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Abstract: Seed quality affects crop yield and the quality of agricultural products, and traditional
identification methods are time‑consuming, complex, and irreversibly destructive. This study aims
to establish a fast, non‑destructive, and effective approach for defect detection in maize seeds based
on hyperspectral imaging (HSI) technology combined with deep learning. Raw spectra collected
from maize seeds (200 each healthy and worm‑eaten) were pre‑processed using detrending (DE)
and multiple scattering correction (MSC) to highlight the spectral differences between samples. A
convolutional neural network architecture (CNN‑FES) based on a feature selection mechanism was
proposed according to the importance of wavelength in the target classification task. The results
show that the subset of 24 feature wavelengths selected by the proposed CNN‑FES can capture im‑
portant feature information in the spectral data more effectively than the conventional successive
projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS) algorithms. In
addition, a convolutional neural network architecture (CNN‑ATM) based on an attentional classifi‑
cation mechanismwas designed for one‑dimensional spectral data classification and compared with
three commonly used machine learning methods, linear discriminant analysis (LDA), random forest
(RF), and support vector machine (SVM). The results show that the classification performance of the
designed CNN‑ATM on the full wavelength does not differ much from the above three methods,
and the classification accuracy is above 90% on both the training and test sets. Meanwhile, the ac‑
curacy, sensitivity, and specificity of CNN‑ATM based on feature wavelength modeling can reach
up to 97.50%, 98.28%, and 96.77% at the highest, respectively. The study shows that hyperspectral
imaging‑based defect detection of maize seed is feasible and effective, and the proposed method has
great potential for the processing and analysis of complex hyperspectral data.

Keywords: hyperspectral imaging; maize seeds; defect detection; feature selection; convolutional
neural network

1. Introduction
Maize (Zea mays L.) is one of the three major food crops in China, and it is also an

essential feed and industrial raw material [1]. The quality of maize seed directly affects
maize yield, food security, and the agricultural economy, making the issue of seed qual‑
ity particularly important. In addition, with the development of modern agricultural ma‑
chinery technology, especially the application of precision sowing machinery, the quality
of seeds has been increasingly demanding [2]. Maize seeds are prone to damage, defects,
andmildew during storage and transportation, where defects are significant indicators for
seed quality evaluation [3]. Maize seeds of the same variety have many similar character‑
istics (such as color and shape) that make it difficult for human vision to distinguish them.
Traditional detection methods (such as morphology, molecular biology, and genetic mark‑
ers) are time‑consuming, inefficient, and professionally demanding [4]. It can also cause
irreversible damage to the sample, which is not conducive to a non‑destructive and rapid
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evaluation of maize seed quality in industrial production [5]. In recent years, many schol‑
ars have applied machine vision, deep learning, and spectral sensing technology to seed
quality detection, and it has achieved some research achievements [6]. Conventional ma‑
chine vision techniques can detect severe external defects in seeds. However, when pest
symptoms are not obvious, internal information about the sample cannot be obtained for
identification, resulting in poorer detection accuracy. Hyperspectral imaging (HSI) is an
effective non‑destructive inspection technique that combines traditional spectral informa‑
tion (reflecting chemical composition) with image information (reflecting physical proper‑
ties) [7]. It can also be used to solve the problem that the defective areas of the seeds are
obscured during the detection process. The subdivided wavelength data in hyperspectral
has a unique role in reflecting subtle changes in the intrinsic physiological properties of
seeds, such as moisture, starch, protein, and fat [8]. Therefore, the most sensitive hyper‑
spectral characteristic parameters of different quality seeds can be obtained by analyzing
the spectral response of seed wavelengths.

Sellami proposed a new hyperspectral image classification method based on a multi‑
view deep neural network that fuses spectral and spatial features using only a small num‑
ber of labeled samples [9]. Alimohammadi successfully identified and classified three vari‑
eties of maize seeds using hyperspectral nondestructive imaging in the wavelength range
of 400–1000 nm [10]. Zhang developed a new method for identifying different varieties of
commercial maize seeds using visible and hyperspectral imaging techniques in the near‑
infrared band to develop a new method for identifying different varieties of commercial
maize seeds [11]. Liu proposed a method for identifying the purity of hyperspectral rice
seeds based on the LASSO logistic regression model by combining the advantages of the
sparsity property of the least absolute shrinkage selection operator (LASSO) algorithm and
the classification property of the logistic regressionmodel (LRM) [12]. Due to the complex‑
ity of hyperspectral data, not all spectral variables are related to the target components,
and the full spectrum inevitably contains a large amount of noise, invalid information,
and even interfering variables [13]. This situation increases the complexity of the model
but also seriously affects its accuracy and reliability. Therefore, feature selection has be‑
come a critical step in the hyperspectral modeling process, which can quickly obtain the
optimal subset of feature wavelengths [12].

Feature selection has been a hot research topic in recent years in hyperspectral analysis
techniques and chemometrics, where the more common method is the traditional spectral
feature selection algorithm [14]. Nagasubramanian used a genetic algorithm (GA) as an
optimizer for optimal band selection, and the accuracy of identifying charcoal rot infection
in soybean with the selected combination of six bands reached 97% [15]. Pang used succes‑
sive projections algorithm (SPA) to select 25 feature variables, which could achieve 99.77%
accuracy in predicting Quercus variabilis seed vigor [16]. Song used competitive adaptive
reweighted sampling (CARS) to screen 60 sensitive wavelengths, in which the root mean
square error (RMSE) and calibration set accuracy of the diagnostic model were 1.97 and
0.87, respectively, which could accurately predict chlorophyll content in maize canopy
and provide a reference for rational use of fertilizer [17]. Zhang showed that the CARS
algorithm (29 wavelengths) outperformed the SPA algorithm (24 wavelengths) in feature
variable selection and achieved an accuracy of 89% in the validation set based on the deep
forest (DF) model, which can effectively identify the sound or slightly sprouted wheat
kernels (slightly sprouted wheat kernels) [18]. However, the above traditional feature se‑
lection methods utilize only spectral data without considering the labels in the dataset,
which may lead to a low relevance of the selected feature subset to the final target. With
the rapid development of deep learning techniques, convolutional neural network (CNN)‑
based methods have been successfully applied to hyperspectral band selection [19]. Yuan
proposed a point‑centered convolutional neural network incorporating embedded feature
selection for feature selection, extraction, and classification, and the accuracy of the selected
five critical bands reached 97.98% for non‑destructive and rapid identification of moldy
peanuts [20]. Sharma proposed a CNN named DeepFeature applied to non‑image data for
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feature selection with 98% classification accuracy on an independent test set, which can
provide a powerful method for identifying biologically relevant gene sets [21].

