in the 0.5% TP group over time. The slight inclusion of TPs introduced a small
amount of hydroxyl groups, which contributed to the binding of water molecules on the
surface or within the structure of the gluten network during dough formation, allowing
full absorption of water and maintaining the dough quality over the course of storage [8].
The peak area and proportion (Figure 7B,C) were increased by adding more TPs (1–2%),
since more hydroxyl groups would competitively bind with water molecules to the gluten
network due to the hydrophilic nature of TPs, reducing the water absorption of the dough
and therefore affecting dough quality [34].

3.7. Effect of TPs on the Microstructures of NFFD

The microstructures of NFFD with 0–2% TP at both 0 and 4 weeks were visualized by
SEM; the results are presented in Figure 8. In general, the starch granules were embedded in
the gluten network, forming a laminar structure. As the storage period increased, the gluten
network was affected, and the starch granules were exposed regardless of TP addition. This
is because the size of ice crystals gradually increased over time, leading to the disruption
of the gluten structure [32]. A similar phenomenon was reported by Jiang et al. [35] and
Wang et al. [36].
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The fresh dough (0 weeks) without TPs showed a continuous and compact gluten
network with starch granules embedded (Figure 8a1). By adding TPs (0.5%), the gluten
network structure became denser and more ordered, leading to a more aggregated mor-
phology of starch granules (Figure 8b1). The density of the gluten network could be caused
by the interaction between TPs and gluten [37], which further resulted in the aggregation
of starch granules. In addition, the hydrophilic nature of TPs might be another reason
contributing to the tight binding to the gluten network [12].

As presented, the gluten network was partially broken down and more starch granules
gradually exposed when 1% and 2% TP were added (Figure 8c1–2,d1–2). This might be
due to the fact that TPs have a polyhydroxy structure, so excessive addition of TPs will
reduce the disulfide bond in the dough and affect the stability of the gluten network in the
dough [38]. A porous structure was observed in dough samples stored up to 4 weeks with
0–2% TP. However, the 0.5% TP group showed the tiniest pores compared with other groups
at the 4th week. This may be attributed to the binding of TPs to gluten proteins to form a
tea polyphenol–gluten protein cross-linked meshwork structure. The research results of
Chen et al. [39] also showed that the phenolic hydroxyl group of TPs would combine with
the peptide group on the main chain of the protein and -OH, -NH2, and -COOH on the side
chain in the way of a hydrogen bond at multiple points, thus stabilizing the protein network
structure. Nevertheless, the addition of excessive TPs not only diluted the gluten protein
network, but also reduced the disulfide bonds in the dough and destroyed the structure of
the gluten protein network in the dough, resulting in the exposure of starch. This result is
consistent with the results of SDS-PAGE and changes in free sulfhydryl groups.

4. Conclusions

Our study evaluated the effect of TPs at different addition levels (0–2%) on the protein
structure and water state of NFFD from 0 to 4 weeks. In summary, the inclusion of 0.5% TP
exhibited a beneficial effect on maintaining the dough’s quality. Those beneficial effects
include increasing the dough’s toughness, restraining the increase in the freezable water
content of the dough, and delaying the deterioration of protein during frozen storage. An
adequate amount of hydroxyl groups introduced by TPs would promote the gluten network
of NFFD by forming intermolecular hydrogen bonds with gluten to stabilize the “grid”
structure and mitigate the damage of ice growth and recrystallization of NFFD. However,
the addition of higher amounts of TPs would cause the exchange of sulfhydryl/disulfide
bonds in the gluten network and gradually depolymerize the gluten into smaller-molecular-
weight proteins, leading to the deterioration of the gluten network. This study would
advance the use of TPs in NFFD and offers fresh insights into their transformation into
effective dough-freezing agents. To further explain the underlying mechanisms of different
TPs such as ECG, EGC, and EGCG, our future work will be focused on the effect of a pure
TP compound on the quality of NFFD during frozen storage.
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