With the development and research of artificial intelligence, the application of deep
learning combined with HSI technology to agricultural tasks has gradually become a re‑
search hotspot where more and more researchers are using deep learning models repre‑
sented by CNN to solve the problem of seed quality detection [6,22]. Yu achieved the
recognition of hybrid okra seeds using HSI (948.17–1649.20 nm) technology, and its recog‑
nition rate reached 97.68%, demonstrating that the CNNmodel has reliable advantages in
achieving high accuracy and stability [23]. Pang showed that building a CNNmodel based
on spectral images (497.72–998.16 nm) has excellent results for identifying the seed viabil‑
ity of Sophora japonica, which is significant for the study of seed vigor and spectral change
mechanisms [24]. Gao used a one‑dimensional convolutional neural network (1D‑CNN) to
classify aflatoxins inmaize and peanuts based on hyperspectral data (292–865 nm), and the
classification accuracy was 96.35% and 92.11%, respectively, which remarkably improved
the detection efficiency [25]. Li proposed a method based on a deep convolutional gener‑
ative adversarial network (DCGAN) and near‑infrared hyperspectral imaging technique
(866.4–1701.0 nm) for identifying unsound wheat seeds, and the accuracy could reach up
to 96.67% [26]. The above shows that the jointmodel based onDCGANandCNNhas good
performance for identifying small samples and can learn more feature information from
spectral data. In order to further optimize the deep learning model, some scholars have
introduced the attention mechanism to focus on critical information selectively [27,28]. Of
these, Wang developed an attention‑based CNN approach (Geo‑CBAM‑CNN) for crop
classification using time‑series Sentinel‑2 images. The results show that the convolutional
block attention module (CBAM) can help mitigate the effect of geographical heterogeneity
and suppress unnecessary information [28]. The proposed model achieves an accuracy of
97.82%, demonstrating its superior performance in large‑scale applications. In summary,
CNN is an accurate identification model, and combining it with HSI can improve the over‑
all model performance by using the internal and external feature information of samples.
Therefore, it is important to establish an identification model for maize seed defects using
CNN combined with HSI and to explore the effects of different feature selection methods
and classification models on the identification results.

This study investigates the feasibility ofHSI combinedwithCNN for the identification
of maize seed defects. The objectives of this study are as follows: (1) to collect image
information of defective maize seeds, extract spectral data of the region of interest, and
preprocess them to analyze the differences between defective and healthy maize seeds;
(2) to propose aCNNmodel (CNN‑FES) based on feature selectionmechanism for selecting
key feature wavelength variables that are beneficial to the target task, and to evaluate the
impact of the variables selected by different feature selection methods on the model; (3) to
design a CNN model (CNN‑ATM) based on attentional classification mechanism in order
to discriminate the samples, and the best model for the identification of maize seed defects
was selected by comparing the classification results of different machine learning methods
(LDA, RF, and SVM) and CNN‑ATM.

2. Materials and Methods
2.1. Sample Preparation and Hyperspectral Image Acquisition

Maize seeds of “Zhengdan 958” collected in 2022 from the local farmers’ market in
Haikou City (20.06◦N, 110.33◦E), Hainan Province, were used as material for this study;
this variety is widely grown in China. All samples were identified and selected by agri‑
cultural cultivation experts, and they were analyzed in three aspects: morphology, struc‑
ture (with endosperm), and end‑use type (cultivation). From the samples, 200 worm‑eaten
seeds (Figure 1A–C) and another 200 healthy seeds (Figure 1D) were chosen as the control
group, numbered in order, and placed in sealed bags. In order to eliminate the interfer‑
ence of moisture during spectral data collection, all samples were stored at room tempera‑
ture (26 ◦C) for 12 h. These maize seeds did not perform other physical or chemical treat‑
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ments before acquiring spectral information, and the shapes and colors between themwere
roughly the same. In this study, the division of the training set and test set was carried out
randomly in the ratio of 7:3, with 280 samples in the training set and 120 samples in the
test set.
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Figure 1. Images of maize seed samples: (A) embryonic surface worm‑eaten; (B) non‑embryonic
surface worm‑eaten; (C) lateral surface worm‑eaten; (D) healthy.

As shown in Figure 2, the hyperspectral image acquisition system is the “GaiaSorter”
hyperspectral sorting equipment manufactured by Zolix Co., Ltd. (Beijing, China). The
whole system consists of five parts: a uniform light source (2900‑ER+9596‑E, Illumination,
East Syracuse, NY, USA), a “Image− λ” series of spectral cameras (Imspector N17E; TE‑
cooled InGaAs CCD, Spectral Imaging Ltd., Oulu, Finland), an electronically controlled
mobile platform (MTS 120, Beijing optical instrument factory, Beijing, China), a computer
(OptiPlex 7090, Dell, RoundRock, TX,USA), and control software (SpecViewLtd., Uckfield,
UK). The system has a spectral acquisition range of 866.4–1701 nm and contains 254 bands,
and a three‑dimensional data cube containing image information and spectral information
of all maize seed samples can be obtained by one scan at a time. In addition, the system
includes a dark box to isolate the interference of external light or noise and an object stage
to place the seed samples.

Foods 2023, 12, x FOR PEER REVIEW 4 of 22 
 

 

agricultural cultivation experts, and they were analyzed in three aspects: morphology, 
structure (with endosperm), and end-use type (cultivation). From the samples, 200 worm-
eaten seeds (Figure 1A–C) and another 200 healthy seeds (Figure 1D) were chosen as the 
control group, numbered in order, and placed in sealed bags. In order to eliminate the 
interference of moisture during spectral data collection, all samples were stored at room 
temperature (26 °C) for 12 h. These maize seeds did not perform other physical or chemical 
treatments before acquiring spectral information, and the shapes and colors between them 
were roughly the same. In this study, the division of the training set and test set was 
carried out randomly in the ratio of 7:3, with 280 samples in the training set and 120 
samples in the test set. 

    

Figure 1. Images of maize seed samples: (A) embryonic surface worm-eaten; (B) non-embryonic 
surface worm-eaten; (C) lateral surface worm-eaten; (D) healthy. 

As shown in Figure 2, the hyperspectral image acquisition system is the “GaiaSorter” 
hyperspectral sorting equipment manufactured by Zolix Co., Ltd. (Beijing, China). The 
whole system consists of five parts: a uniform light source (2900-ER+9596-E, Illumination, 
East Syracuse, NY, USA), a “Image − λ” series of spectral cameras (Imspector N17E; TE-
cooled InGaAs CCD, Spectral Imaging Ltd., Oulu, Finland), an electronically controlled 
mobile platform (MTS 120, Beijing optical instrument factory, Beijing, China), a computer 
(OptiPlex 7090, Dell, Round Rock, TX, USA), and control software (SpecView Ltd., 
Uckfield, UK). The system has a spectral acquisition range of 866.4–1701 nm and contains 
254 bands, and a three-dimensional data cube containing image information and spectral 
information of all maize seed samples can be obtained by one scan at a time. In addition, 
the system includes a dark box to isolate the interference of external light or noise and an 
object stage to place the seed samples. 

 
Figure 2. Hyperspectral image acquisition system. Figure 2. Hyperspectral image acquisition system.

The equipmentwas allowed towarmup for 0.5 h before capturing the spectral images,
and then the camera exposure timewas tuned and determined to be 30ms. The distance be‑
tween the camera and the sample was adjusted to 36 cm, the image resolution at full frame
was 1392× 1040, and the movement speed of the mobile platform was 2 mm/s. The maize
seeds were placed single on the blackboard of the object stage in 7 rows and 6 columns.
The computer‑controlled mobile platform was moved from left to right, and the camera
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gathered spectral images of the samples, which were then transferred to the computer for
storage. Due to the inhomogeneous intensity distribution of the light source and the pres‑
ence of dark current noise, black and white correction of the original hyperspectral images
is required to improve the signal‑to‑noise ratio of the acquired images [1]. First, we placed
a whiteboard for white reference to obtain a corrected image with a reflectivity of about
100%. Then, we placed a blackboard for black reference to obtain a corrected image with
a reflectivity of 0. Finally, we calculated the relative reflectivity of the calibrated image
according to Formula (1) [29].

Re =
Ir − Id
Iw − Id

(1)

where Re is the relative reflectivity of the calibrated image, Ir is the spectral reflectivity of
the original image, Iw is the spectral reflectivity of the corrected whiteboard, and Id is the
spectral reflectivity of the corrected blackboard.

2.2. Spectral Data Extraction and Preprocessing
In order to obtain the representative spectral information of the samples, the data pro‑

cessing of the original hyperspectral images is required, and the implementation process
is shown in Figure 3. First, the background and noise of the original hyperspectral im‑
age were removed using Matlab R2020a (MathWorks, Natick, Massachusetts, MA, USA)
combined with the morphological filtering method, which was converted to a grayscale
image by threshold segmentation, and the single seed region was retained as the region of
interest (ROI) of the image. Next, the grayscale image was converted into a mask image
based on the difference between the spectral reflectance values of the sample and the back‑
ground, and the hyperspectral image of the ROI was separated from the background by
multiplying the original hyperspectral image with themask pixel points to obtain the spec‑
tral reflectance image of each seed. Last, the average value of all pixel points (per band)
within the ROI was extracted as the average spectrum of the sample using ENVI 5.3.
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The experiments are disturbed by external factors such as the measurement state of
maize seeds, the working state of the equipment, and the environment, which lead to ran‑
dom noise and baseline drift in the obtained spectral data, which can have a significant
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impact on the results of spectral data analysis. It is necessary to pre‑process the spectral
data to highlight the valid information of the spectral to reduce the influence of these con‑
ditions on the robustness of the model and improve its prediction accuracy. This study
uses Matlab R2020a to denoise the spectral data, and after the Savitzky‑Golay (SG) pro‑
cessing [30], the DE and MSC methods were used to pre‑process the data and compare
these two methods, respectively [31]. Among them, the SG can improve the smoothness
of the spectra and reduce noise interference, and a smoothing window of 11 and a polyno‑
mial number of 1 are selected to process it in this paper. DE can improve the baseline offset
phenomenon and focus the analysis on the fluctuation of the data trend itself. MSC can im‑
prove the signal‑to‑noise ratio of the spectral, effectively eliminate the effect of scattering,
and enhance information on the spectral absorption related to the component content.

2.3. Traditional Feature Selection and Machine Learning Methods
The wavelength range of the original spectra was 866.4–1701.0 nm (254 bands). In

order to remove noise interference caused by factors such as equipment and environment,
the wavelength range of 897.4–1701 nm (245 bands) was selected for analysis in this study.
In practical applications, the amount of spectral data is usually enormous. Using spectral
data at the full wavelength will increase the complexity of model calculations, and its mod‑
eling effects will be affected by redundant information and collinearity problems. There‑
fore, to further investigate the feasibility of applying hyperspectral techniques to identify
defects in maize seeds, first, conventional SPA and CARS were used for feature selection
to reduce the amount of modeling data and ensure its identification on the model, both
of which were implemented using Matlab R2020a. Second, traditional machine learning
algorithms, including LDA, RF, and SVM, were used to establish a hyperspectral classifi‑
cation model to identify healthy and defective maize seeds. These three methods are all
implemented using Python’s sklearn toolkit (https://scikit‑learn.org/stable/ (accessed on
13 November 2022).

2.3.1. Feature Selection Method
SPA is a method that minimizes the overlap of spectral information, using vector pro‑

jection to select effective feature wavelengths that have low redundancy yet reflect the
critical information of the sample spectrum [32]. The algorithm can eliminate collinear‑
ity between the combinations of feature variables through recursive computation to select
newwavelengths, thus improving the conditions of classification and regression tasks [33].
It can also remove spectral regions with high noise and irrelevant information to achieve
screening of sensitive variables and improve crop identification [34]. In addition, CARS is
an alternative approach to feature selection that allows assessing the importance of each
variable based on the absolute value of the regression coefficients of the partial least squares
model [35]. Monte Carlo resampling was performed iteratively and competitively to make
the distribution of the selected band positions more uniform [36]. Different subsets were
evaluated using cross‑validation, and the selected best variables combination is more suit‑
able for subsequent modeling [37].

2.3.2. Machine Learning Method
LDA is a powerful supervised learning technique that can significantly increase the

discrimination ability between classes based on the distance between projections and effec‑
tively classify data [38]. LDA paysmore attention to the inter‑class distance and intra‑class
distance of the projected samples in the new dimension space, ensuring that the model has
the best separability in the subspace [39]. The method used in this study to solve the LDA
hyperplane eigenmatrix is singular value decomposition (SVD), and the threshold used for
rank estimation in the SVD solver is 1 × 10−4.

SVM is designed based on statistical principles and follows the structural risk mini‑
mization principle to obtain stable classification results bymaximizing the decision bound‑
ary [40]. The radial basis function (RBF) is used to transformnonlinear problems into linear

https://scikit-learn.org/stable/


Foods 2023, 12, 144 7 of 21

ones [41]. The optimal values of its penalty coefficient C and kernel function gamma are
determined by the grid searchmethod, and their search range is set to 10−5–105. This study
uses a 10‑fold cross‑validation strategy to set C and gamma to be 10 and 0.004, respectively.

RF is an integrated learning method that can be used for classification, combining the
results of decision tree‑based modeling and obtaining the final estimation results by vot‑
ing [42]. The grid search method seeks the appropriate number of decision trees
(n_estimators), the number of randomly selected variables at nodes (random_state), and
themaximumnumber of features (max_features) to correct the overfitting due to the induc‑
tive preference of decision trees [41]. This study uses the Gini coefficient as a measure to
determine n_estimators, random_state, and max_features to be 15, 2, and 6, respectively.

2.4. Convolutional Neural Network Architecture for Feature Selection and Classification
CNN is a deep learning method with structural diversity and nonlinear transforma‑

tion that has achieved significant achievements in many fields such as image processing,
speech recognition, and text data [20,24]. In recent years, CNN has been intensively re‑
searched and explored in spectral analysis and extended to applications for
one‑dimensional (1D) data (such as pixel‑level spectra) and three‑dimensional (3D)
data [43]. This study proposed a novel 1D‑CNNmodel for hyperspectral analysis, inwhich
the feature shape of the spectral data of the sample is 1 × 245. The model consists mainly
of two parts. One is a CNN architecture based on a feature selection function for optimal
wavelength selection; the other is a CNN architecture based on an attention mechanism
for identifying defective seeds. We define them as CNN‑FES and CNN‑ATM. These two
custom modules were annotated through purple dashed boxes, and the processing pro‑
cess of the whole network is shown in Figure 4. First, the input data of shape N × L (N
is the number of samples, and L is the number of features) was processed by the feature
selection module, which evaluates the weight of the coefficients in the network iteration
through the loss function, according to the output importance score (IS) selects the input.
Then, the selected combination of feature variables (N× L1) was input to the convolutional
classificationmodule for processing, and healthy and defective seedswere identified based
on category output.

Foods 2023, 12, x FOR PEER REVIEW 8 of 22 
 

 

through the loss function, according to the output importance score (IS) selects the input. 
Then, the selected combination of feature variables (N × L1) was input to the convolutional 
classification module for processing, and healthy and defective seeds were identified 
based on category output. 

 
Figure 4. CNN network processing flow. 

2.4.1. CNN Architecture Based on the Feature Selection Mechanism 
For the CNN-FES module, the architecture is shown in Figure 5. The feature selection 

mechanism allows the network to select certain vital variables of the input data while 
ignoring the selection of unimportant variables. Referring to the Vaswani algorithm, we 
calculate the value of the loss function in the CNN network to indicate the importance of 
each feature in the target classification task and select the feature wavelengths based on 
IS. The feature weight (FW) block was annotated with a red dotted box, and the weight of 
FW is output in the same shape as the input. 

 
Figure 5. Architecture of CNN-FES module. 

Figure 5 shows the processing of the CNN-FES module. First, the input data was 
processed by the nonlinear activation function Softmax after the FW operation, and then 
the output weight coefficients were multiplied by the input. The weighted vector of the 
FW block is defined as the output and calculated as shown in Equation (2) for the 
subsequent convolution operation and the calculation of IS. 

Inputs

Importance scores
output

N×L
CNN-FES

CNN-ATM Category output

Loss function

N×L1

Feature selection

Figure 4. CNN network processing flow.

2.4.1. CNN Architecture Based on the Feature Selection Mechanism
For the CNN‑FES module, the architecture is shown in Figure 5. The feature selec‑

tion mechanism allows the network to select certain vital variables of the input data while
ignoring the selection of unimportant variables. Referring to the Vaswani algorithm, we
calculate the value of the loss function in the CNN network to indicate the importance of
each feature in the target classification task and select the feature wavelengths based on IS.
The feature weight (FW) block was annotated with a red dotted box, and the weight of FW
is output in the same shape as the input.
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Figure 5. Architecture of CNN‑FES module.

Figure 5 shows the processing of the CNN‑FES module. First, the input data was
processed by the nonlinear activation function Softmax after the FW operation, and then
the outputweight coefficientsweremultiplied by the input. Theweighted vector of the FW
block is defined as the output and calculated as shown in Equation (2) for the subsequent
convolution operation and the calculation of IS.

YFW = fS(WFW) ∗ X (2)

where X = [X1, X2, . . . ., XL], WFW = X ∗ XT , XT denotes the transpose matrix of X and ∗
denotes the multiplication of the corresponding elements in the two matrices. WFW is the
inner product of the vector, YFW is the weighted vector of the FW block, fS is the activation
function, and fS(WFW) is the weight coefficient. The geometric meaning of WFW is the
angle between two vectors, which is the projection of one vector onto another vector. The
larger the value of WFW , the higher the correlation between the two vectors, thus giving
them more attention in the feature extraction of convolution operation, and the IS will be
higher. In addition, alternatives to fS are Sigmoid, Tanh, and ReLU. Sigmoid makes the
output not centered on 0, which will reduce the efficiency of weight update. Tanh will
make part of the input negative, which is not conducive to model training. ReLU sets part
of the output to 0 and deletes related feature information. The denominator of Softmax
combines all the factors of the original output value, making the outputs associated with
each other. Therefore, Softmax was selected in this study to output the weight coefficients.

Next, theYFW output from the FWblockwas reconstructed intoN× L× 1 for convolu‑
tional operation, and two 1D convolutions (Convolution 1/Convolution 2) blocks (number
of kernels, kernel size, and strides were set to 127/245, 64/32, and 1/1, respectively), one
flatten layer, and one dense layer (number of neurons is 10) were processed, and the last
is the output layer (Softmax). Of them, the convolutional layers use the ReLU activation
function with L2 regularization added. The MaxPooling layer (pool size and strides of
2, and 1, respectively) was downsampled after each convolutional layer, and the dropout
layer (rate is 0.25) was performed after the dense layer.

In the feature selection process, features unrelated to labels or random noise will be
related through model training, resulting in the neglect of a lot of potentially valuable in‑
formation. Referring to the idea of the Altmann algorithm [44], “permutation importance”
was used for processing in this study. We disordered the labels five times, then obtained
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the feature importance (IF) under the false labels, selected the features based on the dif‑
ference between the IF under the true and false labels, and defined the IS calculation as
shown in Formula (3).

IS = log[(1e − 10 + S1k)/(S2k)] (3)

where k denotes the kth characteristic variable (k = 1, 2, . . . , 245), S1k denotes the IF of
variable k before no shuffle, and S2k denotes the 75% quantile of the IF of all variables k
after multiple shuffles. IF is the loss value calculated by the model at each iteration based
on the loss function (Lossyp); 1e − 10 and 1 are smoothing methods used to avoid numer‑
ator and denominator zeros during computation, and they have no practical significance.
If the value of IS < 0, indicates that the feature variable k is not a vital feature of the classi‑
fication task.

Finally, theAdamoptimization algorithmwasused to train the feature selectionmodel
to minimize the classification error while retaining a minimum fS(WFW) value, and the de‑
fined loss function is Lossyp shown in Formula (4).

Lossyp = − 1
N

N

∑
i=1

M

∑
j=1

yijlog
(

pij
)
+ λ

M

∑
j=1

(
so f tmax

(
w2

j

))
(4)

N indicates the number of samples, M indicates the number of categories, yij indicates
the label value, pij indicates the predicted value, wj indicates the weight vector, and λ in‑
dicates the regularization coefficient. Lossyp consists of two parts: one is the cross‑entropy
loss, which controls the classification accuracy of the target task; the other is the sum of the
weight coefficients in the FW block, which makes the absolute value of the weights tend
to decrease overall and the IS of the features can take full advantage of all the inputs from
the upper layer.

2.4.2. CNN Architecture Based on Attention Classification Mechanism
For the CNN‑ATM module, the architecture is shown in Figure 6. The attention clas‑

sification mechanism makes the network focus more on the information in the input data
that is more critical to the current task and reduces the attention to other non‑critical infor‑
mation. By referring to the SeNet algorithm [45], the importance degree (ID) of the feature
channel was obtained through network learning, and then enhances the beneficial features
and suppresses the features that are useless for the current according to the ID, and uses it
to achieve the identification of defective maize seeds. The attention score (AS) block was
annotated with a blue dashed box, and the weights of AS are output in the same shape as
the input.

Figure 6 illustrates the processing of the CNN‑ATM module. First, the input data
was reshaped after global average pooling, and the weights of each feature channel were
obtained using the nonlinear activation function Sigmoid after the two fully connected,
and the weights of the output were reshaped again and multiplied with the input. The
weighted vector of AS block was defined as the output, and the computation was per‑
formed according to the following Formula (5) for subsequent convolution operation and
ID calculation.

YAS = fS(W2 ∗ fR(W1Z)) ∗ X (5)

where, X = [X1, X2, . . . ., XL], ∗ represents the multiplication of corresponding elements in
two matrices, the dimension of W1Z is 1 × 1 × L/r, r is the scaling parameter, which was
taken as 8 in this study, the dimension of W2 is L × L/r, YAS is the weighting vector of the
AS block, fS and fR are the activation functions, and fS(W2 ∗ fR(W1Z)) was defined as the
weight coefficient.
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Second, the output (YAS) from the AS block continued to complete the convolution
operation and performed three 1D convolutions (Convolution 1/Convolution 2/Convolu‑
tion 3) blocks (the number of kernels, kernel size, and strides were set to 16/64/128, 3/3/3,
and 1/1/1, respectively), and one flatten layer, and the last part is output layer (Softmax).
Where the ELU activation function was used for the convolutional layers, and L2 regular‑
ization was added. The downsampling operation of the MaxPooling layer (pool size and
strides of 2, and 1, respectively) was performed after each convolutional layer. Finally, the
Adam optimization algorithm was used to train the classification model to obtain the best
detection effect of defective seeds.

2.5. Model Training Process and Evaluation Metric
In this study, the training set (280) was used for model training and the test set (120)

was used for the performance evaluation of the model. The sample features were normal‑
ized (z‑score) to compensate for scale differences between the data before they were fed
into these classificationmodels. In addition, the obtained spectral datawere statistically an‑
alyzed using IBM SPSS 26 using paired sample t‑tests to assess statistical differences in the
spectral characteristics of the samples. The mean, standard deviation, and standard error
mean of the samples were calculated bymean comparison analysis to analyze if significant
differences were presented between healthy and defective maize seeds. The remaining pa‑
rameters of the models for LDA, SVM, and RF were set as default, and then their classifi‑
cation results were compared with the CNNmodels. We optimize the hyperparameters of
both CNN‑FES and CNN‑ATM models by analyzing the accuracy of the training and test
sets on epoch to obtain the output value of theminimized loss function and themodel with
good robustness. The number of epochs on CNN‑FES was set at 100, the batch size was
4, λ was 0.15, and the weight decay value was 0.1. The number of epochs on CNN‑ATM
was 200, the batch size was 32, and the weight decay value was 0.008. The initial value
of the learning rate for both was 0.001, the momentum value of the gradient descent opti‑
mizer was set to 0.9, and the learning rate decays automatically according to the number
of iterations. The above CNN model was built and implemented using the programming
language Python 3.8 (https://www.python.org/ (accessed on 13 November 2022)) in the
machine learning platform TensorFlow 2.3 (https://devdocs.io/tensorflow~2.3/ (accessed

https://www.python.org/
https://devdocs.io/tensorflow~2.3/
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on 13 November 2022).) and the deep learning framework Keras 2.4.3 (https://keras.io/ (ac‑
cessed on 13 November 2022)), using an AMD Ryzen 7 3800 × 8‑core processor, 3.90 GHz
16 GB, and NVIDIA GeForce RT × 3050 graphics processing unit for training and testing.

For the evaluation strategy, this study uses the standard metrics of the classification
task to calculate the accuracy (AC), sensitivity (SE), and specificity (SP) of the model based
on the confusion matrix using Formulas (6)–(8), respectively, to measure the ability of the
model to discriminate the samples.

AC =
TP + TN

TP + FP + TN + FN
(6)

SE =
TP

TP + FN
(7)

SP =
TN

TN + FP
(8)

In this case, TP, TN, FP, and FN represent true positive, true negative, false positive,
and false negative of the confusion matrix, respectively.

3. Results and Discussion
3.1. Spectral Data Analysis

This study analyzed the differences in spectral data using paired‑sample t‑tests.
Among them, the mean spectral value of healthy maize seeds (0.448) was significantly
higher than that of defective ones (0.426), and they showed a significant difference
(t = 21.259, p = 0.001 < 0.05). The large difference in the spectral characteristics data be‑
tween the two implies that the presence of defects in maize seeds leads to a change in their
internal structure. This change affects the magnitude of its spectral reflectance and can bet‑
ter reflect the actual state (healthy or defective) of the maize seeds. The average spectral
information of the maize seed samples in the wavelength range of 897.4–1701 nm is shown
in Figure 7. It can be seen that the general trend and characteristic peaks of the spectral
curves of healthy and worm‑eaten seeds are the same, with the spectral curves showing
a significant decrease in the wavelength range of 897.4–959.3 nm and a leveling off in the
wavelength range of 993.4–1666.4 nm. Although some regions overlap, the reflectance of
different wavelengths is slightly different, and the spectral data can be further studied and
analyzed. The spectral reflectance of the defective seeds at 952.4–1484.5 nm was lower
than that of healthy maize seeds due to changes in their protein, starch, and moisture com‑
position. Among them, the average spectral curves show absorption peaks or valleys at
959.3 nm, 996.9 nm, 1159.1 nm, 1239.1 nm, and 1331.5 nm, which are more affected by the
damage to the structure and tissues inside the maize seeds. Traditional visual detection
methods are based on surface defects of seeds in visible light, but most of the spectral sig‑
nals are invisible to the human eye, which can provide a great deal of information about
the internal defects of seeds.

The troughs around 980 nmwere caused by the joint action of stretching vibrations of
N‑H in protein and C‑O and C‑N in soluble sugar, and the absorption peak near 1000 nm
is related to the third overtone of N‑H stretching in proteins [46]. There are two noticeable
troughs around 1235 and 1500 nm, where the former represents the absorptionwavelength
of the second overtone of C‑H stretching in carbon hydrate, and the latter represents the
absorption wavelength of the first overtone of O‑H stretching in water and N‑H stretch‑
ing in protein, respectively [23]. The absorption peak near 1350 nm was correlated with
the second overtone of C‑H stretching in starch, and it is also the absorption region of C‑
O stretching vibration, and the valley of absorption around 1660 nm is related to the fat
content [47]. These characteristic peaks reflect the degree of absorption of different wave‑
lengths of near‑infrared light by the highmolecular compound inmaize seeds. In addition,
worm‑eaten seeds lost some of their original higher structures, resulting in broken chemi‑
cal bonds and disruption of the molecular structure of substances such as proteins, starch,

https://keras.io/
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and water, which led to differences in reflectance on the spectral curves [2]. These differ‑
ences demonstrate the distinction between healthy and worm‑eaten maize seeds for one
thing and the feasibility of HSI for defect detection of maize seeds for another.
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Figure 7. The average spectral curve of maize seeds.

Figure 8B shows the spectral curves of the samples after SG pretreatment, fromwhich
it can be shown that the SG method retains almost all the information of the original spec‑
tral curves, and the modeling results after the preprocessing may not differ much from the
modeling results using the original spectra directly. Figure 8C,D show the spectral curves
of the samples pretreated by detrending (DE) andmultiple scattering correction (MSC), re‑
spectively, from which it can be seen that the DE method changes the overall trend of the
original spectral, while the MSC method retains the overall trend of the original spectral.
However, it can be found that both of them enhanced the characteristics of the spectral
absorption curves and decreased the discreteness of the curve after pretreatment, and the
use of these two preprocessing methods can effectively reduce noise interference in the
spectral data.

3.2. Results of Feature Wavelength Selection
Set the selection range of the characteristic wavelength of SPA to 1–50, and the result is

shown in Figure 9, taking the spectral data processed byMSC as an example. In this study,
the RMSE value was used as the main evaluation index to screen the best combination of
variables, and a total of 24 characteristic variables were obtained at the minimum RMSE
value of 0.14194 (the coefficient of determination R2 of the model is 0.9864), accounting
for 9.80% of the total wavelengths. From Figure 9A, it can be seen that the RMSE val‑
ues showed an overall decreasing trend when the number of variables was less than 24,
and the changing trends tended to be gentle when the number of variables was greater
than 24. Figure 9B indicates the selection of specific variables, and the red “ �” repre‑
sents the selected variables with the smallest RMSE value corresponding to the optimal
number of characteristic wavelengths. The above indicates that the selected characteristic
wavelengths contained information about worm‑eaten maize seeds and had higher dis‑
crimination than healthy ones. Therefore, the reflectance values corresponding to the 28
wavelengths were selected as the data for subsequent modeling.
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The results selected by CARS (set the number of Monte Carlo sampling N to 50 and
5‑fold cross‑validation) are shown in Figure 10, taking the spectral data processed by DE
as an example. As can be seen in Figure 10A, the subset of spectral data changed at each
sampling, resulting in a trend of decreasing and then increasing root mean square error
of cross‑validation (RMSECV) values. The above indicates that at the initial stage of sam‑
pling (0–21), a large amount of information irrelevant to identifying defective maize seeds
or partially co‑linear information was removed, and the RMSECV achieved a minimum
value (0.2104) when the sampling number was 21. With the sampling number increased,
and the removal of critical information from the spectral data, the model performance be‑
comes progressively worse. Figure 10B shows the trend of the regression coefficient of
each wavelength variable in the process of variable optimization, and the position marked
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by the red dashed vertical line is the minimum value of RMSECV, at which the subset
of spectral data obtained by sampling is the optimal wavelength combination, containing
34 wavelength variables, accounting for 13.39% of the total wavelengths.
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The result of the feature selection of the CNN‑FES network proposed in this study is
shown in Figure 11 (taking the spectral data processed byMSCas an example), and its score
is of great significance for the object classification task. Figure 11A shows the IS at each
wavelength obtained by inputting the raw hyperspectral data into the CNN‑FES network.
Since this method shows good selectivity, the IS value of some unimportant wavelengths
will be less than 0, so 24 wavelength variables with higher values (the first 10%) can be
selected (which can be adjusted according to the needs of practical applications), and the
detailed distribution of its selection results on the spectral curve is shown in Figure 11B.
It can be seen that there are more continuous wavelengths in the selected subset of effec‑
tive wavelengths (the red “ �” represents selected variables). This situation indicates that
the correlation between adjacent feature wavelengths is high, and the selected subset has
less redundant information, which may be more favorable for the model to achieve better
classification results. In addition, the selected feature wavelengths are all at and near the
wave peaks on the average spectral curve, indicating that the wavelength selectionmethod
based on the CNN‑FESmodel proposed in this study can effectively capture important fea‑
ture information in the spectral data. Moreover, this phenomenon can be explained by the
difference caused by the stretching vibration caused by the absorption of chemical func‑
tional groups in the biochemical components of maize seeds, indicating that our proposed
selection method is representative and interpretable, which can be used to solve practical
agricultural problems.

Feature selection is one of the important methods for data dimensionality reduction,
and it has been a hot topic of research in the field of spectral data analysis. Therefore,
in this study, the proposed CNN‑FES method was compared with two traditional SPA
and CARS feature selection methods, and the results of feature wavelengths selected from
the preprocessed spectral data (245 variables) are shown in Table 1. As can be seen, the
feature wavelengths selected by these algorithms are very different. This case is because
they use different principles, with SPA focusing on the comparison of projection vector
sizes, CARS tending to use thresholds to control the number of variables selected, and
CNN‑FES focusing on the interactions and differences between variables.
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Figure 11. CNN‑FES network selected feature wavelengths: (A) the value of IS of each feature wave‑
length; (B) the selected wavelength variables.

Table 1. Feature wavelengths selected by different algorithms.

Method Algorithm
(Number) Feature Wavelengths (nm)

DE

SPA
(23)

911, 922, 925, 935, 959, 970, 980, 987, 1000, 1142, 1183, 1345, 1397, 1413, 1436,
1657, 1682, 1685, 1689, 1692, 1695, 1698, 1701

CARS
(34)

956, 1256, 1259, 1262, 1269, 1272, 1276, 1282, 1286, 1292, 1295, 1299, 1302, 1305,
1309, 1312, 1315, 1318, 1322, 1328, 1355, 1358, 1361, 1364, 1368, 1371, 1374,
1378, 1381, 1423, 1619, 1644, 239, 1666

CNN‑FES
(24)

1239, 1243, 1249, 1252, 1256, 1259, 1262, 1266, 1269, 1272, 1276, 1279, 1282,
1286, 1289, 1292, 1295, 1299, 1302, 1305, 1312, 1368, 1381, 1407

MSC

SPA
(24)

897, 911, 915, 918, 922, 946, 959, 963, 966, 970, 1000, 1048, 1176, 1183, 1246,
1358, 1397, 1413, 1436, 1666, 1682, 1685, 1689, 1695

CARS
(29)

980, 990, 1017, 1024, 1028, 1031, 1045, 1243, 1266, 1269, 1276, 1279, 1282, 1289,
1305, 1315, 1361, 1364, 1371, 1374, 1378, 1384, 1420, 1436, 1439, 1443, 1578,
1619, 1632

CNN‑FES
(24)

897, 911, 915, 918, 922, 946, 959, 963, 966, 970, 1000, 1048, 1176, 1183, 1246,
1358, 1397, 1413, 1436, 1666, 1682, 1685, 1689, 1695

3.3. Analysis of Modeling Results
3.3.1. Detection Results Based on Full Wavelength

In order to compare the discrimination results of different models, this study inputs
the spectral data preprocessed by DE andMSC into the LDA, RF, and SVMmodels and the
proposed CNN‑ATMnetwork formodeling, respectively. Figure 12A,B show the accuracy
curve and loss function curve of CNN‑ATM training, respectively, which can observe the
training process and classification effect in real‑time. The proposed model achieved an
accuracy of 85% at 20 epochs, and it improved rapidly as the number of epochs increased.
The loss dropped to 0.3 in the 100th epoch, and it continued to decrease around this low
loss. This result indicates that themodel has a good convergence speed and generalization.
After 200 iterations, the model achieved its best performance and showed higher stability
in classification tasks.
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Figure 12. The training results of the CNN‑ATM network: (A) classification accuracy of the model;
(B) loss of the model.

The detection results of the four models on the full wavelength were compared in this
study, and their accuracy in the training set and test set is shown in Table 2. The classifica‑
tion accuracy of all models was above 91%. The RF model showed the worst results, and
its AC (91.67%), SE (87.50%), and SP (96.43%) on the test set were lower than those of the
other models. It can be seen that the spectral data preprocessed by DE has a better classi‑
fication effect than those preprocessed by MSC. The AC of the CNN‑ATMmodel is higher
than 98% for both training and test sets, which is significantly better than the modeling
results of the other methods. The results show that the method can achieve accurate clas‑
sification for the objective mission compared with traditional machine learning methods
because the CNN‑ATMnetwork has a powerful feature learning capability to achieve suffi‑
cient mining of feature information. However, the high redundancy of hyperspectral data
and the drawback of large data volume lead to the difficulty of processing hyperspectral
data directly, reducing the computational speed and robustness of the model. Therefore,
it is necessary to select feature wavelengths to remove redundant information to obtain a
subset of wavelengths with rich information and low correlation.

Table 2. Detection results based on full wavelength.

Method Model
AC(%) SE(%) SP(%)

Time (s)
Train Test Train Test Train Test

DE

LDA 100 97.50 100 96.55 100 98.39 1.36
RF 98.93 93.33 97.93 89.06 100 98.21 1.34
SVM 98.21 96.67 97.24 93.55 99.26 100 1.38

CNN‑ATM 98.21 98.33 98.59 100 97.83 96.67 11.73

MSC

LDA 100 95.00 100 93.33 100 96.67 1.37
RF 99.29 91.67 98.61 87.50 100 96.43 1.36
SVM 95.00 95.83 92.11 93.44 98.44 98.31 1.35

CNN‑ATM 97.86 98.21 98.59 100 96.38 98.39 12.18

3.3.2. Detection Results Based on Feature Wavelength
To better evaluate the effectiveness and importance of the proposed CNN‑FES net‑

work for feature wavelength selection, we compare the performance of hyperspectral data
input models after feature selection, and Table 3 shows the classification results for LDA,
RF, SVM, and CNN‑ATM models. The results show that CNN‑FES does not increase the
training time, but improves the accuracy and efficiency of the classification task to some
extent. Overall, theMSC preprocessingmethod has slightly inferior modeling results than
the DE, and the feature wavelength selection algorithm CNN‑FES differs less from SPA
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and CARS. After analyzing the experimental results, it can be seen that when the values
of AC, SE, and SP are close or equal, the number of sample subsets selected by CNN‑FES
is less or equal to that of SPA and CARS, and are concentrated at the peak of the spectral
curve. The high accuracy obtained from the model indicates that the wavelength variables
selected by the method are chemically significant to some extent.

Table 3. Detection results based on feature wavelength.

Method Feature
Select Model

AC(%) SE(%) SP(%)
Time (s)

Train Test Train Test Train Test

DE

SPA

LDA 99.28 100 100 100 98.55 100 1.38
RF 97.14 92.50 99.30 100 94.93 85.48 1.37
SVM 98.57 98.33 98.59 100 98.55 96.77 1.38

CNN‑ATM 98.57 96.67 97.18 100 97.10 93.55 8.38

CARS

LDA 98.93 100 100 100 97.83 100 1.36
RF 100 92.50 100 100 98.28 87.10 1.37
SVM 98.57 99.17 98.59 100 98.55 98.39 1.35

CNN‑ATM 92.14 95.00 89.44 94.83 94.93 95.16 9.55

CNN‑FES

LDA 99.64 100 100 100 99.28 100 1.37
RF 100 91.67 100 91.38 100 89.06 1.35
SVM 95.36 97.50 95.07 100 95.65 95.16 1.34

CNN‑ATM 93.57 97.48 98.55 100 91.30 93.55 8.36

MSC

SPA

LDA 97.50 99.17 100 100 94.93 98.39 1.34
RF 98.93 89.17 99.30 93.10 98.55 85.48 1.38
SVM 96.43 97.50 99.30 100 93.48 95.16 1.38

CNN‑ATM 94.29 92.50 98.59 96.55 89.86 88.71 9.17

CARS

LDA 98.21 99.17 100 100 96.38 98.39 1.37
RF 98.93 92.50 100 96.55 97.83 88.71 1.36
SVM 97.50 98.33 99.30 95.65 100 96.77 1.34

CNN‑ATM 97.50 97.50 96.48 98.28 98.55 96.77 8.86

CNN‑FES

LDA 98.93 99.17 100 100 97.83 98.39 1.36
RF 100 90.00 100 93.10 100 87.10 1.36
SVM 91.79 94.17 94.37 94.83 89.13 93.55 1.37

CNN‑ATM 98.21 97.50 100 98.28 96.38 96.77 8.50

Compared to the results based on full‑wavelength modeling, the results of RF and
SVM decreased on average by 3.33% and 2.50%, respectively. This may be due to the
relatively small differences in spectral characteristics of some samples, resulting in a slight
decrease in the detection accuracy. However, the accuracy of all models is above 90% on
both the training and test sets, and their discriminatory ability is LDA > SVM > CNN‑
ATM > RF in descending order, with the highest accuracy of 97.50% for CNN‑ATM. It
indicates that the performance of the spectral data does not degrade significantly after
feature selection, which proves the effectiveness and rationality of the CNN‑FES feature
selection method in this study.

CNN‑ATM reduces overfitting and improves generalization by exploiting attention
mechanisms to improve the expressiveness of spectral features with the learning ability
of the model. It also utilizes the joint action of multiple convolutional layers to reduce
the complexity of the model while retaining key feature information. Moreover, when
the model performance was evaluated, the excellent SE (98.28%) and SP (96.77%) values
proved the high accuracy of CNN‑ATM on the classification task. Although CNN‑ATM
has an average of 7 s more running time than the machine learning model, it can reach a
steady state in a shorter time. This indicates that the proposed model is more robust and
has more potential for achieving end‑to‑end problem‑solving.

Although researchers have combined CNN with hyperspectral techniques to detect
maize seed quality, fewer studies have addressed the identification of maize seed defects.
Detailed comparisons between related literature are difficult due to the differences in crops,
methods, and disciplines. However, when considering the use of the same detection
method (spectroscopic techniques), experimental object (agricultural products), and agri‑
cultural task (defect detection). This study presents a rough comparison of the proposed
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method with related studies on similar problems. As shown in Table 4, this comparison
considered five main aspects: agricultural product type, device type, sample size, spec‑
tral range, and accuracy. It can be seen that the accuracy rates for all agricultural tasks
are above 83.00%. Among them, the experimental results of this paper (97.50%) are better
than the related studies in Table 4. This indicates that the method proposed in this study
performs better and enables accurate identification of defective maize seeds.

Table 4. Comparison of the proposed method with related studies.

Agricultural
Product Type Device Type Sample Size Spectral

Range Accuracy References

Sugar beet seed Terahertz time‑domain spectroscopy 100 0.25–0.35 THz 87.00% [48]
Maize kernel Multispectral imaging 910 375–970 nm 83.00% [49]
Wheat kernel Terahertz time‑domain spectroscopy 240 0.1–3.5 THz 96.00% [50]
Cowpea seed Raman spectroscopy 105 400–1800 nm 93.70% [51]
Maize kernel Hyperspectral imaging 240 953–2517 nm 93.30% [52]
Maize seed Hyperspectral imaging 400 900–1700 nm 97.50% This study

In summary, CNN‑FES and CNN‑ATM proposed in this study can simultaneously
perform spectral feature wavelength selection and sample classification and achieve good
performance and results. These results indicate that 1D‑CNN is a feasible method for hy‑
perspectral data analysis, which is of great help to the detection and application of defec‑
tive maize seeds. Therefore, the CNN model of feature selection and classification pro‑
posed by us is of great significance in practical production, which can be applied to hyper‑
spectral data sets for other agricultural tasks, such as disease detection and abiotic stress
response. In addition, as the number of wavelengths decreases, portable spectral imaging
devices can be developed to improve data acquisition efficiency for practical applications.
At present, the detection technology of hyperspectral is developing toward online appli‑
cations and industrial production. In future work, it is necessary to deeply optimize the
network architecture to maintain the accuracy and robustness of the model. At the same
time, the variety and number of maize seed samples should be increased to provide accu‑
rate quantitative analysis. Based on this, image feature information and spectral feature
information can be fused to improve the performance of the wavelength selection algo‑
rithm and the efficiency of defect detection.

4. Conclusions
This study successfully detected defectivemaize seeds usingHSI combinedwith deep

learning. DE and MSC algorithms were used to pre‑process the raw spectra and highlight
the spectral differences between different classes. We propose a novel CNN‑FES‑based
feature selection method to select effective feature wavelengths from spectral data. The
results show that the number of selected features is fewer than SPA and CARS, and it has
better representativeness, interpretability, and classification performance. In addition, a
CNN‑ATM model based on the attention classification mechanism was proposed for de‑
tecting the presence of defects in maize seeds and comparedwith LDA, RF, and SVMmod‑
els. The results show that the classification accuracy based on full‑wavelength modeling is
98.21%, which is not significantly different from the classification performance of machine
learning methods, and the attention mechanism has an excellent ability to emphasize the
valid information of the spectral. It demonstrates the feasibility of using hyperspectral data
combined with CNN for defect detection in maize seeds, even though these samples have
similar shapes and colors. In addition, the modeling accuracy based on the characteristic
wavelength variables also reached 97.50%. This indicates that the choice of feature wave‑
length in the spectral analysis is an effective way to achieve a simplified model. Therefore,
the optimal wavelength can be set in advance when using a portable spectral camera to col‑
lect sample spectral data, which can effectively improve the processing speed of the model
and its applicability to industrial production. In addition, the data obtained were statisti‑
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cally analyzed and compared with related research works in this field. In conclusion, the
1D‑CNN proposed in this study is a promising method for hyperspectral wavelength se‑
lection and analysis with the potential for online detection, which can provide a reference
for the seed industry to improve seed quality.
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